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Abstract—We consider the problem of designing space ef-
ficient solutions for representing the connectivity information
of manifold triangle meshes. Most mesh data structures are
quite redundant, storing a large amount of information in
order to efficiently support mesh traversal operators. Several
compact data structures have been proposed to reduce storage
cost while supporting constant-time mesh traversal. Some recent
solutions are based on a global re-ordering approach, which
allows to implicitly encode a map between vertices and faces.
Unfortunately, these compact representations do not support
efficient updates, because local connectivity changes (such as
edge-contractions, edge-flips or vertex insertions) require re-
ordering the entire mesh. Our main contribution is to propose
a new way of designing compact data structures which can be
dynamically maintained. In our solution, we push further the
limits of the re-ordering approaches: the main novelty is to allow
to re-order vertex data (such as vertex coordinates), and to exploit
this vertex permutation to easily maintain the connectivity under
local changes. We describe a new class of data structures, called
Editable SQuad (ESQ), offering the same navigational and storage
performance as previous works, while supporting local editing
in amortized constant time. As far as we know, our solution
provides the most compact dynamic data structure for triangle
meshes. We propose a linear-time and linear-space construction
algorithm, and provide worst-case bounds for storage and time
cost.

Keywords-triangle meshes; compact representations; dynamic
data structures;

I. INTRODUCTION

Many graphics, animation and modeling applications use
triangle meshes. Different data structures have been proposed
for representing them [1], [2], [3], [4], [5]. In general one
associates consecutive positive integer IDs with the different
vertices, store the vertex data (locations, normals, textures) in
an array, and use arrays to store incident relations between
faces and vertices. In some cases the traversability (the ability
of accessing neighboring cells at a constant time cost) is not
required: for example, for applications such as rasterization
and integral properties evaluation, the information directly
available from the indexed face set suffices. However, many
mesh processing functions (such as identifying silhouette
edges, rendering with on-the-fly adaptive subdivision, or walk-
ing along the intersection with a plane or another mesh) require
access to adjacent elements. Furthermore, some applications
require a set of operators in order to locally update the
mesh structure: this occurs, for example, in the incremental

computation of Delaunay triangulation [6], [7]. Others require
changing the connectivity dynamically (such as adaptive mesh
refinement [8]). Usual mesh representations contain redundant
information in order to achieve the prescribed requirements.
Finally, the compactness has been considered more recently:
the data structure should take as little storage as possible, so
as to reduce page faults and cache misses. Although some
applications store a large amount of information associated
to mesh elements (such as vertex or faces), most applications
only store vertex coordinates (often quantized to 16 bits or
less) and possibly normal and texture coordinates (which can
also be quantized). In general the cost of connectivity is
really expensive and always dominates storage. For example,
in the case of a triangle mesh, there are typically twice
as many triangles as vertices: therefore the storage cost of
connectivity in common data structures (such as Corner Table
or Half-edge), ranges from ((6 × 2) + 1) × 32 = 416 to
((3× 6) + 1)× 32 = 608 bits per vertex, while the storage of
the quantized vertex locations is usually between 3× 16 = 48
and 3× 32 = 96 bits per vertex.

A. Traversable, modifiable and compact meshes

Two natural requirements for a mesh data structure are
the accessability and navigability: traversable meshes should
provide a basic set of operators allowing efficient (possibly
constant-time) access and navigation between mesh elements.
For example, the implementation of mesh traversals requires to
perform the walk on the mesh around a face or to retrieve the
neighbors of a vertex. Data structures should be also indexable.
The application should be able to associate consecutive integer
IDs to all triangles, and to access the IDs of their vertices in
constant time, so as to support various marking and book-
keeping functionalities. The reverse indexability may also be
important to applications where one wishes to obtain the
IDs of all triangles that are incident upon a given vertex.
Modifiable data structures have the ability to dynamically
maintain the mesh under local updates. Most applications
need to perform local connectivity changes (attach/remove a
triangle, insert or split a vertex, collapse or flip an edge) in
constant time. A further requirement is the simplicity: a data
structure should be simple to implement, so as to facilitate
the development and testing of operators for mesh traversal
and modification. The operators for changing the connectivity



and for indexing or traversing the mesh should be fast in
practice, so that their cost is negligible when compared to
the geometric or photometric processing cost performed by
typical applications. Because of the increasing complexity
of surface meshes used in applications, a number of works
propose compact data structures: the compactness of a mesh
representation is a quality of measure, which can be defined
as the average number of references stored per vertex. For
dealing with meshes having huge size one has to eliminate, as
much as possible, the redundancies of data structures: this is
a crucial point, to reduce overall storage and hence memory
thrashing.

B. Prior art: mesh encodings and data structures

Mesh compression: As already observed, representing a
triangulation in a basic way induces a lot of redundancies.
There exists several schemes allowing to efficiently compress
the connectivity of a surface mesh into a few bits per vertex:
this is the case, for example, of the Edgebreaker scheme [9],
[10], which encodes a planar triangulation of size n with at
most 3.67n bits. A recent scheme [11] is even more compact,
allowing to compress into the optimal number of bits (3.24n),
matching asymptotically Tutte’s entropy bound [12]. Although
compressed formats reduce connectivity storage, they are not
useful for mesh processing, since to support traversal operators
they require full (or at least partial) decompression.

Classical data structures: Most popular geometric data
structures store a large number of references in order to de-
scribe incidence relations. Their classical implementations, in
most programming environments are explicit representations:
references allow to navigate in the data structure through
address indirection. For example, in edge-based representa-
tions such as Half-edge [2], for each basic element (the
half-edge) one stores 2 references to incident half-edges (the
next one in ccw order in the same face, and the opposite
one, lying in the neighboring face), plus a reference to a
bounding vertex. Moreover, each vertex stores an incident
half-edge, which leads to 3e + n references for a general
manifold mesh having e edges and n vertices. Thus, in the case
of triangle meshes, the Half-edge data structure uses 19 rpv
(references per vertex): other edge-based representations, such
as Quad-edge [5] or Winged-edge [3], have similar storage
requirements. Face-based representations (Corner Table, or
triangle DS [1]) have slightly smaller requirements. They store,
for each triangle, only 3 references to the neighboring faces (or
opposite corners) and 3 references to the bounding vertices,
plus a reference to an incident face for each vertex: this leads
to a storage cost of (2× (3+3))+1 = 13 rpv. Classical data
structures are modifiable as they support updates in constant
time: implementing a local modification (such as a triangle
split or an edge flip) in the mesh involves a constant number
of memory access and reference updates.

Compact data structures: The main goal of compact
(practical) data structures ([13], [14], [15], [16], [17], [18],

[19], [20]) is to reduce the number of references, while
still guaranteeing an efficient implementation of navigational
operations as in usual representations. This goal can be
achieved, for example, by grouping adjacent mesh elements (as
neighboring triangles in [14]): this allows to save some internal
references, while still maintaining the representation under
local modifications. A more recent approach consists in re-
ordering mesh elements (typically faces, or edges) according
to a given permutation. Adopting this strategy, the SOT data
structures [16] allows to efficiently navigate in the mesh, using
at most 6 rpv. Combining this idea with a triangle pairing and
a matching between triangles and vertices, it is possible to
obtain a more compact version (SQUAD data structure [17])
which uses about 4 rpv in practice (the LR data structure
is even more compact, requiring about 2.16 rpv for tested
meshes). Performing a re-ordering of input points, a recent
edge-based representation [15] (referred to as sorted TRIPOD)
guarantees the same navigation performances, providing a
space bound of 4 rpv in the worst case (as in the TRIPOD data
structure [20], the main ingredient are Schnyder woods [21]).

Theoretical solutions: succinct representations: For com-
pleteness, we also mention that succinct representations [22],
[23], [24] are successful in matching optimal asymptotic
bounds for many class of meshes, running under the well
known word-Ram model. In this case a memory word can store
an arbitrary (small) number of references (or service bits) of
tiny size: typically, one may stores up to O( lg n

lg lg n ) sub-words
of length l = O(lg lg n) each. Succinct data structures are
of theoretical interest, mainly because the amount of auxil-
iary bits required, even if asymptotically negligible, remains
important for triangulations of practical size.

Modifiable compact solutions: Star vertices [25] uses
7 rpv to the price of navigation in O(d) time, where d is the
degree of the vertex involved. This structure is dynamic, as the
mesh is editable: update operations can be performed in O(d2)
time, where d is the degree of involved vertices. The catalog-
based representation described in [14] has a storage cost
slightly larger (the most compact version requires 7.67 rpv),
while being fully dynamic: standard local modifications can
be performed in O(1) time (as for [1], the number of ref-
erence updates is still constant). This catalog-based approach
is somehow a practical version of [24], a succinct dynamic
representation allowing to encode a triangulation having f
faces with at most 2.17f + o(f) bits, while supporting local
modifications in O(log2 f) amortized time.

Our contributions

Most recent data structures for the connectivity of manifold
triangle meshes are either compact, modifiable, or traversable,
but not all three. Our contribution is to introduce new data
structures achieving all the requirements above. The main idea
is based on a new sorting strategy, making use of a matching
from vertices to triangles: our novel approach for storing con-
nectivity could lead others to invent new interesting dynamic
mesh encoding schemes. We are able to describe a new class of
mesh data structures supporting standard local edits in constant



traversable/modifiable compact and traversable compact/travers/modif our results
Data Edge Triangle DS Directed SOT SQUAD LR sorted 2D Star ESQ ESQ ESQ
structure Based Corner Table Edges TRIPOD Catalogs Vertices C1 C2 C3

size (rpv) 19 13 13 6 ≈ 4 ≈ 2.16 4 7.67 7 6 6 4.8
navigation O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(d) O(1) O(1) O(1)
vertex access O(1) O(1) O(1) O(d) O(d) O(d) O(d) O(1) O(1) O(d) O(d) O(d)
triangle split O(1) O(1) O(1) - - - - O(1) O(d2) O(1) O(1) O(1)
edge flip O(1) O(1) O(1) - - - - O(1) O(d2) O(1) O(1) O(1)
vertex delete O(1) O(1) O(1) - - - - O(1) O(d2) O(d) O(1) O(d)

TABLE I: Comparison between data structures for triangle meshes. Memory requirements are expressed in terms of references
per vertex (rpv) and hold in the worst case (at the exception of SQUAD and LR, whose performances come from experimental
tests). Navigation and vertex access time hold in the worst case. The update cost is given in terms of the number of reference
updates. We denote by d the degree of involved vertices.

(amortized) time. As in prior works ([15], [17], [16], [18]),
local navigation operators are supported in worst case O(1)
time, while the access to vertex data can require O(d) time (for
a degree d vertex). Our data structures are simple to implement
and provided with an analysis of worst case storage bounds.
The simplest solution uses 6 rpv, while supporting updates
operations in O(1) amortized time: this is obtained with a re-
ordering of input data which allows to encode the map from
triangles to vertices. Our most compact data structure makes
use of a grouping strategy between adjacent triangles, and uses
only 4.8 rpv, while still supporting efficient navigation and
update operations. We provide experimental results concerning
storage requirements and time-cost performances, obtained
with implementations, which confirm the practical interest
of our approach (experimental comparisons are reported in
Table II, while Table I shows the space requirements and
worst-case performances for traversal and update operators of
existing mesh representations).

II. PRELIMINARIES

Meshes and triangulations

Here we consider manifold triangle meshes, whose com-
binatorics correspond to simple triangulations embedded on
a surface of arbitrary genus (without loops and multiple
edges). Given a triangulation T , we denote by n (resp. by
f ) the number of its vertices (resp. faces). Let us denote
by V = {v0, v1, . . . , vn−1} the set of its vertices, and by
F = {40,41, . . . ,4f−1} the set of its triangles.

Dynamic data structures

As in previous works [26], [24], [27], [14] we assume
that the programming environment provides a system memory
manager which allows to allocate and free memory. The
problem of designing and implementing efficient dynamic data
structures is of both theoretical and practical interest. From the
design and analysis point of view resizable arrays [26] provide
worst case O(1) time random access to data (reading and
writing operations), while supporting updates (shrinking and
growing operators) in amortized O(1) time, where additional
storage cost is only O(

√
n) (where n is the number of elements

stored). Similar time-cost performances are also matched by
practical implementations provided in classic programming
languages (such as Java or C++), the wasted storage due to
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g1 = neighbor(4, ccw(i))

g0

g1g2

g2 = neighbor(4, cw(i))

g0 = neighbor(4, i)

4 = face(v)

z

z = vertex(g2, faceIndex(g2,4))

v = vertex(4, i)

int degree(int v) {
int d = 1;

int f = face(v);
int g = neighbor(f, cw(vertexIndex(v, f)));
while (g ! = f) {

i = vertexIndex(v,4)

int cw(int i) {return (i + 2)%3; }
int ccw(int i) {return (i + 1)%3; }

int next = neighbor(g, cw(faceIndex(f, g)));
int i = faceIndex(g, next);
g = next;
d + +;

}
return d;

}

Fig. 1: Abstract data type for triangle meshes: our representa-
tions support the same operators as in [1], [14].

deallocation being of order Θ(n). In the rest of this work we
assume to have an implementation of an abstract data type
(ADT) for dynamic arrays, supporting the following operators
with the performances above:
- read(T, i): return the value stored at T [i],
- write(T, i, e): store element e at position i in T ,
- grow(T ): increase the size of T ,
- shrink(T ): decrease the size of T .

As usual, we assume elements have indices between 0 and
n− 1 and are all of equal length, coinciding with the size of
memory words (32 or 64 bits in practice).

Abstract data type for dynamic meshes

Our representations are face-based and implement the same
interface as in [14] and [1] (the Corner Table data structure
provides a slightly different interface). More precisely, we have
the following operators:
- neighbor(4, i): retrieve the i-th neighbor of 4,
- vertex(4, i): retrieve the vertex with index i of 4,
- face(v): access one triangle incident to v.

With a combination of these operators it is also possible to
define other functions, such as:
- faceIndex(41,42): return the index of 41 among the
neighbors of 42.
- vertexIndex(v,4): return the index of vertex v in face 4.

The combination of the operators listed above allows to
turn around a face in cw (or ccw) order, and thus to compute
the degree of a vertex or to list its neighbors (as illustrated



in Fig. 1). The mesh can be dynamically modified under
the following update operators: defining a complete set of
operators for editing a mesh, as in previous works:
- split(4, p): subdivide a given triangle 4, into three new
sub-triangles by inserting a new point p,
- flip(e): perform the flip of a given edge e,
- delete(v): remove a degree 3 vertex v, together with its
three incident triangles.

III. DYNAMIC COMPACT MESHES: GENERAL SCHEME

Overview of our approach

As in previous compact representations, we exploit a re-
ordering approach to reduce the number of references rep-
resenting the map from vertices to faces and the map from
faces to vertices. Here, we further explore the power of such
re-ordering strategies. Instead of re-ordering mesh elements
(typically faces [17] or edges [15]), we rather exploit a
permutation of geometric data associated with vertices. We
avoid the indirection between triangles and vertices, by storing
the vertex coordinates together with the data associated with
one of its incident triangles: in this way we save 3 references
for each triangle. The main novelty is to show that a coher-
ent numbering of triangles and vertices can be maintained
efficiently after local changes. Furthermore, as suggested in
SQUAD [17] and [14], we also perform a grouping of few
adjacent triangles in patches: this further reduces the number
of references between neighboring elements.

Scheme description

Given a (triangular) mesh T having f faces, we consider a
partition of its faces into patches. A patch is a face-connected
triangulation with some marked vertices, namely a set of
adjacent triangles whose dual graph is connected: in practice
we will deal with patches which are simply connected and with
a simple boundary. Given a face partition of T into patches, we
say that such a partition is valid if the two following conditions
are satisfied. Any face belongs to one and only one patch:
patches can only share edges and vertices. A vertex v ∈ T may
belong to several distinct patches, but is matched only once,
and is marked in the corresponding patch.Two patches have
the same shape if there is a bijection between their vertices
that preserve triangles and marks. Two patches are of the same
type (s, b, m), if they have the same number s of triangles, the
same number m of marked vertices and boundaries of the same
size b (b is the number of boundary edges). A catalog is the
set of distinct (types of) patches defining the partition of the
mesh: the size |C| of the catalog is the number of (different)
patches it contains.

Catalog-based representation: As in previous array-
based representations [15], [16], [17], [18], [13], our data
structure represents the mesh connectivity by storing a given
number of references describing incident relations between
mesh elements. Let us consider a partition of T based on
a catalog C with patches of k different types. We represent
the connectivity of T storing the references in k tables
T0, T1, . . . Tk−1: table Ti stores the connectivity of a patch

{ patch index

int patchIndex(int r) {return (r >> serviceBits); }
int patchType(int r) {return (TYPE[r& mask]); }

r =

{service bits

patch
type

patch
shape

tria
ngle

index

int patchShape(int r) {return (SHAPE[r& mask]); }
int triangleIndex(int r) {return (INDEX[r& mask]); }

Fig. 2: References encoding.

with si triangles and mi marked vertices. More precisely Ti

stores, for each patch of type (si, bi,mi), a block of bi integers
in consecutive memory words: they represent the bi references
to faces in neighboring patches. Geometric information (and
other information associated to vertices or triangles), are
stored in a collection {Pj}0<j≤k of tables containing vertex
coordinates, each associated to a table Tj . Pj has |Tj | rows
(one for each row in Tj) and mj columns (one for each vertex
marked in a patch stored in Tj , if mj = 0 the table may
be empty). The entries of Pj are in correspondence with the
patches stored in the associated table Tj . More precisely, the
a-th row Pj [a] stores the coordinates corresponding to vertices
w1, . . . wmj which are matched by the a-th patch in table Tj .
When required, additional informations associated to the faces
can also be stored in Tj .

References encoding: Recall that, according to our de-
composition, each triangle belongs to exactly a patch, and each
vertex is associated to a patch. Thus, in order to be able to
refer to a given triangle 4, a reference is composed of the
following data:
- a patch type: a code for indicating the type of patch p
containing 4,
- a patch shape: a code for indicating the shape of patch p
containing 4,
- a triangle index: a code for indicating the face 4 among the
triangles contained in p,
- a patch index: the index of p in table Tj (Tj being the table
containing the patches of same type as p).

A reference is encoded as an integer value r (typically on
32 bits): first bits (also referred to as service bits) are reserved
for storing the three first codes, while remaining bits encode
the patch index. Since in our representations the number of
arrays, as well as the number of triangles per patch, are fixed,
the first three codes require a constant number of bits (between
1 and 4 bits suffice in practice). The main part of a reference
(representing the index of patch p, stored in Tj), requires
dlog2 |Tj |e bits. Retrieving service bits and patch indices can
be performed with a combination of bit shift and bit mask
operations (see Fig. 2). Observe that we do not need to store
references to vertex data, which actually can be retrieved by
the correspondence between vertices and matched patches.

Limitations: As one can observe, our approach apply
to meshes for which we can design an efficient matching
correspondence (between vertices and patches) that can be
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Fig. 3: Construction of the ESQ data structure (catalog C1).
Triangles and vertices are matched according to a Edgebreaker
traversal, starting from the seed face (green triangle). Patches
of type S (blue faces) are stored in table TS : they are ordered
according to the index of the matched vertex (table PS stores
vertex coordinates). Table TU stores the unmatched patches
(gray faces).

int neighbor(int r, int i) {
if (patchType(r) == S)

}

return tableS[patchIndex(r) ∗ 3 + i];
else

return tableU[patchIndex(r) ∗ 3 + i];

int vertex(int r, int i) {
if (patchType(r) == S && i == 0)

}

return patchIndex(r);
int f = neighbor(r, cw(i));
int j = faceIndex(r, f);
while (f ! = r) {

if (j == 1&& patchType(f) == S)

return patchIndex(f);

int next = neighbor(f, ccw(j));
j = faceIndex(f, next);
f = next;

}

v

f
r

next

ij

cw(i)

Fig. 4: Implementation of navigational operators.

easily maintained under dynamic updates. In the next sections
we describe a few examples of data structures instantiating
the general scheme described above, for the case of triangle
meshes without boundaries (the case of boundaries is more
involved and discussed in the last section). The choice of
different catalogs of patches has a deep impact on the perfor-
mances of mesh representations: for example, a small catalog
(such as C1 consisting of few types of patches) is simpler to
implement and faster in practice compared to a bigger catalog
(such as C2) with better time-cost guarantees.
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IV. INSTANTIATING THE GENERAL SCHEME

A. The simplest catalog

The smallest catalog, denoted by C1, contains two types of
patches, having only one triangle with zero or one matched
vertex: we call U the patch with one triangle and no matched
vertex, and S the triangle associated with one vertex (refer to
Fig. 3).

Storage requirements: In such a case we have exactly
two arrays of size n and f − n respectively, one for patches
of type U and one for patches of type S: with some abuse of
notation, we denote them by TU and TS . Since the triangles in
TU are unmatched, we need only one table PS to store vertex
coordinates: PS has one column and n rows. PS [i] stores the
coordinates of vi, while TS [i] stores the 3 neighbors of the
triangle (denoted by si) matched with vi. As each patch stores
3 references to adjacent triangles, the cost for connectivity
is 6 rpv (recall that there about 2n faces in a triangulation).
Finally, observe that for this simple catalog we need only one
service bit, for distinguishing between patches of type U and
S: no need of more service bits, since all patches consist of
exactly one triangle.

Matching triangles and vertices: The construction of
our data structure relies on a matching between faces and
vertices. This matching is dynamically maintained by the
update operation described later, but if a triangulation is
already given, then this matching can be computed as in [16]
visiting the faces, according to an Edgebreaker traversal of the
dual graph. The algorithm visits triangles (and vertices) in a
depth-first manner (visiting right neighbor first), starting from
a seed face (green face in Fig. 3): each time an unvisited vertex



v is reached, it is matched to the current incident triangle. As
for the Edgebreaker coder, the traversal ends when all faces
and vertices have been visited, producing a valid partition (for
more details see [16]).

Implementing navigational operators: For the sake of
completeness, we briefly sketch how to implement the nav-
igational operators. Let us denote by r (resp. v) a reference
to a given triangle (resp. vertex): recall that v ranges between
0 and n − 1, while r is an integer whose first bit (service)
describes the type of patch (the remaining bits encode the
triangle index, which ranges between 0 and at most n). As
one could expect, the implementation of neighbor operator
is straightforward and fast, as it requires only one access in
tables TU or TS . The implementation of vertex operator is
more involved (as in [15], [16], [17], [18]): as we did not
explicitly stored references to vertices, we have to iteratively
turn around a given vertex until the corresponding matched
triangle is reached (the pseudocode is shown in Fig. 4).

Update operators and performance analysis: Update
operations for catalog C1 are described in Fig. 5. Most update
operations are quite easy to implement, involving a constant
number of references updates in arrays TU and TS : the only
exception concerns the case of vertex deletion.

The only difficult operation is the deletion of a degree 3
vertex, when all the three incident triangles have a marked
vertex. In one triangle the marked vertex is the deleted one v,
but after the deletion two vertices a and b are unmarked and we
have a single triangle abc to assign it. The first workaround is
found if one of the neighboring triangle has no marked vertex
(Fig 5-bottom-left), then this triangle can be assigned one
of the two orphan vertices. If the three neighboring triangles
already have a marked vertex, only one of the triangles incident
to edges bc and ca can have c as a marked vertex, assume
without loss of generality that c is not marked in the triangle
incident to bc; then a is marked in abc and among all the
triangles incident to b at least one has to be free of mark
(since c is marked in a triangle not incident to b) thus b can
be assigned to that triangle (Fig 5-bottom-right).

Although this last operation cannot be guaranteed to be in
constant time and may require a time linear in the degree of
b, it can be observed that this search for an unmarked triangle
incident to b can be stopped as soon as such a triangle is found.
Since half of the triangles are unmarked this exploration in
average will not need to explore all the neighbors of b even if
the degree of b is large.

B. A catalog with guaranteed constant time vertex removal

A slight modification of catalog C1 allows to obtain a data
structure that ensures constant time vertex removal, to the price
to a less efficient edge flip (but still in constant time) (refer to
Figure 6). We add a new type patch to the catalog, called D,
consisting of one triangle with two incident matched vertices.
We obtain a catalog C2 having three types of patches (thus
implemented with 3 tables TU , TS and TD), consisting each
of 1 triangle and having at most two matched vertices. Two
service bits are needed by Catalog C2.
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Fig. 6: All updates operations can be perform in amortized
O(1) time, with the slightly richer catalog C2.

Performance analysis: Since each patch contains one
triangle, the storage analysis is the same as for catalog
C1, leading to a cost of 6 rpv. Triangle split can be easily
performed as before. The main differences concern the support
of edge flip and vertex deletion.

Edge flips: As for catalog C1, the correctness relies on
an exhaustive case analysis. In addition to the cases already
considered in Fig. 5, we have to deal with few more config-
urations, involving patches of type D. As depicted in Fig. 6,
edge flips can always be supported with a constant number of
memory changes. In most cases we need only some few read
and write operations, which can be performed in worst case
O(1) time on dynamic arrays. Unfortunately, there remains
one case (refer to Fig. 6), where the edge flip implies the
creation of two new patches of type S, and two removals (of
patches D and U respectively): it still leads amortized O(1)
time (the cost for updating tables TS , TD and TU ) but is clearly
less efficient compared to catalog C1 where the patches are
just modified in place in the tables TU and TS .
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Fig. 7: The triangle/quad catalog C3 requires at most 4.8rpv.

Triangle split
Degree 3 vertex deletion

Edge-flip

Two triangles merge

Fig. 8: Update operations for the catalog C3. We omit to mark
vertices (we use colors to distinguish neighboring patches).

Vertex removals: The advantage of catalog C2 is in the
way we can perform vertex deletions more efficiently. As
depicted in Fig. 6, we can use an adjacent triangle (say triangle
(c, b, d)), in order to distribute the remaining vertices. For
example, vertices a and b can be associated to triangle (a, b, c)
of type D, while the remaining vertex c is matched by triangle
(c, b, d): observe that such triangle is originally of type U or
S, and becomes of type S or D after the removal of v. The
removal/addition of a constant number of patches in tables TS ,
TU and TD can be supported in amortized O(1) time.

V. TRIANGLES AND QUADS: MORE COMPACT CATALOGS

Here we consider catalogs containing patches which are
simple triangles or quads (groups of paired adjacent triangles):
as before they may have zero or more marked vertices.

Catalog C3: guaranteed upper bound: The catalog C3

(see Fig. 7) contains triangles with zero or one marked vertex
and quads (groups of two triangles with zero or one marked
vertex each). We need five catalogs TU , TS , TQ0 , TQ‘1, and
TQ2 . For the type Q1 and Q2 there are several possible shapes
depending on the position of the marked vertices with respect
to the quad’s diagonal and the triangle matched by the marked
vertices. The gray pictures on Fig. 7 can be avoided yielding
16 different triangles on that pictures allowing 4 service bits
to distinguish all cases. Update operations are sketched in
Fig. 8. The way the vertices are marked is not described and
is identical to the one in Section IV-A.

Performance analysis: If we enforce that two neighboring
triangles are always merged in a quad, then we can lower
bound the number of quads by 3

5n and upper bound the
number of isolated triangles by 4

5n and get that we need only
4.8 rpv, as shown in [14].

VI. EXPERIMENTAL RESULTS

In order to evaluate practical performances, we have written
Java array-based implementations of the triangle data struc-
ture [1] (TDS) and of our ESQ data structure (catalog C1).
Table II reports the experimental results obtained by TDS and
ESQ representations on the tested 3D models: we compare
both navigational and update operators. Our tests confirm the
practical interest of ESQ approach: time-cost performances of
ESQ are close to the ones of TDS, while the storage gain is
significant (TDS is not compact, using 13rpv).

Navigational operators: As one could expect, the ESQ
implementation of the vertex operator is slower than TDS
(about 12 times slower): recall that to retrieve a bounding
vertex we have to turn around a vertex until the matched
triangle is found (while TDS needs a memory access). Quite
surprisingly, ESQ is (slightly) faster than TDS when compar-
ing degree operator. The main reason is that ESQ can take
advantage of the matching correspondence between triangles
and faces. Given a vertex v we know that its index in sv

(the matched triangle) is 0, so the clock-wise neighboring face
around v is given by neighbor(sv, 2): which allows to save
some computations compared to the TDS implementation.

Update operators: When evaluating the split operators
we only consider the combinatorial cost: we do not perform
geometric calculations, and we split triangles just performing
connectivity changes. As shown by our experiments, ESQ has
(slightly) better performances than TDS: observe that both data
structures perform the same reference updates to neighboring
faces, while TDS has to update also vertex references (which
do not exist in ESQ). Concerning the flip operator, ESQ is
slower than TDS (about 1.7 times slower, in our tests). This
comes from the number of cases to consider (as illustrated in
Fig. 5): in order to distinguish all different cases ESQ has to
perform a number of tests and bit-wise operations (to retrieve
the patch type of the two neighboring faces).

Construction: The preprocessing time for our ESQ data
structure is also shown: it includes the matching phase, as well
as the construction step (memory allocation and references
setting). In all our tests, vertices and faces are accessed con-
secutively. We run our experiments on a Dell XT2, equipped
with a Core 2 Duo 1.6GHz, Java 1.6 (the JVM using 1GB
heap memory), under Windows 7 (32 bits).

VII. CONCLUDING REMARKS AND EXTENSIONS

We have proposed compact representations for triangle
meshes supporting local editing operations. Our data structures
are provided with guaranteed bounds (between 4.8 rpv and
6 rpv) and experimental evaluation. Further improvements and
extensions are possible, according to the remarks below.



statistics preprocessing (seconds) vertex (ns) degree (ns) split (ns) flip (ns)
3D model vertices faces genus matching ESQ construction TDS ESQ TDS ESQ TDS ESQ TDS ESQ
Bague 2652 5.3K 1 0.01 0.02 12 132 318 303 2005 1749 335 591
Aphrodite 46096 92K 0 0.08 0.06 12 134 347 330 796 655 331 575
Feline 49864 99K 2 0.11 0.07 10 138 354 324 774 645 324 578
Camille’s hand 195557 391K 0 0.28 0.64 11 151 445 364 799 612 383 601
Eros 476596 953K 0 0.51 0.55 11 129 322 294 701 581 336 576
Pierre’s hand 773465 1.54M 0 0.8 1.96 10 117 285 274 783 589 348 583

TABLE II: Experimental results. We compare the time cost performances of our ESQ data structure (Catalog C1, using 6 rpv),
with the triangle based data structure [1] (TDS), which is not compact and requires 13 rpv. Timings are expressed in terms of
nanoseconds(ns) per operation. The preprocessing time (in seconds) for the construction of ESQ is also reported.

Catalog C4

Fig. 9: Left: triangle-quad catalog C4. Right: our tested meshes
are manifold with no boundary (genus 0, 1 and 2).

Meshes with boundaries: Our results hold for triangle
meshes which are manifold and without boundaries (and
with arbitrary fixed genus). Dealing with boundaries is more
involved and requires to design new matching rules (for
assigning vertices to faces after local changes). Furthermore,
our bounds for the triangle-quad catalogs should be updated
to take into account boundaries of arbitrary size (relying on a
slightly different counting argument).

Total vs. partial pairing: In the static setting, one way
to obtain better bounds (for the triangle-quad catalog) is
to compute a perfect matching between pairs of adjacent
triangles. Unfortunately, it is not clear how to maintain such
a pairing when local changes are performed (without re-
processing the entire mesh). A better trade-off between time-
cost performances and lower memory occupancy could be
achieved, in practice, with a smaller triangle-quad catalog C4

(which would be simple to implement, involving only three
types of patches, S, U single triangles and Q for quads).
According to experimental tests (see [17]), the matching and
pairing strategy of the SQuad representation allows to regroup
most of triangles into quads, leading to a cost of about 4 rpv.
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