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Abstract—We propose a new approach to represent and ma-
nipulate a mesh-based character animation preserving its time-
varying details. Our method first decomposes the input mesh
animation into coarse and fine deformation components. A model
for the coarse deformations is constructed by an underlying
kinematic skeleton structure and blending skinning weights.
Thereafter, a non-linear probabilistic model is used to encode the
fine time-varying details of the input animation. The user can
manipulate the corresponding skeleton-based component of the
input, which can be done by any standard animation package,
and the final result is generated including its important time-
varying details. By converting an input sample animation into our
new hybrid representation, we are able to maintain the flexibility
of mesh-based methods during animation creation while allowing
for practical manipulations using the standard skeleton-based
paradigm. We demonstrate the performance of our method by
converting and editing several mesh animations generated by
different performance capture approaches.

Keywords-Animation; Character animations; Mesh anima-
tions; Mesh Editing;

I. I NTRODUCTION

Recently, a variety of mesh-based approaches have been
developed that enable the generation of computer animations
without relying on the classical skeleton-based paradigm [1].
The advantage of a deformable model representation is also
demonstrated by the new performance capture approaches [2],
[3], where both motion and surface deformations can be
captured from input video-streams for arbitrary subjects.This
shows the great flexibility of a mesh-based representation over
the classical one during animation creation.

Although bypassing many drawbacks of the conventional
animation pipeline, a mesh-based representation for character
animation is still complex to be edited or manipulated. Few
solutions are presented in the literature [4], [5], [6], [7], [8],
but in general it is still hard to integrate these methods into
the conventional pipeline. Other approaches try to convertor
represent mesh animations using a skeleton-based representa-
tion to simplify the rendering [9] or editing tasks [10], [2].
However, these editing methods are not able to preserve fine
time-varying details during the manipulation process, as for
instance the waving of the clothes for a performing subject.

For editing mesh-based character animations, an underlying
representation (i.e. skeleton) is desired since it simplifies the
overall process. At the same time, the time-varying details

should be preserved during manipulation. These two con-
straints guide the design of our new hybrid representation
for mesh-based character animation. Our method decomposes
the input mesh animation into coarse and fine deformation
components. A model for the coarse deformation is con-
structed automatically using the conventional skeleton-based
paradigm (i.e. kinematic skeleton, joint parameters and blend-
ing skinning weights). Thereafter, a model to encode the time-
varying details is built by learning the fine deformations ofthe
input over time using a pair of linked Gaussian process latent
variable models (GPLVM [11]). Our probabilistic non-linear
formulation allow us to represent the time-varying details
as a function of the underlying skeletal motion as well as
to generalize to different configurations such that we are
able to reconstruct details for edited poses that were not
used during training. By combining both models, we simplify
the editing process: animators can work directly using the
underlying skeleton and the corresponding time-varying details
are reconstructed in the final edited animation.

We demonstrate the performance of our approach by per-
forming a variety of edits to mesh animations generated from
different performance capture methods. As seen in Fig. 1 and
in the results (Sect. VI), our approach is able to convert a
mesh-based character animation into a new hybrid represen-
tation that is more flexible for editing purposes and it can be
easily integrated in the conventional animation pipeline.

The main contributions of our paper are:
• a robust method to learn time-varying details using a non-

linear probabilistic technique;
• a simple approach to represent and edit a mesh-based

character animation preserving its time-varying details.
The paper is structured as follows: Sect. II reviews the most

relevant related work and Sect. III briefly describes our overall
approach. Thereafter, Sect. IV details the method to convert a
mesh-based character animation into the skeleton-based format
and Sect. V describes how the time-varying details are learned
using a non-linear probabilistic technique. Experiments and
results are shown in Sect. VI and the paper concludes in
Sect. VII.

II. RELATED WORK

Creating animations for human subjects is still a time-
consuming and expensive task. In the traditional framework,

mailto:edilson.de.aguiar@gmail.com
file:ukita@is.naist.jp


Fig. 1. Our approach represents an input mesh-based character animation (top row - particular frames) into a new hybrid representation that simplifies the
editing process and preserves important time-varying details, i.e. dynamics of the skirt (bottom row - edited frames).

the character animation is represented by a surface mesh and
an underlying skeleton. The surface geometry can be hand-
crafted or scanned from a real subject and the underlying
skeleton is manually created, inferred from marker trajecto-
ries [12] or inferred from the input geometry [13], [14]. The
skeleton model is animated by assigning motion parameters
to the joints and the geometry and skeleton are connected via
skinning (see [15] for an overview).

Given the complexity of this process, many related methods
have been developed to simplify this pipeline, bypassing many
drawbacks of the conventional framework [1]. In particular,
the recent progress of deformation transfer [16], [17], surface
capture [18], [19] and mesh-based performance capture meth-
ods [2], [3] is enabling the creation of an increasing numberof
mesh-based animations for human subjects. As a result, editing
and reusing these animations is becoming an important issue.

A number of approaches have been developed to process
and edit general mesh animations [4], [5], [6], [7], [8], but
unfortunately these methods cannot be easily used by anima-
tors or integrated into the conventional animation pipeline. For
animations that can be represented by an underlying kinematic
skeleton, e.g. human subjects, an underlying representation is
more flexible for editing operations, it enables its integration
into a conventional animation package and it simplifies the
overall process. Recent techniques to simplify the rendering
task for such mesh animations [9] and new methods to convert
a sequence of mesh poses [10] or mesh animations [2] to a
skeleton-based format have been investigated. Our technique
extends these latter editing approaches by preserving the fine
time-varying details during the manipulation process, which
increases the quality of the final result (Fig. 1).

Example-based skinning methods attempt to improve simple
linear deformation by adding or correcting surface details
from a given set of examples. In case the animation edits are
not too large or complex, pose-space deformation [20], [21],
weighted pose space deformations [22], and related papers
would be able to provide reasonable results. Similar techniques

have been developed for face animation [23], [24] as well. In
our framework, surface time-varying details are encoded and
preserved by a non-linear probabilistic technique. In contrast to
related approaches dealing with human skin deformations [25],
[26], [27], our method is even able to model deformations of
loose apparel.

Considering that the underlying subspace of deformations
is inherently non-linear, we believe that a non-linear dimen-
sionality technique is appropriate to compactly representthese
deformations. Among the non-linear dimensionality reduc-
tion approaches, Gaussian Process Latent Variable Models
(GPLVM [11], [28]) has been shown to robustly generalize
well from small training sets and it does not tend to over-fit
as other techniques. Recently, a variety of GPLVM approaches
have been widely used for learning human motion either using
a dynamic representation [29] or a shared latent structure [30].
These techniques were also used to model large dimensional
data, such as silhouettes [31], voxel data [32] and even
simple deformable models [33]. However, to the best of our
knowledge, such technique has never been used to learn time-
varying surface details for more complex models like in our
system.

III. OVERVIEW

An overview of our approach is shown in Fig. 2. The input
to our method is an animated mesh sequence comprising of
NFR frames. The mesh-based character animation (MCA =
[M,pt]) is represented by a sequence of triangle mesh models
M = (V = vertices, T = triangulation) and position data
pt(vi) = (xi, yi, zi)t for each vertexvi ∈ V at all time steps
t.

Our framework is inspired by Botsch and Kobbelt [34],
where a new representation for mesh editing is proposed using
a multiresolution strategy. In contrast to their method, our sys-
tem can be applied to a sequence of spatio-temporally coherent
meshes and it allows the manipulation of the entire animation
by decomposing it into coarse (MCAC) and fine (MCAF )



Fig. 2. Overview of our method: an input mesh-based character animation
is decomposed into coarse (MCAC ) and fine (MCAF ) deformation com-
ponents. This enables the user to edit the underlying skeleton-based represen-
tation and the time-varying details of the input are faithfully reconstructed in
the final animation.

deformation components. A model for coarse deformations is
created by automatically fitting a kinematic skeleton to the
input and by calculating the joint parameters and blending
skinning weights such that the input animation is reproduced
as close as possible, Sect. IV.

Unfortunately, only a skeleton-based model is not able to
represent the fine time-varying details of the input. In order
to encode such details, a GPLVM-based technique is used to
learn the motion-dependent fine non-rigid details, Sect. V.The
combination of both models not only enables the conversion
of the input mesh-based character animation in a new hybrid
representation, but it also enables its manipulation preserving
the important time-varying details, Sect. VI.

IV. SKELETON-BASED REPRESENTATION

Giving an input mesh-based character animationMCA, a
skinned model (MCAC) is created to reproduce the coarse
deformation component of the input animation. This is done
by automatically fitting a kinematic skeleton to the input mesh
model (i.e. triangle mesh at first frame of the animation) and
by calculating the joint parameters (θ) and blending skinning
weights such thatMCAC reproducesMCA approximately.

Our goal is to deal with human-like characters. Therefore,
we include prior knowledge in our framework by means of a
known kinematic skeleton structure, Fig 3(left). Our kinematic
structure containsNJOINTS = 18 joints connecting bone
segments and its joint hierarchy is presented in Fig. 3(right).
We parametrize the skeleton by the translation of the root
joint and three angular degrees-of-freedom for all other joints.
We fit our kinematic skeleton to the input character model by
using the method proposed in [13]. We also use the approach
proposed in [13] to compute appropriate blending skinning
weights to connect the input mesh model to the underlying
kinematic skeleton.

Thereafter, for each frame of the input animation, joint
parametersθ are estimated such that the reconstructed skinned
modelMCAC best reproduces the input mesh poses inMCA.
Starting from the root of the hierarchy and stepping down to
the leaves, this is achieved by optimizing the root translation
and the angles for each joint in order to minimize the average

Fig. 3. Prior knowledge is incorporated in our framework by means of
a known kinematic skeleton structure (left) containing18 joints organized
hierarchically (right).

square deviations between the vertices in the skinned model
and the vertices in the input mesh pose for each frame. We
perform this optimization for each joint subsequently follow-
ing the skeleton’s hierarchy. In contrast to [10], [2], thissimple
strategy is fast and it is more robust against artifacts due to
the non-rigid components of the input animation. Although we
are not as general as the related work regarding the estimation
of the underlying skeleton structure, in our experiments, our
automatic approach is able to correctly convert animationsof
different human subjects wearing a variety of clothing styles,
Fig. 6.

Our final skinned modelMCAC closely matches the input
animation. However, non-rigid time-varying details cannot be
accurately reproduced in this representation. In the next sec-
tion, a new method is used to learn such time-varying details
which enables the faithful reconstruction and manipulation of
the input.

V. L EARNING TIME-VARYING SURFACE DETAILS

We use a non-linear probabilistic technique to efficiently
learn the surface time-varying details of the input, which is
inherently non-linear, from a small number of samples (i.e.
frames). This is achieved by learning the difference between
the input mesh animation and its corresponding skinned model
representation. This algorithm design is important because
it makes our representation more stable (i.e. by using the
coarse skinned animation) and it enables a more detailed and
accurate reproduction of the input (see Fig. 5(a) and Sect. VI).
Another advantage is that while absolute coordinate values
of neighboring vertices may be completely different, the fine
deformations tend to be similar for neighboring vertices, which
improves the performance of our learning scheme.

Giving the mesh animationMCA and its skinned model
MCAC , we create the details by subtracting for each vertexvi

its original positionpt(vi) in MCA from its positionpst(vi)
in MCAC at time stept: dt(vi) = pt(vi) − pst(vi). Finally,
yMt

= [dt(v1), · · · ,dt(vN )]T is a component ofMCAF at
time t.

The skeletal motion (i.e. joint parameters) is linked to
the fine deformations of the input model using a shared
latent structure of GPLVM,Shared Gaussian Process Latent
Variable Models (SGPLVM) [30], via a low-dimensional latent
spaceX, as illustrated in Fig. 4. In conjunction with the
idea of Gaussian Process Dynamical Models (GPDM) [29],



our latent space encoding is not only subject to the structure
of the high dimensional data, but it is also subject to the
dynamics in this data, which enforces smoothness of the
temporal transitions of the latent variables. Our shared variant
approach is used since we assume that the skeletal motion
and the mesh details have a common underlying temporally
coherent behavior. Skeletal poseYS and mesh detailsYM are
related to the shared latent variables with a pair of forward
mapping functionsfS(x) : X → YS andfM (x) : X → YM ,
whereYS represents aDS-dimensional joint parameter vector
andYM is theDM -dimensional time-varying detail vector.

The estimation of the mapping functionsfS(x) andfM (x)
is briefly described in the following. In SGPLVM [30],d-
dimensional latent variablesX = [x1, · · · ,xN ] corresponding
to N given samples inYS andYM (denoted byȲ S andȲ M ,
respectively) are acquired by maximizing the joint likelihood
of Ȳ S and Ȳ M with respect toX. In this optimization, the
similarity between components ofX (i.e. xi and xj where
i 6= j) is evaluated by a non-linear kernel function. In our
particular case, the similarity is determined in accordance with
our sampling data, namely mesh details (ȳMi

and ȳMj
) and

skeletal motion (̄ySi
and ȳSj

). We use radial basis function
(RBF) to define the non-linear kernel function and scaled
conjugate gradient (SCG) for the optimization offS(x) and
fM (x).

GPDM [29], which consists of an observation spaceY (i.e.
YS or YM ) and its latent spaceX, is defined by two mappings.
The first mapping is from the latent spaceX to the observation
spaceY , and the second one is from a point att − 1 to a
point att in X, fD(x), as also illustrated in Fig. 4. Similarly
to SGPLVM, these mapping functions are acquired by max-
imizing the joint likelihood ofY and Xt+1 with respect to
X and Xt, respectively, whereXt+1 = [x2, · · · ,xN ] and
Xt = [x1, · · · ,xN−1].

In our framework, the shared latent spaceX under the
dynamics constraint, is acquired by maximizing the product
of the joint likelihoods evaluated in SGPLVM and GPDM.
In contrast to previous work, where the initialization ofX is
achieved by canonical correlation analysis (CCA) [35] or av-
eraging the top eigenvectors of the principal components [30],
in our method,X is initialized by using only the principal
components ofY S . Thereafter, we optimize the product of
the joint likelihoods. SinceDS ≪ DM , this approach results
in a better initialization and optimization forY M .

The goal of this learning scheme is to encode time-varying
details of the input mesh animation using the joint parameters.
In general, a given joint angle configuration might correspond
to multiple surface details. Dynamics constraint with GPDM
allows us to properly model this situation and obtain an
improved latent space by mapping the data with similar details
but different motions to different latent variables inX. In order
to leverage this advantage, a temporal history of the input
skeletal motion is mapped fromYS to X and then toYM . In
our implementation, a concatenation of the joint parameters for
two frames is employed:ySt

= [θt, θt−1]
T , whereθt denotes

the skeletal joint parameters at timet. Please note that only

Fig. 4. The relation between joint parameters and surface details is
learned using a shared latent space with dynamical constraints. Our model
can generalize to different input configurations, as seen bythe color-coded
variance (blue=high→ red=low).

joint angles are used for learning and that in our experiments,
we achieved better results by discarding the joint angles for
the root joint.

While the latent spaceX is optimized by embedding
with Gaussian Process, a mapping function fromyS to x

(f−1(yS) : Y S → X) is not provided by the above mentioned
process. In our work, after the latent spaceX is optimized,
the mappingY S → X is obtained by a regression function,
which is also learned by Gaussian Process [28].

Using fS(x) and fM (x), a new mesh model is generated
as follows: first the coarse deformationps(vi) is estimated
from the joint parameters at timet using our skinned model,
Sect. IV. Thereafter,ySt

= [θt, θt−1]
T is mapped toyMt

=
[dt(v1), · · · ,dt(vN )]T via X: yM = fM (f−1

S (yS)), and the
time-varying detailsdt(vi) are calculated. Both terms are
added together and the pose for the model is reconstructed.
In our experiments, the dimension of the latent space and the
number of iterations for the SCG technique are set to be4 and
100, respectively. These values enable convergence and they
are a good trade-off between training speed and accuracy of
the final framework.

VI. EXPERIMENTS AND RESULTS

Our approach has been tested on several mesh-based anima-
tion sequences generated from performance capture methods
that are publicly available [36], [3]. The animations con-
tain walking, marching and fighting sequences. The input
meshes were generated at a resolution of aroundNV ERT =
7000 − 10000K vertices and the animation sequences range
from NFR = 70-400 frames long. In order to evaluate the
performance of different algorithmic alternatives, we first ran
a series of experiments.

In our first experiment, we verified the efficiency of our
system’s design by comparing the performance of our non-
linear probabilistic model to learn the full range of deforma-
tions in contrast to only encoding the time-varying detailsin
Sect. V. By encoding coarse and fine deformations, our non-
linear model is able to reproduce the input, but unfortunately it
is not able to generalize well to different pose configurations.
Fig. 5(a) shows the result when we use a model trained with
the full deformations (red line) and one trained with only
the fine deformations to reconstruct the swing sequence [3].
The graph shows the average distance error between the
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Fig. 5. Experiments for the human-size samba sequence [3]: (a) The graph
shows that our system design is able to reproduce the swing sequence more
accurately. (b) A multiresolution approach can be used in ourframework to
deliver the same level of quality and decrease computational power and storage
resources. (c) Graph comparing the reconstruction accuracyof our skinned
model (red line) and our hybrid representation (blue line) demonstrating the
advantage of our algorithm.

corresponding vertices of the human-size input animation and
our reconstructions. This demonstrates our correct choiceby
using a non-linear model to encode only the fine time-varying
deformations, as described in Sect. V.

Our second experiment was used to determine the best
combination of representations to be applied to our GPLVM-
based approach, Sect. V. Motion capture data can be rep-
resented by euler angles, quaternions or exponential maps.
We applied all three representations to our method, and in
our experiments exponential maps performed better. We also
tested two common representations for positional data: vertex
displacements in xyz space (XYZ) and differential coordi-
nates [1] (DIF). In our experiments, both mesh representations
give similar results. Therefore, giving the fast generation of
XYZ, in contrast toDIF where a linear system needs to be
solved for each frame, for the remainder of this paper we use
the combination exponential maps and XYZ to generate the
results.

Given the high dimension space of the input data (i. e.
DS = 2 × 3 × (NJOINTS − 1) and DM = 3 × NV ERT ),
our third and last experiment analyzes the performance of our
system to handle it, as well as lower dimensional spaces (i.e.
mesh resolutions) generated by simplifying the original one.
We generated a simplified version of the input animation by
decimating the character triangle mesh at the first frame using
a surface mesh simplification procedure. We maintain the
temporal connectivity in the control mesh animation by saving
the sequence of edge collapses for the simplified character
model and by applying the same sequence of operations for
all meshes in the input sequence. Thereafter, we apply our
framework to generate our hybrid representation and perform
some manipulations using the control mesh animation. At the
end, a radial basis function approach, proposed in [36], is used
to reconstruct the fine resolution models based on the sequence
of edited control meshes.

We tested the performance of our system in six different res-
olution levels: full mesh resolution or100% of the number of
vertices,75%, 50%, 25%, 10% and5%. As seen in the graph
in Fig. 5(b), the reconstruction accuracy of our system for the
challenging samba sequence is similar in all resolution levels.
In the accompanying video, we can also see that visually there
is not much difference in the final result when we manipulate
the control mesh or the full fine resolution animation. There-
fore, in order to make our approach more efficient, decreasing
its overall processing time, we decided to perform the editing
process following a multiresolution strategy using the control
mesh at a resolution of5% (NV ERT = 350−500). Please note
that our system can still be applied to any resolution level and
that for all sequences we tested, the time-varying details of the
input animations were preserved during the process. We see
this multiresolution scheme as an additional advantage of our
framework as it allows the reduction of processing time and
storage without decreasing the overall quality of the animation.

The performance of our framework to automatically convert
an input mesh-based character animation to our new hybrid
representation is shown in Fig 5(c). By using only the skinned
model, as in related approaches [10], [2], time-varying details
are not preserved and the reconstruction is not accurate (red
line in Fig. 5(c)). Our hybrid solution preserves the details of
the input animation which yields a more faithful reconstruction
of the input (blue line in Fig. 5(c)). Fig. 6(e) also shows that
our approach reproduces better the original dynamic details
in the skirt in comparison with linear blending skinning. This
property of our new representation is specially useful during
the manipulation of the entire input animation.

The advantages of our hybrid representation are presented
in Fig. 1, Fig. 6 and in the accompanying video. In Fig. 1,
the motions of the arms, torso and head of the girl dancing
samba are edited and the skirt waves realistically in the
final edited animation. Fig. 6(a,b) shows a particular frame
for several input sequences and the respective edited result
using our hybrid representation. As presented in Fig. 6(c),
using our framework, we are able to change the motion
parameters of the underlying skeleton and generate convincing



deformations for the skirt. We are also able to change the input
skeleton dimensions, which enables us to even retarget the
input animation to a different character proportion, Fig. 6(d).

The running time of our algorithm is dominated by the
training phase of the GPLVM-based technique (around30min

for 100 frames). This step is done only once at the beginning
for each sequence and, thereafter, the editing operations run
in real-time. Our timings were obtained with an Intel Core
Duo Laptop at 2.4 GHz. Another advantage of our approach
is its ability to compress a mesh-based character animation
without losing its time-varying details. Using our lowest
multiresolution level (5%), the input animation is compressed
to around5%-10% of its original size.

Despite our method’s ability to reproduce and manipulate
the input animation, there are a few limitations to be con-
sidered. Our current framework is targeted to kinematically-
based subjects and therefore it would not perform as well
as other methods in the literature [5], [7] for extreme non-
rigid deformations, like purely deforming cloth. Currently, the
time-varying details cannot be directly edited and they are
reconstructed based on the motion of the underlying skeleton.
Although our system allows the animators to edit the input
motion, the level of editing is limited and we are not able
to generate details for motions that are too far from the
original input. Scalability might become an issue as well. For
general edits and motions the database will need to be larger.
However, applying gaussian process methods to large data sets
is challenging since it involves non-linear optimizations. We
believe this issue can be minimized by adjusting the dimension
of the latent space and the number of iterations during the
optimization in Sect. V.

In constrast to related linear techniques [20], [21], [22],our
representation allows a better generalization of the input, while
suppressing the bad effects of noise. The use of a non-linear
technique also enables us to learn not only the structure of
the high dimensional data but also the dynamics present on it.
For instance, one skeleton data at a moment might correspond
to multiple mesh data (different shapes). Our approach uses
GPDM that allows us to obtain a nice latent space where
observation data (i.e. skeletons and meshes) with the same
shape but different motions are mapped accordingly.

Currently, linear blending skinning was used to create the
skinned model in Sect. IV, but we believe that similar results
can be achieved with a more advanced skinning method [15]
and we leave this for future work. We are using a basic
GPLVM implementation, and improvements of this basic
technique [37] can increase the performance of our method
even further. Important parameters in Sect. V (i.e number of
iterations, number of latent variables) were found experimen-
tally and kept constant for all sequences. We would like to
investigate better ways to determine such parameters in the
future as well. Nevertheless, we described a simple framework
to represent and manipulate a mesh-based character animation
using its underlying kinematic structure and incorporating the
reconstruction of its time-varying details.

VII. C ONCLUSIONS

We presented a fast system to represent and manipulate an
input sequence of animated characters preserving its important
time-varying details. By decomposing the input animation into
coarse and fine deformation components, a skinned model
and a GPLVM-based technique are used to reproduce the
input and to enable its meaningful manipulation. Our new
hybrid representation maintains the flexibility of mesh-based
methods while it allows for practical manipulations using the
conventional animation tools.
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transfer,”ACM TOG, vol. 28, no. 3, p. 36, 2009.

[9] D. James and C. Twigg, “Skinning mesh animations,”ACM TOG,
vol. 24, no. 3, 2005.

[10] S. Schaefer and C. Yuksel, “Example-based skeleton extraction,” inSGP
’07, 2007, pp. 153–162.

[11] N. Lawrence, “Probabilistic non-linear principal component analysis
with gaussian process latent variable models,”J. Mach. Learn. Res.,
vol. 6, pp. 1783–1816, 2005.

[12] A. G. Kirk, J. F. O’Brien, and D. A. Forsyth, “Skeletal parameter
estimation from optical motion capture data,” inProc. of CVPR ’05.
IEEE, 2005, pp. 782–788.
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Fig. 6. Editing mesh-based character animations: input frames(a) and
edited results (b). Our framework allows a more faithful manipulation of
the fighting, marching and walking sequences, respectively.(c) For a single
frame, different surface details for the skirt can be reconstructed based on the
underlying skeletal motion. (d) We are also able to modify the proportions
of the input mesh model (left), simplifying the retargeting of amesh
animation (middle=changing torso and right=changing legs).(e) Comparison
between original frame (left), reconstructed frame using ourskeleton-based
representation (i.e. linear blending skinning) (middle) and reconstruction using
our full approach. Our method reproduces better the details of the dynamics
in the skirt from the original frame.
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