
Invariance for Single Curved Manifold
Pedro Machado Manhães de Castro
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Fig. 1. In this paper, we extend a recent result on invariance under Lambertian model [25]. As a byproduct of our more general result, we
may rapidly detect developable regions of a surface: In the (left), there is a 3D mesh; in the (middle) we compute the average discrepancy of
the energy level for different “light” vectors; in the (right) we obtain a segmentation, such that dark regions are “close to developable”, or
developable.

Abstract—Recently, it has been shown that, for Lambert illu-
mination model, solely scenes composed by developable objects
with a very particular albedo distribution produce an (2D) image
with isolines that are (almost) invariant to light direction change.

In this work, we provide and investigate a more general
framework; and we show that, in general, the requirement for
such invariances is quite strong, and is related to the differential
geometry of the objects. More precisely, it is proved that single
curved manifolds, i.e., manifolds such that at each point there
is at most one principal curvature direction, produce invariant
isosurfaces for a certain relevant family of energy functions.
In the three-dimensional case, the associated energy function
corresponds to the classical Lambert illumination model with
albedo. This result is also extended for finite-dimensional scenes
composed by single curved objects.
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I. INTRODUCTION

A broad range of nuisance factors makes pattern recognition
a hard task to automatize, e.g., noises, measurement failures,

to name a few; this is because such factors exhibit variability,
which leads to an explosion of different patterns to recognize.
However, sometimes nuisance factors can be handled by
extracting some sufficient statistic [17], [23] of the input data,
which is invariant to them. This kind of technique is popular
in the computer vision community [1], [9], [20], [22], [25],
[24]: The measurements are often a two-dimensional image
of a three-dimensional scene; and nuisances are, amongst
others, illumination conditions, viewpoint changes, occlusions,
shadows, quantizations, and noises.

A. Related work

In order to extract sufficient statistics from the input data,
naturally, it is necessary to consider some mathematical model
of the data source. With this in mind, it is worthwhile
mentioning that great models have been produced by the
scientific community in order to reproduce the effects of
illumination in artificial scenes; see [13] for a comprehensive
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text. Perhaps the most well-known model is the Lambert
illumination model [21]. There are a number of interesting
statistics for image data. We can cite the contours [18], the
topographic map [4], [6], or the attributed Reeb tree [22] of
the image, to name a few. The topographic map, which is the
set of all isolines of the image, has some advantages: (i) it is
contrast-invariant [1]; (ii) it allows for image reconstruction,
while not depending on any thresholding parameter; moreover,
(iii) several problems have been successfully tackled by using
topographic maps [19], [3], [26].

To the best of our knowledge, it has been shown that,
for Lambertian objects, it is always possible to construct
non-trivial viewpoint invariant image statistics [24], whereas
general-case (global) illumination invariants essentially do not
exist at all [9]. There are a body of literature dealing with more
restricted illumination models [1], [19], [2], but only recently,
for the Lambertian model, necessary and sufficient conditions
on the scene geometry in order to have the topographic map
of the image (almost) invariant to the incident light direction
have been found [25]. More precisely, it has been proved that
solely scenes composed by developable objects with a very
particular albedo distribution produce an image with isolines
that are (almost) invariant to light direction change.

Contributions: In this work, we theoretically extend
Weiss et al.’s work [25] in order to encompass a more
general framework: (i) extending the Lambert illumination
model in three dimensions by some family of energy functions,
(ii) extending three-dimensional objects by finite-dimensional
Riemannian manifolds (Section III). We prove that, under
certain conditions, if a collection of objects is composed of
Riemannian manifolds of Gauss map rank at most 1, then, for
almost every parameter, the isosurfaces of the energy function
do not vary (Section IV). A direct consequence is, e.g, that
the previous change detection algorithm introduced by Weiss
et al. [25] also works for different kind of cameras (spherical,
cylindrical, etc.), and can be straightforwardly extended and
applied to detect wether a manifold is single curved or not, in
any finite dimension (Section V).

II. PRELIMINARIES

A. General Notations

Let u be some smooth function, then its gradient is denoted
by ∇u. Let x,y ∈ Rd, then 〈x,y〉 is the classical scalar prod-
uct. Also x ‖ y means that x = λ · y, for some λ ∈ R− {0};
in particular, the null vector 0 = (0, . . . , 0) ‖ x, for all
x ∈ Rd. Moreover, x⊥ denotes the orthogonal complement
of the vector space defined by x; i.e., the hyperplane of Rd

passing through the origin, which is orthogonal to x. The
normal of some differentiable manifold Ω at x is denoted by
~NΩ(x). Hereafter, we refer to Rd−{0} as Rd

∗ for short, and we
assume any manifold to be pure, orientable, connected, totally
bounded, and embedded in Rd, unless mentioned otherwise.

B. Definitions

In this paper, isosurfaces are defined as follows [16].

Definition 1 (Isosurfaces). Let u : Ω→ R be some scalar field
on a manifold Ω; we suppose that u is defined everywhere. The
isosurfaces of u are defined as the boundaries of the connected
components of u−1(λ), where λ is a constant; see Figure 2.
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Fig. 2. Isosurfaces. In the figure above, each u−1(λi), for λ1, . . . , λ5 ∈ R,
is represented by different colors; and there is a total of seven connected
components, each one is an isosurface of u.

We study in Section III and Section IV, the isosurfaces of
a certain Energy Function defined on a manifold Ωt, which
depends on the gradient of a manifold Ωs (mnemonics s and
t correspond to the words source and target respectively). The
following definition clarifies this scenario.

Definition 2 (Energy Function). Let Ωs and Ωt be Riemannian
manifolds (smooth manifolds equipped with a Riemannian
metric) with codimension 1, v = (v1, . . . , vd, vd+1) be a
vector in Rd+1, α : Ωs → R∗ be a scalar field, and
ψ : Ωs → Ωt a diffeomorphism, then the Energy Function
EΩs,v : Ωt → R is defined as:

EΩs,v(x) =
(
〈h, ~NΩs

(ψ−1(x))〉+ κ
)
· α(ψ−1(x)), (1)

where h = (v1, . . . , vd), and κ = vd+1, and d ≥ 2.

In the scenario above, some properties are proved when Ωs

is single curved (or even composed of several single curved
objects). The following definition makes such a term more
precise.

Definition 3 (Single Curved Manifolds). We call a manifold
Ω single curved if and only if the rank of its Gauss map is
everywhere less or equal to 1.

In other words, Ω is single curved if and only if it has
at most one nonzero principal curvature direction at each
of its points. Three-dimensional single curved manifolds are
simply (piece of) developable surfaces; see Figure 3. In higher
dimensions, they are the osculating scrolls [12]. (At this point,
the reader might want to check [11] for a comprehensive study
of continuous differential geometry.)

III. INVARIANT ISOSURFACES: SMOOTH CASE

In this section, it is proved that, under some conditions,
the isosurfaces of EΩs,v in Ωt are the same for almost all
v ∈ Rd+1; the almost expression is important (see Figure 4).

The proof is organized as follows: (i) we first prove an
equivalence between Ωs being single curved, and some in-
variance property on ∇EΩs,v (Section III-A); then, (ii) we



(a) separated (b) merged

Fig. 4. “Almost” is Necessary. Eventually, by carefully choosing a vector v, isosurfaces can merge; however the vector space, where merging happens,
is of Lebesgue measure 0, as we show later in this section.

(a) cone (b) cylinder

Fig. 3. Single Curved Surfaces. Single curved surfaces in three dimensions
are developable surfaces.

prove that such an invariance property on ∇EΩs,v implies
that the isosurfaces of EΩs,v in Ωt are the same for almost
all v ∈ Rd+1 (Section III-B).

A. Equivalence for Single Curved Manifolds

Theorem 4. Given the conditions described in Definition 2,
the following propositions are equivalent:
• Proposition 1. Ωs is single curved, and α varies only in

the (nonzero) principal curvature direction of Ωs, or freely if
Ωs has no curvature at all.
• Proposition 2. ∀v1,v2 ∈ Rd+1, ∀x ∈ Ωt, ∇EΩs,v1(x) ‖
∇EΩs,v2(x).

Proof: Since ψ is a diffeomorphism between Ωs and Ωt,
then Ωt inherits all the differential properties of Ωs. Therefore,
it is sufficient to show that Theorem 4 holds for when ψ is the
identity, and thus, Ωt = Ωs. Also, as κ can be removed by an
isometry in Rd+1, we drop it without any loss of generality.

Theorem 4 is trivial when Ωs is a piece of hyperplane, since

the normal is constant everywhere. Hereafter, we concentrate
our efforts on the case where Ωs has Gauss map rank equal
to 1.

We show now that Proposition 1 and Proposition 2 are
equivalent for a fixed point x ∈ Ωs.

Let TΩs denote the tangent space of Ωs at x, Π the second
fundamental form of Ωs at x, and ~N the normal of Ωs at x,
then, by Eq.(1), we can write ∀y ∈ TΩs

〈∇Ev,y〉 = α · 〈Π(y),v〉+
〈
~N,v

〉
· 〈∇α,y〉 . (2)

Consider Proposition 1 ⇒ Proposition 2. By assuming
Proposition 1, we have that, at x, the rank of Π is 1, and
α is constant on the kernel of Π, and then, for some λ ∈ R∗

Π(y) = λ · 〈∇α,y〉 · ∇α. (3)

Replacing Eq.(3) in Eq.(2), and solving for y gives

∇Ev =
(
λ · α · 〈v,∇α〉+

〈
~N,v

〉)
· ∇α, (4)

which means that ∇Ev ‖ ∇α independently of v.
Consider Proposition 2 ⇒ Proposition 1. By assuming

Proposition 2, we have that there exists ~D, such that, for all
v ∈ Rd, y ∈ TΩs, and some λ ∈ R∗〈

λ~D,y
〉

= α · 〈Π(y),v〉+
〈
~N,v

〉
· 〈∇α,y〉

=
〈

Π(y) · α+ ~N · 〈∇α,y〉 ,v
〉
.

Now, if y is in the (d−2)-dimensional space TΩs∩ ~D⊥, then
we have that

〈
λ~D,y

〉
= 0, and thus〈

Π(y) · α︸ ︷︷ ︸
tangent to Ωs

+ ~N · 〈∇α,y〉︸ ︷︷ ︸
normal to Ωs

,y

〉
= 0,



which means that Π(y) · α = 0 and 〈∇α,y〉 = 0. Because
α 6= 0, the rank of Π must be 1, furthermore α must be a
constant in the kernel of Π.

Finally, varying x in Ωs, ends the proof. Note that discon-
tinuities on the rank of the Gauss map are not problematic,
since Ωs is assumed to be an orientable Riemannian manifold,
and thus having unique and well-defined normals at any point
in Ωs.

Theorem 4 shows an equivalence between a manifold being
single curved and the invariance of the Energy function’s
gradient to direction change, as defined in Definition 2; see
Figure 5 for an illustration of the simple geometry of such
manifolds.
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Fig. 5. Foliation of Ωs. There is a projection on xyz of a 3-dimensional
manifold embedded in R4; it has only one principal curvature direction, and
is, thus, a single curved manifold. The generatrices of Ωs forms a foliation
of Ωs.

B. Invariance for Single Curved Manifolds

At this point, the reader might want to remind the nota-
tions at Section II-A. We additionally introduce the following
notations.

Let ω ⊂ Ω be an open set, where Ω is a Riemannian
manifold, then ω denotes the closure of ω, and ω̊ or int(ω)
denote the interior of ω defined as the largest open set
contained in ω; here, both the notion of closure and open
set are related to the metric space defined by the Riemannian
manifold Ω.

Theorem 5. Given the conditions described in Definition 2,
if Ωs is single curved, and α varies only in the (nonzero)
principal curvature direction of Ωs (or freely if Ωs has no
curvature at all), then, for almost every v1,v2 ∈ Rd+1, the
isosurfaces of EΩs,v1

(x) are the same as those of EΩs,v2
(x).

The proof of Theorem 5 is in Appendix-A. Figure 7 and

Figure 6 illustrate scenarios where Theorem 5 can be applied,
and scenarios where Theorem 5 cannot be applied respectively.

(a) ψ1 : Ωcylinder → Ωwinecup (b) varying h (c) varying κ

(d) ψ2 : Ωcylinder → Ωlady (e) varying h (f) varying κ

Fig. 6. Some Valid Scenarios. The isosurfaces do not vary for almost every
h and κ.

(a) Ωs (b) h1 (c) h2

(d) α (e) h1 (f) h2

Fig. 7. Scenarios Failing to Verify the Hypotheses. From (a) to (c), the
hyperboloid is not developable; and from (d) to (f), the function α is not
constant along the generatrices of the cylinder. They do not produce the same
isosurfaces.

Now, we can extend this result with a simple corollary,
which is useful in Section IV.

Corollary 6. Let ω ⊆ Ωs, given the conditions described
in Definition 2, if Ωs is single curved and α varies only in
the (nonzero) principal curvature direction of Ωs (or freely if
Ωs has no curvature at all), then, for almost every v1,v2 ∈
Rd+1, the isosurfaces, restricted to ψ(ω), of EΩs,v1

(x) and
EΩs,v2

(x) are the same.



IV. INVARIANT ISOSURFACES: NON-SMOOTH CASE

Several objects can be modeled by pieces of single curved
(hyper-)surfaces. It turns out, that the same kind of invari-
ance property described in Section III works for those. In
this section, we make this point more precise, by defining
such piecewise single curved hypersurfaces, and proving their
isosurface invariance.

Definition 7 (Piecewise Single Curved Object Space). Ξ is
the space of objects S = (Ω, α) such that there exists a finite
set {Θi, αi}i∈I and S = (Ω, α) which satisfy:
• Ω is a compact topological manifold with codimension 1.
• ∀(i, j), Θi ∩Θj = ∅.
• ∀i ∈ I,Θi is a single curved Riemannian manifold; and
∪i∈IΘi = Ω (the closure is with respect to the inherited
metric from Ω).

• αi varies in the nonzero principal curvature direction of
Θi (or freely if Θi has no curvature at all).

• Finally, we suppose that the normals, and α restricted to
Θi admit a limit on the boundary of Θi. (Of course, the
limits do not need to be the same for adjacent pieces.)

Ξ is the piecewise single curved object space of dimension
d. An object of Ξ is also called a piecewise single curved
hypersurface; see Figure 8.

In what follows, we study the isosurfaces in Ωt of EΩs,v,
when Ωs ∈ Ξ; naturally, Ωs and Ωt must be isomorphic.

Adopting a diffeomorphism ψ : Ωs → Ωt such as the one
in Definition 2 becomes more delicate, because of the sharp
features. We give next, some assumptions on the isomorphism
φ : Ωs → Ωt, which is called φ instead of ψ in order to
emphasize differences.
• φ : Ωs → Ωt is an isomorphism;
• φ restricted to Θi is a diffeomorphism, ∀i ∈ I;
The main result of this section is the following theorem.

Theorem 8. If Ωs is a finite set of piecewise single curved
objects, Ωt is isomorphic to Ωs, and the isomorphism φ :
Ωs → Ωt satisfies the above-mentioned hypotheses, then, for
almost every v1,v2 ∈ Rd+1, the isosurfaces of EΩs,v1

(x) and
EΩs,v2(x) are the same.

The proof of Theorem 5 is in Appendix-B. Figure 8 depicts
some Ωs ∈ Ξ, some vector v, and the respective isosurfaces
on Ωt.

The next corollary immediately follows from Theorem 8.

Corollary 9. Let ω ⊆ Ωs, if Ωs, Ωt, and φ : Ωs → Ωt

restricted to ω satisfy the hypotheses in Theorem 8, then, for
almost every v1,v2 ∈ Rd+1, the isosurfaces, restricted to
φ(ω), of EΩs,v1

(x) and EΩs,v2
(x) are the same.

V. DETECTING SINGLE CURVED MANIFOLD

Some segmentation algorithms in 3D may benefit from good
initial guesses [14], [15]. When the segmentation process is
related to curvature estimates of the surface, then a reasonable
initial guess might be segments of the surface which are
“more likely” to be developable, i.e. having at most one

curvature direction at each point; Figure 3 shows the 3D
surface segments of interest for a 3D surface.

One could detect segments of the surface that are likely
to be developable by simply estimating discrete curvatures,
which can be done fairly well, (e.g., osculating jets [7] or
normal cycles [10]) and running some clustering algorithm.
However, these estimators are not optimized to detect surface
developability, but rather to obtain precise estimates of cur-
vatures in general, which is a harder task. As a consequence,
they are quite slow. By using the invariance in Corollary 9, we
are able to design a fast algorithm that points out segments of
the surface that are likely to be developable without any need
for curvature estimation.

The procedure is quite simple, and is based on well-
understood contrast equalization algorithms [3], [5]:
• Let Ωs be an input 3D surface, represented as a triangu-

lation with M triangles (see Figure 9-left), then we take N
unitary vectors v1, . . .vN ∈ R4 at random, and we compute,
for each triangle T ∈ Ωs, the energy level EΩs,vi(T ),
i = 1, . . . , n; this leaves us with a distribution of energy on the
surface of Ωs. We equalize the distribution, and discretize all
values, so the energy value becomes an integer; for short, we
denote these discretized energies by ∆i(T ), corresponding to
a discrete EΩs,vi

(T ). (In our implementation, we use integer
values ranging from 0 to 7.)
• For each random vector v1, . . .vN , we find n1, . . . , nN

maximal connected components Ci,k ⊂ Ωs, k ≤ ni respec-
tively, such that ∆i(T ) is the same for each T ∈ Ci,k.
The connected components above are an approximation of
isosurfaces of EΩs,vi . From Corollary 9, such isosurfaces
must be preserved (almost) regardless of light direction change
on developable segments of surface. Since the set of vectors
such that isosurfaces merge has null measure, random vectors
are good choice for invariance. (Of course, perfectly random
vectors in an infinite space, such as S3, are not produced by our
algorithm, or even standard computers, however, in practice,
the pseudo-random vectors are highly sufficient; indeed, we
have got no merging isosurface in any experiment we have
done.) With this in mind, we define a discrepancy value
DT for each triangle T , as follows: Let S be some set of
values, then denote the median of S by µS , and let Ai(S) be
{∆i(T ) | T ∈ S}. The discrepancies DT are given by

DT =

N∑
i=1

N∑
j 6=i

∣∣∆j(T )− µAj(Ci,k)

∣∣, Ci,k 3 T . (5)

These values represent how the isosurface approximations are
similar for different vectors; in an ideal scenario, where the
surface is perfectly developable, they would be zero for each
pair i, j. DT can be computed efficiently in parallel; there is
no dependence between triangles and triangles, or triangles
and vectors in the computation of the energies.
• After computing DT for each triangle, we get a sequence

of discrepancies ranging from 0 to 255, forming a distribution
of discrepancies on Ωs; see Figure 9-middle. Let τ be a
number ranging from 0 to 1, then finally, we classify as “likely



(a) φ : Ωtower → Ωcone (b) v1 (c) v2 (d) merging

Fig. 8. Non-smooth Scenario. (a) Ωtower ∈ Ξ; (b) and (c) show the energy on Ωcone for some parameters; (d) shows isosurfaces that have merged, because
of a carefully chosen vector v.

devlopable” the triangles T , such that DT has rank at most
τM in the sorted sequence of discrepancies; see Figure 9-right.

Figures 1 and 9 show some results of the procedure above on
reasonably sized meshes, ranging from one hundred thousand
vertices to around one million and a half vertices. As we can
see close to flat, cylindrical, and conical regions tend to have
lower discrepancies, while toroidal, spherical, or just doubly
curved regions tend to have bigger discrepancies. Each one
of these results takes less than half a minute in a MacBook
Pro 3,1 equipped with an 2.6 GHz Intel Core 2 processor
and 2 GB of RAM, and requires no post-processing at all;
see Table I. They can be used as an initial guess for time-
consuming procedures that are related to curvature, such as
slippage analysis [15]. The complexity of the algorithm is
O(MN logM+MN2), the lefthand part is due to equalization
in the initial step (which is only O(M) after discretization with
a simple counting sort).

TABLE I
JET FITTING IS IMPLEMENTED IN CGAL [8], THE PARAMETERS WE USE

ARE DEFAULT (-D2 -M2 -A2); TIMINGS ARE EXPRESSED IN SECONDS.

nb. of facets N our work jet fitting [7]
Pulley (Figure 9) ≈ 500K 30 17s 31s
Neptune (Figure 1) ≈ 3M 10 26s 196s

The parameters in the above-mentioned procedure are N
and τ . Small N might be insufficient to capture the non-
developability of some surface segments, and big N might
harm the performance of the algorithm. Whereas, small τ
might ignore some pretty close-to-developable segments of
surface, and big τ might classify wrongly non-developable
segments. The values of N and τ in this work are: 10 and 0.7
for Figure 1; 30 and 0.65 for Figure 9. Although, we have fixed
the number of possible distinct values for ∆i(T ) to 7, this is
not necessary. However, notice that such a number should not
be too large, otherwise too many connected components may
have size 1, which is not desirable as DT might be artificially

reduced.
Finally, Corollary 9 indicates that this same procedure gen-

eralizes to any finite dimension, for surfaces of codimension
1. In that case, the patterns are single curved hypersurfaces;
i.e., osculating scrolls [12].

VI. CONCLUSION

In this work, of a more theoretical flavor, we have gen-
eralized [25], proving necessary and sufficient conditions
for isosurface invariance under a specific family of energy
functions in any finite dimension, and we also provided some
theoretical and practical applications of our generalizations.
Another point is that since the procedure is primordially
designed to detect developable parts of an object, its weakness
is on false positives; we will tackle this problem in future
works. We will also take a look at some other illumination
models, such as the ones based on BRDF, in the search for
relevant invariances.
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APPENDIX

A. Proof of Theorem 5

In order to prove Theorem 5, we need some kind of Thom’s
Tranversality argument; we follow the same line as that in
Weiss et al. [25], and start with the three lemmas below.

Lemma 10. Let Ω be a Riemannian manifold with codimen-
sion 1, C : Ω→ Rd+1

∗ be a mapping (no regularity assumption
is made), and let ωv = int({x ∈ Ω, C(x) ∈ v⊥}). For almost
every v ∈ Rd+1, ωv = ∅; this is with respect to the Lebesgue
measure of Rd+1, which is denoted by µRd+1 .

Proof: Since Ω is a totally bounded metric space, it is
separable; i.e., there exists a countable subset ΩA ⊆ Ω such
that every nonempty open subset of Ω contains at least one
element of ΩA. Let Y = {v ∈ Rd+1, ωv 6= ∅}, and, for each
a ∈ ΩA, let Ya = {v ∈ Rd+1, a ∈ ωv}. Ya is a subset of
a hyperplane of Rd+1. If it were not the case, there would
exist d + 1 elements of Ya, v1, . . . ,vd+1, that would form a
basis of Rd+1. As C(a) ⊥ vi,∀i ∈ {1, . . . , d + 1}, it would
mean that C(a) = 0, which contradicts C(a) ∈ Rd+1

∗ . Thus
µRd+1 (Ya) = 0, and, as ΩA is countable, µRd+1

(⋃
a∈ΩA

Ya
)

=
0. Furthermore,

⋃
a∈ΩA

Ya = Y , since each nonempty open set
ωv contains an element of ΩA. Therefore, µRd+1(Y ) = 0.

Lemma 11. Let ω ∈ Ω be an open set. Let u1 and u2 be two
C1 functions Ω → R such that: ∀x ∈ Ω, ∇u1(x) ‖ ∇u2(x),
∇u1(x) 6= 0 and ∇u2(x) 6= 0. Then u1 and u2 have the same
isosurfaces in ω.

Lemma 12. Let u1 and u2 be two C1 functions Ω → R
such that ∀x ∈ Ω,∇u1(x) ‖ ∇u2(x). Let Ω0

1 = {x ∈
Ω,∇u1(x) = 0}, and Ω0

2 = {x ∈ Ω,∇u2(x) = 0}. The
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following propositions are equivalent:
• Proposition 1. u1 and u2 have the same isosurfaces.
• Proposition 2. Ω̊0

1 = Ω̊0
2.

The proof of the last two lemmas can be found in Weiss
et al. [25] (in their Lemma 2 and Lemma 3), but the notion
of closure and open set used in their proofs must be replaced
by the closure and open set with respect to the metric space
defined by Ω.

Now, we have what is needed to prove Theorem 5.
Proving Theorem 5: We assume that Ωs is single curved,

and α varies only in the (nonzero) principal curvature direction
of Ωs (or freely if Ωs has no curvature at all); from Theorem 4,
this implies that ∇EΩs,v = 〈v, F 〉·[f1, . . . , fd] with F : Ωt →
Rd+1
∗ , and f1, . . . , fd : Ωt → R, C0 mappings, which yields
∀v1,v2 ∈ Rd+1, ∀x ∈ Ωt, ∇EΩs,v1

(x) ‖ ∇EΩs,v2
(x).

Let Ω+
t = {x ∈ Ωt, [f1, . . . , fd](x) 6= 0}, then this set is

open as f1, . . . , fd are C0. Let

ωv = int({x ∈ Ω+
t ,∇EΩs,v(x) = 0}),

then this set is also characterized by

ωv = int({x ∈ Ω+
t , F (x) ∈ v⊥}).

From Lemma 10, we get that for almost every
v1,v2 ∈ Rd+1, ωv1 = ωv2 = ∅. Now, remark that
int({x ∈ Ωt,∇EΩs,v1(x) = 0}) = ωv1∪(Ωt−Ω+

t ), and thus,
for almost every v1,v2 ∈ Rd+1,

int({x ∈ Ωt,∇EΩs,v1
(x) = 0}) =

int({x ∈ Ωt,∇EΩs,v2
(x) = 0}).

Finally, it suffices to use Lemma 12 to conclude that for
almost every v1,v2 ∈ Rd+1, EΩs,v1 and EΩs,v2 have the
same isosurfaces in Ωt.

B. Proof of Theorem 8

Notice that Ωs and Ωt are no longer necessarily connected
in this scenario. However, this poses no problem at all, as
emphasized in the following proposition.

Proposition 13. In order to prove Theorem 8, we may assume,
without any loss of generality, that Ωs is connected (a single
piecewise single curved object). This is because φ : Ωs → Ωt

is assumed to be an isomorphism, and then the image of φ,
for each connected component in Ωs, is non-intersecting.

Hereafter, we will assume Ωs to be a single object of Ξ.
Naturally, the difficulty involved in proving Theorem 8 now,
is handling the boundaries. The next lemma generalizes Weiss
et al. [25] (their Proposition 2); it copes with boundaries of
finite dimension and with several connected components.

Lemma 14. Adjacent isosurfaces in Ωt of incident pieces in
Ωs merge for almost no v ∈ Rd+1.

Proof: Let Θs be a piece of Ωs, Θ = φ(Θs), xs ∈ Ωs,
and x = φ(xs), we call
• θ(xs,v) the isosurface of EΩs,v containing x;

• θΘ(xs,v), the isosurface θ(xs,v) restricted to Θ.
(d−k)-dimensional boundary, k > 1. Let, (xsi1 , . . . ,xsik) ∈
Θsi1

× . . . × Θsik
, (i1, . . . , ik) ∈ Ik, and ia = ib ↔ a = b,

let xij = φ(xsij
), zc ∈

[
∩kj=1θΘij

(xsij
,v)
]
c
, where [A]c

means some connected component of A, 1 ≤ j ≤ k, and
zcs = φ−1(zc). (Of course, if ∩kj=1θΘij

(xsij
,v) = ∅, there

is no boundary incident to these k pieces.) We have, for any
xsij

, ∀x ∈ θΘij
(xsij

,v), EΩs,v(xij ) = EΩs,v(x), and in
particular,

EΩs,v(xij ) = lim
x→zc
x∈Θij

EΩs,v(x)

= lim
x→zc
x∈Θij

((
〈h, ~Ns〉+ κ

)
· α
)

(x). (6)

As zc ∈
[
∩kj=1θΘij

(xsij
,v)
]
c
, zc ∈ [∩kj=1Θij ]c. Since φ is

an isomorphism, zcs ∈
[
∩kj=1Θsij

]
c

(the images by φ−1 of
Θi1 , . . . ,Θik ) and lim

x→zc
x∈Θij

x = zc, j = 1, . . . , k. Therefore, we

can rewrite Eq.(6) as follows

EΩs,v(xij ) =

〈
h, lim

xs→zcs
xs∈Θsij

(
α~Ns

)
(xs)

〉
+ κ lim

xs→zcs
xs∈Θsij

α(xs).

Then, for a, b ∈ {1, . . . , k}, a 6= b, EΩs,v(xia) = EΩs,v(xib)
if and only if〈

h, lim
xs→zcs
xs∈Θsia

(
α~Ns

)
(xs)− lim

xs→zcs
xs∈Θsib

(
α~Ns

)
(xs)

〉
+

κ ·

 lim
xs→zcs
xs∈Θsia

α(xs)− lim
xs→zcs
xs∈Θsib

α(xs)

 = 0.

(7)

We now consider the following two distinct cases:
• If there is some a, b ∈ {1, . . . , k}, a 6= b, such that,

lim xs→ys
xs∈Θsia

(~Ns, α)(xs) 6= lim xs→ys
xs∈Θsib

(~Ns, α)(xs), then

Eq.(7) is verified if and only if v = (h, κ) lies in a
particular hyperplane of Rd+1. Such a hyperplane has
zero Lebesgue measure.

• Otherwise, EΩs,v is a constant over[
∩kj=1θΘij

(xsij
,v)
]
c
, and then we have a merged

single isosurface for this respective boundary. From
Corollary 6, we have the invariance for almost every
v ∈ Rd+1 (with respect to the Lebesgue measure).

Proving Theorem 8: Since there are countably many
boundaries between pieces in Ωs, from Lemma 14, they
account for almost no v ∈ Rd+1. From Theorem 5, the pieces
of Ωs also account for almost no v ∈ Rd+1. And hence,
Theorem 8 is proved for Ωs ∈ Ξ. Finally, Proposition 13
completes the proof for the more general case, when Ωs is
not necessarily connected.


