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Abstract—We present a new multiscale method for corner
detection. The proposed algorithm embodies an undecimated
wavelet decomposition of the angulation signal of a shape contour
to identify significant points on it. It detects peaks that persist
through several scales from the correlation signal between scales
of its non-orthogonal sub-band decompositions. These peaks
correspond to high curvature points (HCPs). Furthermore, we
compare the proposed method with others available in the
literature, including the well-known curvature scale-space (CSS)
method. The quantitative assessment of the algorithms is pro-
vided by some figures of merit (FOM) measures that indicate
which method better detects the relevant points in terms of
compaction and shape reconstruction.

Keywords-corner detection; high curvature points (HCP);
shape reconstruction; curvature space-scale (CSS).

I. INTRODUCTION

In the context of shape analysis and recognition, the topic
of shape representation presents several works about corner
and dominant point detectors by contour analysis. Corner
detection is an important task in computer vision and image
processing purposes [1]–[4]. Applications that rely on corners
include scene analysis, feature matching, robot navigation,
shape similarity and object tracking, among many others. One
important class of edge detection models often suppose that
corners correspond to the high curvature points (HCP) of
an object profile. Basically, high curvature points in images
represent useful information as they enable the identification
of representative features in many shapes and can be detected
by contour analysis. A large number of corner detectors have
been proposed in the literature [5]–[8]. The current techniques
can be broadly categorized into two groups named as intensity-
based [6], [7], [9], [10] and contour-based detection [6], [11]–
[14] methods. The former includes the algorithms that estimate
a measure to indicate the presence of a corner directly from
the image gray values. The latter consists of the methods that
prior recover image contours and then search for curvature
maxima or inflection points along these contours [15]. The
proposed method belongs to the latter group since our database
consists of shapes that we first extract the respective contours.
Corner detectors can also be classified into two approaches:
single-scale detectors [16] and multiscale detectors [4], [7],
[11]. Single-scale detectors work well only if the image has
similar size features; otherwise either fine or coarse scale
features are poorly detected. Multiscale corner detectors based
on the classical scale-space theory [17] have been proposed

to improve the effectiveness in the more general situation of
relevant features with various sizes.

This paper introduces a new method for shape corner
detection and it can be classified as a contour-based multi-
scale category. The method starts decomposing the contour
orientation function which is obtained via the original image
chain into scales of different details. Thus, local maxima and
minima of consecutive scales of this function are obtained
through a multiscale wavelet decomposition [5], [6], [11] to
identify the shape dominant points. In the category of contour
based multiscale methods, there are several corner detectors
[7], [8], [15], [18]–[21] available with specific design for dif-
ferent applications. The proposed method is assessed by using
the reconstruction error and compacting ratio measures and
compared with three methods [8], [11], [12], [22] including
the well known curvature scale-space (CSS).

This paper makes two main contributions, first in the idea
underlying inter-scale correlation to detect dominant points
in planar curves, and secondly presenting new criteria to
evaluate the performance of corner detectors. The methods
directly related to our work are reviewed in Section II. Section
III describes the proposed corner detection technique. The
evaluation metrics described in Section IV are used to compare
the results of the methods in Section V. Section VI concludes
this paper.

II. RELATED METHODS

In this section, we present three methods available in the
literature and named as Lee et al. [11], Marji & Siy [12]
and CSS [17]. The main reason for choosing the classical
well-known CSS and Lee et al. methods in this study is the
multiscale nature of them both, and therefore are suitable to
be compared with the proposed corner detector. Regarding
the multiscale method introduced by Lee et al. [11] it uses
information of local extrema and modulus of a threescale
wavelet decomposition of the angulation signal to detect
corners. In fact, to evaluate dominant points detectors, we have
also included the Marji & Siy technique. This last method also
proposes an evaluation measure which is applied in Section IV.
The performance assessment of the methods relies on four
measures such as the number of detected corners, integral
square error (ISE), compacting ratio (CR) and figures of
merit.



A. The Curvature Space-Scale Technique

One of the most popular multiscale curvature representation
of 2D curves is the curvature scale-space [17], which has been
improved and applied in different works [7], [8], [14], [15],
[18]–[21], [23].

The CSS technique is suitable for recovering invariant
geometric features, curvature zero-crossing points [17] and/or
extrema [19], of a planar curve at multiple scales. To compute
it, the curve Γ is first parameterized by the contour point t:

Γ(t) = (x(t), y(t)). (1)

An evolved version Γσ of Γ is defined by [18] as:

Γσ = (X(t, σ), Y (t, σ)), (2)

where

X(t, σ) = x(t)⊗ g(t, σ) ;Y (t, σ) = y(t)⊗ g(t, σ). (3)

The symbol ⊗ refers to the convolution operator and g(t, σ)
denotes a Gaussian of width σ. Note that σ describes the scale
parameter. The process of generating evolved versions of Γ as
σ increases from zero to infinity (∞) denotes the evolution of
Γ. This technique is suitable for removing noise and smoothing
a planar curve as well as gradual simplification of its shape. In
order to find curvature zero-crossings or extrema from evolved
versions of the input curve, it is necessary to accurately
compute curvature, k, on an evolved version Γσ . Curvature
k on Γσ is given by [18]:

k(t, σ) =
Xt(t, σ)Ytt(t, σ)−Xtt(t, σ)Yt(t, σ)

3
√

(Xt(t, σ)2 + Yt(t, σ)2)
, (4)

where

Xt(t, σ) =
∂

∂t
(x(t)⊗ g(t, σ)) = x(t)⊗ gt(t, σ), (5)

Xtt(t, σ) =
∂2

∂t2
(x(t)⊗ gt(t, σ)) = x(t)⊗ gtt(t, σ),(6)

Similarly, Yt(t, σ) and Ytt(t, σ) can be defined by following
the expressions in Equation (5) and Equation (6). The literature
reports that this technique is applied to corner detection and to
other several applications [20], [21]. This algorithm designed
by Mokhtarian and Suomela [8] requires the Canny edge
operator applied to the gray level image to obtain a binary
edge image. In the sequence, the algorithm fills the gaps and
finds the T-junctions of the operator output. Thus, it computes
the curvature at a high scale σhigh for each edge contour.
The local maxima of curvature are chosen to be the initial
corners whose absolute curvature are above a threshold th
and twice as much as one of the neighboring local minima.
The CSS method identifies a corner on the evaluated contour
and the edge extraction algorithm marks a T-corner at the end
of the other contour. In the sequence, the algorithm searches
for the points marked by the edge-extraction step. Thus, the
T-junction corners are removed when compared to the corners
from curvature and if they are very close to each other. The
Canny detector step is unnecessary when applying this method
in segmented (binary) shapes. In addition to other inherent

parameters of the CSS technique, σhigh defines the scale for
which corners are chosen. In [8] it is suggested σhigh = 4.0.
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Fig. 1. The methodology for dominant points detection.

Lee et al. presented in [11] an analysis of the behavior of the
wavelet transform modulus maxima with different corner and
arcs models. These authors also used the second derivative of
the Gaussian as the wavelet function to develop a multi-scale
corner detection algorithm based on wavelet decomposition of
contour orientation.

Corners and arcs are relative terms and largely depend upon
the shape of the object under consideration. If there are sharp
corners at the boundary, smooth curvature changes will not
be recognized as corners. On the other hand, if it consists
only of smooth curvature changes then these curvature changes
will be recognized as corner points. This approach exposes
the parameterized corner models as disadvantages in order to
identify the adequate set of corners for any shape.

C. Marji & Siy Technique

Polygonal approximation is a mechanism to achieve feature
extraction due to the simplicity of the shape representation that
in turn allows for simple and efficient algorithms to recognize
patterns and features. Most existing algorithms achieve shape
representation by finding corner points and connecting them
with line segments [24].

The corner points are also known as dominant points
because they dominate the shape representation. This was
originally discussed by Attneave [25] who concluded that these
high curvature points dominate human perception of shapes
and can therefore be used as a good characterization of a
contour.



(a) Original shape and its
ground-truth corners (red
circles).
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(b) Angulation signal with its highlighted corners (red marks).
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(c) Highlighted corners into the first level of detail coefficients.
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(d) Highlighted corners into the second level of detail coefficients.
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(e) Highlighted corners into the third level of detail coefficients.

Fig. 2. Correlation analysis between wavelet coefficients of different scales
of a shape contour.

Marji & Siy implemented an algorithm [12] that determines
the region of support automatically for the detection of dom-
inant points. The approach has to be competitive to return
results close to the ground truth to each shape and it finds a
small number of false positives. However, their results return
higher error reconstruction values which, in spite of containing
dominant points, do not conform to human perceptions.

III. METHODOLOGY

Corners are local features and wavelets are suitable to
evaluate significant features that persist over several scales.
Attempting to identify corner candidates, inter-scale correla-
tion by using Mexican hat wavelet decomposition searches for
candidates which occur where there are maxima in the wavelet

decomposition at several adjacent scales. We have chosen
the Mexican hat for identifying changes in non-stationary
angulation signals due to the fact that it is a real function
and it is convenient to identify local maxima and minima.
Fig. 1 summarizes the proposed methodology for multi-scale
corner detection. The signal acquisition module from the
methodology consists of the contour extraction of a segmented
shape. As there are various ways of representing a shape
contour by signals, we adopt to generate the contour signal
which follows the 4-directional chain code [3]: such method
starts from an initial point of contour and follows it in a
clockwise manner. For each point, the chain-code retrieves
the location of the actual point and describes the direction to
be followed in the contour in order to find the next point. Its
output must be parameterized and the result is executed in a
corner detector like an 1-D angulation [11] or curvature [8]
signal.

The angulation signal is described by Equation (7) where
the parameter q is called smoothing level. According to Lee et
al. [11] the determination of the parameter q depends on the
orientation resolution and the corner discrimination ability. Lee
et al. also observed the orientation profile of a corner becomes
a ramp-like profile instead of a step. Thus, the parameter
q provides smoothed orientation profiles and the angulation,
φ(t), is given by:

φ(t) = tan−1

(
yt+q − yt−q
xt+q − xt−q

)
. (7)

Our multiscale corner detector searches for local features at
different scales by using a non-orthogonal wavelet decomposi-
tion namely Mexican hat. The angulation signal is convolved
with a scaled version of the mother wavelet at scales

c(s, t) = φ(t)⊗ ψs(t), (8)

where the symbol ⊗ denotes the convolution operation,
c(s, t) corresponds to the smoothed version of the angulation
signal at scale s and ψs(t) is a scaled version of the mother
wavelet. The function ψs(t) is such that

ψs(t) =
1√
s
ψ

(
t

s

)
(9)

and the mother wavelet ψ(t) is the second derivative of a
Gaussian, i.e. a normalized Mexican hat function [26] given
by

ψ(t) =
2

π
1/4
√

3σ

(
t2

σ2
− 1

)
exp

(
−t2

2σ2

)
. (10)

Thus, by applying Equation (8) to the angulation signal
it yields the approximation wavelet coefficients (smoothed
signal) in each scale s. Hence, the difference between two
successive smoothed signals generates the detail wavelet co-
efficients, w(s, t), as Equation (11) summarizes

w(s, t) = c(s, t)− c(s− 1, t), s = 1, 2, 3 (11)
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(a) Proposed method: 20 corners (all true ones).
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(b) CSS method: 78 corners (19 true ones).
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(c) Lee et al. method: 54 corners (20 true ones).
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(d) Marji & Syi method: 31 corners (20 true ones).

Fig. 3. Corners detected (circle marks) from a sample shape with 2708 contour points and 20 true corners.

where c(0, t) corresponds to the angulation signal.
The proposed methodology states that corners occur where

there are extreme values, i.e. maxima and minima values in
the non-orthogonal wavelet coefficients w(s, t) at two or more
adjacent scales. The novelty of this multiscale framework
consists in inspecting these peak values by using correlation
signals obtained from the redundant scales of the wavelet
decomposed signal without the usage of a threshold. Thus,
different redundant scales are generated and later correlated
to detect persistent peaks which are likely to be candidate
corners in the decomposed signals. Our experimental findings
indicate that the multiscale correlation analysis at the first three
scales (s = 1, 2, 3) is able to reveal redundant information that
remains over scales and it is likely to be a candidate corner.
The spatial correlation corr(s, t) between adjacent scales, s
and s+ 1, observed for a contour point location, t, for all N
points, is described by the element-by-element product below:

corr(s, t) = w(s, t) · w(s+ 1, t), t = 1, 2, . . . , N. (12)

Our approach is synthesized in Fig. 2 and therefore it depicts
that real corners have large amplitude over many wavelet

scales, and false corners dies out swiftly with increasing scale.
The small red marks in Fig. 2 illustrate the selected candidate
corners in the array. The angulation signal is decomposed in
several scales: a detail coefficient (black line) is compared
to the one in the next level. This result shows that corners
(red marks) correspond to the largest amplitude values which
persist on the correlation signal (red line) over many wavelet
scales.

Following the statement that false corners dies out swiftly
with increasing scale, the algorithm identifies on the corre-
lation signal whether a candidate corner is true or false by
testing the inequality:

|corr(s, t)| > |w(s, t)|. (13)

When Equation (13) is confirmed (for scale s and all N
points) it means that large spatial correlation values between
two consecutive scales point to real corners. Afterwards, they
constitute an array of probable corners. The algorithm inves-
tigates whether the candidate corner presents the largest value
in the neighborhood where the correlation is high in order
to differ a high curvature point from a sharp correlated false
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(a) Proposed method: 25 corners (all true ones).
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(b) CSS method: 24 corners (only 01 missed one).
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(c) Lee et al method: 54 corners (18 true ones).
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(d) Marji & Syi method: 31 corners (24 true ones).

Fig. 4. Detected corners (circle marks) from a sample shape with 2876 contour points and 25 true corners.

corner. The absence of corners or other significant features in
the neighborhood of a contour region allows the false corners
to be removed from the array. After selecting the corners,
they are used to reconstruct the original shape and assess the
methodology.

IV. EVALUATION MEASURES

The proposed assessment methodology employs the spline
reconstruction algorithm [27] to rebuild the set of shapes
from the detected HCPs in order to evaluate and compare the
methods.

Into the Fig. 1, there is the shape reconstruction module.
This one involves the curve fitting which is used to minimize
the ISE and it evaluates the best set of endpoints which
describes the smallest ISE on the shape contour. A new
contour Γ∗(t) is spline reconstructed by using the set of
identified corners. The error is calculated from the differ-
ence between the original and reconstructed contours, e.g.,
e(t) = Γ(t) − Γ∗(t), for all N points. The final ISE value

[27] is attained by:

ISE =

N∑
t=1

e2(t). (14)

To evaluate shape reconstruction by using dominant points
extracted from its contour, these works [12], [28] present
different quantitative measures to report the performance of
their algorithms. Among them, there are the ISE and CR
measures. The latter is defined by:

CR =
N

ND
, (15)

where N is the total number of boundary points and ND is
the number of detected HCPs. The compaction ratio expresses
the ability to compact the shape. Sarkar [28] combined ISE
and CR measures to define a figure of merit (FOM ), given
by:

FOM =
CR

ISE
. (16)



A modified version FOMCRn
of this figure of merit which

favors the CR measure was introduced in [12]:

FOMCRn
=

(CR)n

ISE
, for n > 1. (17)

We propose a new figure of merit FOMISEn that favors the
ISE measure in order to identify the algorithm that minimizes
the shape reconstruction error and occasionally achieves the
best performance with a low CR value, simultaneously. We
define FOMISEn

as:

FOMISEn =
CR

(ISE)n
, for n > 1. (18)

The parameter n is introduced to control the contribution
of the numerator in FOMCR and of the denominator in
FOMISE to the overall result to reduce the imbalance be-
tween the two terms. In order to improve the performance of
the figures of merit we set n = 3, experimentally.

V. SIMULATION RESULTS

This section presents the experiments and evaluates the
effectiveness of the proposed technique for dominant point
detection. The results were obtained by applying the methods
to a set of shapes of different sizes and formats that belong to
a dataset of 104 binary images from MPEG7 Part B [29].
It is noteworthy that 10% of the images from the dataset
present noisy contours. We also compared the results of the
proposed method with those obtained by other contour-based
methods (wavelet transform [11], dominant point detector [12]
and curvature space-scale [8] approaches).

Moreover, the proposed method achieved the best results
for q = 7 (Equation (7)) and σ = 5 (Equation (10)). These
parameters were defined experimentally in order to accomplish
the minimum reconstruction error and the maximum number
of detected corners that match the ground-truth ones for all
shapes of this set. Fig. 3 and Fig. 4 show two samples of the
shape database that the ground-truth corners are known and
its results for all the studied methods. We can observe that
the proposed method succeeded in detecting the true corners
when comparing to the others. The number of false corners
produced by the CSS was higher than the other methods, and
thus it performed inaccurately for the sample in Fig. 3. On
the other hand, it is closer to a better result than the others
methods in Fig. 4. Although the Marji & Siy and Lee et al.
methods have detected the correct number of true corners in
Fig. 3, and also return an imprecise quantitative results in Fig.
4, false corners were also detected.

Fig. 5 displays some examples and their identified corners.
Fig. 5(a) shows a comparison about HCPs detection between
CSS and proposed methods with a reference image from
[15], [17]. In this case, the CSS approach returns a more
representative array of corners than the proposed one, even
with matching points. The presented sample in Fig. 5(b)
exhibits the emphasized points outside the boundary from the
gray level image.

Table I exhibits the number of detected corners by all
the discussed methods. These data are computed to sample

TABLE I
COMPARATIVE ANALYSIS OF METHODS FOR DIFFERENT STANDARD

DEVIATION VALUES AND HCPS.
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shapes from the database and using different values for the
standard deviation parameter σ. We note a decreasing number
of corners with the growth of σ for all methods. After a
certain σ value, further increasing it has minimal influence
over the number of corners, which remains stabilized. The
proposed approach prevails in the least amount of identified
corners when σ is equal to 4. Its computational complexity is
O(n2), where n is the number of points on the shape contour.
The Marji & Syi method requires no standard deviation in its
definition and therefore does not present itself as a multiscale
approach. So there is no variation of this parameter to be
displayed in Table I(b), I(d), I(f) and I(h).

Table II shows the results for the evaluated methods. The
CSS corner detector was simulated for σ = 4.0 which is the
value suggested in [8]. We observe that a higher FOMCR3



TABLE II
COMPARATIVE EVALUATION OF CORNER DETECTORS.

Shape Method HCP FOMCR3
FOMISE3

Time (s)

Proposed 11 2178.30 0.05 0.11
CSS 14 3554.80 0.16 0.63

(a) S1 - 368 Lee et al. 36 451.86 0.61 0.15
contour points Marji & Siy 30 853.80 0.96 3.24

Proposed 108 3071.90 5.13 0.57
CSS 168 2382.90 5.01 2.42

(b) S2 - 1825 Lee et al. 204 628.62 4.30 0.61
contour points Marji & Siy 131 1619.40 2.15 15.00

Proposed 24 234440.00 1.41 0.75
CSS 23 9975.90 0.02 2.90

(c) S3 - 2353 Lee et al. 42 46957.00 0.86 0.79
contour points Marji & Siy 32 116080.00 1.27 18.29

Proposed 18 974.21 0.03 0.11
CSS 24 761.71 0.14 0.57

(d) S4 - 370 Lee et al. 42 118.76 0.05 0.15
contour points Marji & Siy 34 7.95 0.01 1.94

Proposed 109 1667.60 1.99 0.47
CSS 154 889.72 1.37 2.34

(e) S5 - 1763 Lee et al. 182 339.05 0.50 0.50
contour points Marji & Siy 159 606.99 0.96 10.98

value indicates higher shape compaction. Furthermore, a
higher FOMISE3

implies a better shape reconstruction.
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Fig. 5. Other results: (a) plot of identified corners by CSS (circle marks) and
proposed methods (pentagrams marks); (b) detected corners in a non-synthetic
image.

The shape S1 has only a minimal amount of points identified
as corners: only 3% of the contour points (11 dominant points).
As a consequence, the proposed method reached a greater CR
than others, as we see in the FOMCR3

measures. Marji & Siy
obtained the best reconstruction of S1 with higher FOMISE3

.
The proposed method also shows the best reconstruction for
the shapes S2, S3 and S5. As a limitation of the method,
there is no strong impact on the reconstruction for all the
shapes. For each level of wavelet decomposition, the algorithm
discards irrelevant information of the contour representation
signal and retains dominant points, which are candidates to
be corners. Thus, it illustrates the trade-off between a shape

highly compressed and well reconstructed.
The shape S5 presents a certain amount of noise in its

contour. The proposed method detected a minimum amount of
6% of corners (109 points) from the total number of contour
points. For this shape, our approach obtained both the best
compaction and the best shape reconstruction among all the
methods.

The method Marji & Siy produces good results and achieves
a good number of true corners, but its execution time is
affected in some algorithm steps. As described in [12], this
corner detector has four basic steps for finding the corners:
support region, node strength, sorting nodes and shape cov-
ering. In the region of support, we seek to identify for each
boundary point which neighbor provides the largest line so
that does not generate a high error in the reconstruction
in this connection. This occurs both clockwise and coun-
terclockwise. This approach provides successive visits to all
neighbors from a point with the aim to find the one that is
the closest and achieves small reconstruction error. Regarding
the sorting nodes task, one can conclude that it increases the
computational cost with the amount of contour points. Its
computational complexity is O(m ∗ k ∗ n2), where n is the
number of points on a curve, k is the length of a region of
support and m corresponds to the number of different regions
of support.

The CSS approach also presents a computational time
higher than the proposed method. This is due to the Gaussian
function is applied to the shape outline several times and
whose standard deviation changes in all iterations, as defined
in [8], [17]. This process is performed to generate the space-
scale map from the original method and then run the corner
detector with the σhigh [8]. This method achieves a computa-



tional complexity O(n3), where n is the number of points on
a contour.

The experiments were performed on a 1.8 GHz Core 2 Duo
with Matlab c© v2.6 source code. Data in the rightmost column
of Table II indicate that the proposed approach performed quite
similar to the Lee et al. technique regarding the execution time
and thus they both spent the least time to process each shape
from the data set. Moreover, the CSS and Marji & Siy methods
spent much more time than those aforementioned.

VI. CONCLUSIONS

We have presented in this paper an innovative approach
for corner detection that uses correlation between scales
of the normalized Mexican hat wavelet detail coefficients.
The method may be viewed as a multiscale detector and
furthermore the amount of information changes when the
scale is modified. Therefore, relevant information or real
corners persist over many scales while false corners dies out
swiftly. Moreover, many points are suppressed and the most
relevant shape corners are emphasized. This new approach
has overcome other methods discussed in this paper in terms
of compacting ratio for this set of binary shapes. Despite
it achieved shape compaction while retrieved ground-truth
corners, the method did not perform quite well when applied
to gray level images. The proposed algorithm focused on
the capability of selecting the most relevant corners, i.e. the
ground-truth corners and hence the reconstruction error was
quite penalized. Bearing in mind that there is a compromise
between CR and ISE measures, i.e. a great ability to compact
implies a trend of the reconstruction error to increase in
general, as our results confirmed it. Regarding the execution
time, tests revealed that the proposed method is competitive
when comparing it to CSS and Marji & Siy methods.

REFERENCES

[1] F. A. Cheikh, A. Quddus, and M. Gabbouj, “Shape recognition based on
wavelet-transform modulus maxima,” Image Analysis and Interpretation,
vol. 1, pp. 461–464, April 2000.

[2] T. Bernier and J. Landry, “A new method for representing and matching
shapes of natural objects,” Pattern Recognition, vol. 36, no. 8, pp. 1711–
1723, August 2003.

[3] L. F. Costa and R. M. J. Cesar, Shape Analysis and Classification:
Theory and Practice. CRC Press, 2001.

[4] I. C. J. De Paula, F. N. S. Medeiros, G. A. Mendona, C. J. P. Passarinho,
and I. N. S. Oliveira, “Correlating multiple redundant scales for corner
detection,” in Proceedings of VI International Telecommunications Sym-
posium. Fortaleza, Brazil: IEEE, September 2006, pp. 650–655.

[5] J. Hua and Q. Liao, “Wavelet-based multiscale corner detection,” in
Proceedings of 5th International Conference on Signal Processing,
vol. 1. Beijing, China: IEEE, August 2000, pp. 341–344.

[6] X. Gao, F. Sattar, A. Quddus, and R. Venkateswarlu, “Multiscale contour
corner detection based on local natural scale and wavelet transform,”
Image and Vision Computing, vol. 25, no. 6, pp. 890–898, June 2007.

[7] M. Awrangjeb and G. Lu, “An improved curvature scale-space corner
detector and a robust corner matching approach for transformed image
identification,” IEEE Transactions on Image Processing, vol. 17, no. 12,
pp. 2425–2441, December 2008.

[8] F. Mokhtarian and R. Suomela, “Robust image corner detection through
curvature scale space,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 12, pp. 1376–1381, December 1998.

[9] S. J. Wang, L. C. Kuo, H. H. Jong, and Z. H. Wu, “Representing
images using points on image surfaces,” IEEE Transactions on Image
Processing, vol. 14, no. 8, pp. 1043–1056, August 2005.

[10] E. Rosten, R. Porter, and T. Drummond, “Faster and better: A machine
learning approach to corner detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 1, pp. 105–119, January
2010.

[11] J. S. Lee, Y. N. Sun, and C. H. Chen, “Multiscale corner detection
by using wavelet transform,” IEEE Transactions on Image Processing,
vol. 4, no. 1, pp. 100–104, January 1995.

[12] M. Marji and P. Siy, “Polygonal representation of digital planar curves
through dominant point detection a nonparametric algorithm,” Pattern
Recognition, vol. 37, no. 11, pp. 2113–2130, November 2004.

[13] X. Zhang, H. Wangb, M. Hong, L. Xu, D. Yang, and B. C. Lovell,
“Robust image corner detection based on scale evolution difference of
planar curves,” Pattern Recognition Letters, vol. 30, no. 4, pp. 449–455,
March 2009.

[14] X. Zhang, H. Wang, A. W. B. Smith, L. Xu, B. C. Lovell, and D. Yang,
“Corner detection based on gradient correlation matrices of planar
curves,” Pattern Recognition, vol. 43, no. 4, pp. 1207–1223, April 2010.

[15] F. Mokhtarian and F. Mohanna, “Performance evaluation of corner
detectors using consistency and accuracy measures,” Computer Vision
and Image Understanding, vol. 102, no. 1, pp. 81–94, April 2006.

[16] C. J. Harris and M. Stephens, “A combined corner and edge detector,”
in Proceedings of The Fourth Alvey Vision Conference, Manchester,
England, August 1988, pp. 147–151.

[17] F. Mokhtarian and A. Mackworth, “Scale-based description and recog-
nition of planar curves and two-dimensional shapes,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 8, no. 1, pp. 34–43,
January 1986.

[18] ——, “A theory of multiscale, curvature-based shape representation for
planar curves,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 8, pp. 789–805, August 1992.

[19] B. Zhong and W. Liao, “Direct curvature scale space: Theory and
corner detection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 3, pp. 508–512, March 2007.

[20] C. W. D. De Almeida, R. M. C. R. De Souza, and N. L. J. Cavalcanti, “A
shape-based image retrieval system using the curvature scale space (css)
technique and the self-organizing map (som) model,” in Proceedings
of the 6th International Conference on Hybrid Intelligent Systems,
Auckland, New Zealand, December 2006, pp. 25–29.

[21] M. C. Roh, B. Christmas, J. Kittler, and S. W. Lee, “Gesture spotting
in low-quality video with features based on curvature scale space,” in
Proceedings of the 7th International Conference on Automatic Face and
Gesture Recognition, Southampton, U.K., April 2006, pp. 375–380.

[22] L. F. Estrozi, L. G. Rios-Filho, A. Bianchi, R. M. Cesar. Jr, and L. F.
Costa, “1d and 2d fourier-based approaches to numeric curvature esti-
mation and their comparative performance assessment,” Digital Signal
Processing, vol. 13, no. 1, pp. 172–197, January 2003.

[23] B. Zhong, K.-K. Ma, and W. Liao, “Scale-space behavior of planar-
curve corners,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 8, pp. 1517–1524, August 2009.

[24] A. Carmona-Poyato, F. J. Madrid-Cuevas, R. Medina-Carnicer, and
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