
Colorization and Illumination of 2D Animations
Based on a Region-tree Representation

Renata Nascimento ∗, Fabiane Queiroz †, Allan Rocha ‡, Tsang Ing Ren †, Vinicius Mello §, Adelailson Peixoto ¶.
∗ Department of Mathematics, PUC–Rio, Rio de Janeiro, Brazil.
† Department of Computer Science, UFPE, Pernambuco, Brazil.

‡ Department of Computer Science, PUC–Rio, Rio de Janeiro, Brazil.
§ Institute of Mathematics, UFBA, Salvador, Brazil.¶ Institute of Mathematics, UFAL, Maceió, Brazil.

Fig. 1. Colorization and illumination process. From left: original animation frame; graph representation; automatic colorization;
normal mapping and shaded animation frame.

Abstract—Colorization and illumination are key processes for
creating animated cartoons. Computer assisted methods have
been incorporated in animation/illustration systems to reduce the
artists’ effort. This paper presents a new strategy for illumination
and colorization of 2D drawings based on a region-tree. Starting
from a hand-drawn cartoon, it extracts geometric and topological
information and builds a tree structure, ensuring independence
among parts of the drawing, such as curves and regions. Based
on this structure and its attributes, a colorization method that
propagates through consecutive frames of animation is proposed,
together with an interpolation method that accurately computes a
normal mapping for the illumination process. Different operators
on curve and region attributes can be applied independently,
obtaining different rendering effects.

Keywords-2D drawing; region-tree; illumination; colorization;
animation;

I. INTRODUCTION

Since the 1960’s, the computer became part of the tools
used in animated films production [1] and it is currently one
of the major area of research in computer graphics: Computer
Animation.

Conventional animation [2] is based on a frame-by-frame
technique representation. Even today, this technique is used in
the production of 2D animated cartoons, in which each frame
is represented by a free-hand sketch.

In the conventional process of computer assisted cartoon
animation, the limitations of the automated solutions and its
biggest challenges, such as inbetweening and coloring the
frames, were appointed by Catmull [3].

Two important, although tedious, steps in the production of
animated cartoons are colorization and illumination. The col-
orization process transfers the colors from a single frame to the
subsequent frames. The most common colorization approaches
[4], [5] use structures containing topological information of the
drawing, like regions, curves, and graphs, called topological
structures.

Although these topological structures work well in the
colorization process, they are not commonly exploited in
the illumination process of the animation. The illumination
process calculates the interaction of the cartoon with the lights
present in a 3D environment, and is an important task in the
cartoon rendering, since it helps to produce different effects
and styles in the animation sequence.

Contributions: This paper presents three main contri-
butions. The first one is a new region-tree structure that
explores local spacial information in a single frame. The
second contribution is a method based on the region-tree
to illuminate the objects, by approximating lighting on 2D
drawings using a direct and sphere-preserving interpolation.
Third, we propose a recursive tracking method for color
transfer based on the region-tree. This new approach improves
more effective associations of regions of two consecutive
frames that can be retrieved through a recursive analysis of
previous frames.

A. Related Work

Regions Representation: An efficient image region rep-
resentation has been sought in different ways. A common

approach is the use of an hierarchical structure which clusters
regions at different scales to obtain the representation of
images in various resolutions [6], [7], [8]. These techniques
are ideal in processes such as image compression. However,
in images like cartoons this structure could be simplified,
since only inherent relationship of regions such as inclusion
and adjacency relations will be necessary during the cartoon
illumination and colorization.

Illumination: In some works [9], [10], automatic normal
estimation methods is computed directly from the image.
But these techniques calculate the normals from the shading
information of the images. They are not suitable for car-
toon, because in our input cartoon we have neither normal
nor shading. Some techniques to illuminate 2D data provide
iterative tools to reconstruct 3D models from available bi-
dimensional data [11], [12], followed by traditional 3D il-
lumination [13]. Johnston [14], observes that, even though
these methods provide useful results, they may not be suitable
to cartoon rendering. Therefore, the author [14] proposes a
semi-automatic image-based technique to approximate surface
normals directly in 2D drawings while avoiding 3D reconstruc-
tion. However, this technique does not enable different kinds
of interpolation since it does not have a relationship between
curves and regions. Besides it obtains an approximated normal
propagation to calculate the normal map. Recently, depth-
propagation proposed by Sýcora et al. [15] helps to obtain
correct initial normal map of cartoons, but the interpolation
itself is computed later, by using the method proposed by
Johnston [14]. In our work we explicitly calculate the normal
vector accurately and guarantees smoothness for a coherent
illumination. The region-tree flexibility allows different visual
effects since it is possible to choose which curve contributes
in the regions interpolation process.

Colorization: Segmentation techniques are generally
used to extract topological structures, and employ tracking
operations to check the time coherence between consecutive
frames, enabling a computer-assisted colorization [4], [16],
[17], [18]. Although these techniques provide the coloriza-
tion to animating cartoons, these approaches do not exploit
essential information such as curves and interior regions for
the illumination process. Garcia et al. [19] propose a strategy
for region matching which deals with the curve closeness
issue. Since the matching is rather geometric, the method
robustness could be affected. Sýcora et al. [15] proposes
a depth-propagation to handle cartoon animations resulting
in automatic colorization. However, this approach does not
handle occlusion during tracking. In our work, we propose a
topological approach as a way to increase the robustness of
region tracking enabling it to handle occlusions.

The remainder of the paper is structured as follows. Section
II formulates our proposed structure, the region-tree, that
represents cartoon geometric and topological elements. Section
III describes our proposed illumination method. Section IV
presents a recursive colorization method based on the region-
tree. Section V brings some experimental results and Section
VI concludes.

II. REGION-TREE

This section describes a topological structure, which con-
tains the topological and geometric information of cartoons
objects. Similar to several other methods, we first apply a
segmentation stage to extract a set of curves and regions [4].
In a later stage, we explore the relationship between regions
and curves to construct the data structure region-tree.

A. Curves and Regions

Essentially, the traces or outlines of the cartoon define the
curves, while the interior of closed curves define the regions.
We use the operator sets described by Bezerra et al. [4] to
construct our topological structure. Those operations includes:
skeletonization and region detection.

Skeletonization or thinning is a linear subset of images lines
which emphasizes geometrical and topological properties of
the shape. The skeletonization algorithm removes redundant
points by eroding the image. The final points constitute the
skeleton. The main idea is simplify the objects representation
without changing its topology. In this work, the Zhang-Suen
algorithm was used [20].

Region detection consists on performing the segmentation
of the thinning image by identifying each of its curves and
regions. Each curve is define by a sequence of pixels from
the skeleton. Each region is defined by a boundary (external
curve), a set of internal curves and by the set of inside
pixels (interior). We first compute the interior of the region
by assigning a label to each region by flood-filling the region
from a interior point [21].

We need to structure the set of pixels that belongs to the
curves. For this, we induce a polygonal representation for
the boundary and the internal curves. Although the internal
curves are not necessary for a region definition, they are
significant part of the drawing, since they provide a variety
of details. To obtain a polygonal representation for the curves
in each region, we applied the chain-code algorithm [22]
with 8-connected neighborhood. After this stage, each region
contains: an internal area (set of labeled pixels), a boundary,
and a set of internal curves with a polygonal representation
(see Fig. 2).

(i, j) (i, j) (i, j) (i, j) (i, j)

(i, j) (i, j) (i, j) (i, j)

(i, j) (i, j) (i, j) (i, j) (i, j)

(i, j) (i, j) (i, j) (i, j)

(i, j) (i, j) (i, j) (i, j)

Internal Area
Boundary

Curve 0

Curve 1

Curve n

Fig. 2. This figure shows the region structure proposed in this paper. Each
region Rk is composed by: a set of internal pixels, labeled by Internal Area;
a set of boundary points, labeled by Boundary and a set of internal curves,
labeled by Curve 0 to Curve n.

B. Region-tree Generation

We now describe our proposed region-tree.
Usual topological structures are used in colorization meth-

ods to track regions of consecutive frames in the anima-
tion process [4], [16], [17], [18]. This structure explores
the relationships of adjacency between regions to preserve
the temporal coherence. However, they do not explore some
local information details in a single frame, such as inclusion
relation between regions inside the drawing. The structure
proposed in this paper, includes inclusion relation between
regions and information from internal curves to the region.
This information assists the implementation of new effects
in the drawings. We describe in Section III, the use of this
structure in the illumination process.

The structure proposed is defined as a tree, where each
node contains a region Ri and a set of descendant nodes,
representing the internal regions (subsets). Besides being a
simple implementation structure, it contains more information
than usual topological structures (see Fig. 3), such as the ones
described by Sýcora et al. [15].

R1

R3
R4

R5
R6

R7
R8

R9

R10

R2

R0

R0

R1 R5 R7 R9

R2 R3 R4 R6 R8

R10

Fig. 3. This figure shows the region-tree structure. Each node represents
one region in the image. In this example, the node R3 is a child node of
R1. So the region R3 is an internal region of R1. All regions have the same
structured shown in Fig. 2.

The region-tree proposed provides total control in the access
of each region: boundary, internal curves, internal pixels,
adjacent regions and contained regions. This enables separate
attributes for each cartoon region: material properties, color,
transparency, texture, and others. Analogously, we can define
an attributes to each curve, or group of curves: color, line style,
width, and others. Regions attributes can be stored as frame
buffers allowing the data to be processed directly on the GPU.

In the context of this work, normals vectors are the most
important attribute related to the region or the curves. The next
section describes this attribute in detail.

III. ILLUMINATION AND NORMAL MAPPING

We propose a novel formulation for the normal field inside
each region. This normal field is used in a simple Phong model
to illuminate the cartoon with 3D impressions. Our normal
definition is accurate and sphere-preserving, which leads to
smooth and coherent illumination.

For each region, we first compute the normal field of the
boundary [4]: given two consecutive points p1 = (x1, y1) and

p2 = (x2, y2), we compute the tangent vector v = (x2 −
x1, y2 − y1), and the normal vector at p is given by n =
(y2 − y1, x1 − x2, 0). The coordinate z = 0 indicates that the
image plane is the projection plane relative to the viewer and
the curve belongs to the object’s silhouette. Actually, as there
are only eight possible directions for the tangent vectors on
an 8-connected neighborhood, a smoothing process is applied
beforehand. The new tangent vector v′i is found by the update
rule v′i = (vi−2 + 4vi−1 + 6vi + 4vi+1 + vi−1)/16.

The interpolation of the normal field from the boundary to
the enclosed region is best described in the continuous domain.
Let C be a closed curve parameterized by arc-length, C(s) =
(x(s), y(s)), and let R be a region delimited by C. The normal
vector n(s) at each point of C(s) is given by

n(s) = (nx(s), ny(s), 0) = (y(s),−x(s), 0).

Our task is to compute a 3D normal n(p) =
(nx(p), ny(p), nz(p)), for each point p = (x, y, z) in R. To
compute the components x and y, we integrate the normal’s
contribution along the curve, using an inverse square distance
weight. From the x and y components, we attribute a positive
value for the z-component which normalizes the normal vector
giving a “lifting” effect to the region.

nx(p) =

∫
C

nx(s)ds
|p− C(s)|2
w(p)

,

ny(p) =

∫
C

ny(s)ds
|p− C(s)|2
w(p)

,

nz(p) =
√

1− nx(p)2 − ny(p)2,

where

w(p) =
∫
C

ds

|p− C(s)|2
.

We now demonstrate that if C is a circle, our interpolation
technique provides exactly the normal field of a sphere. In
the case that C is a circle, C(s) = (cos(s), sin(s)) . We
considered just the case when p = (x, 0), with −1 < x < 1,
because otherwise we can simply rotate the coordinate system.
Applying the symmetry once more, ny(p) must be zero, since
the contribution of C(s) is canceled by the contribution of
C(−s). After performing the integration, we conclude:

w(p) =
∫ 2π

0

ds

(x− cos(s))2 + sin2(s)
=

2π
1− x2

,

and

nx(p) =
∫ 2π

0

cos(s)ds
(x− cos(s))2 + sin2(s)

=
2πx

1− x2
.

As ny(p) = 0 by symmetry, nz(p) =
√

1− x2, therefore,
the normal field is exactly the same of a sphere of radius 1
centered at the origin.

Unlike Johnston [14], where an approximated normal prop-
agation is obtained to calculate the normal map, our explicit
formulation is accurate. Moreover, due to the flexibility of
the proposed structure, it is possible to choose which curve
contributes in the region interpolation process. This makes it
possible to obtain effects as shown in Fig. 4.

Fig. 4. Interpolation obtained from different curves. In the left one both
the interior region and the interior curve does not affect the exterior region
normal map. In the middle one, the interior region affects the construction
of the exterior region normal map, but the interior curve does not affect. In
the right one both the interior region and the internal curve affect the normal
map construction.

A. Normal Operators

The proposed structure is also suitable for applying at-
tributes operators to the regions and curves. The user first
selects the region or curve, then selects the operator to the
desired attribute. Two normal operators were implemented: a
scale operator and a depth operator.

1) Scale Operator: Given a region R, the operator consists
in scaling the x, y, or z normal coordinate. If the scale is
applied on the z coordinate, the visual effect is to lift the
curve when illumination is applied. Fig. 5 shows some z scales
applied to normal mapping and level of scale is chosen by the
user.

Fig. 5. Scale operator. This operator can be applied only in regions and it is
used to scale the x, y and z coordinate. In this figure the operator is applied
to the z coordinate. In the left image the normal map is the same obtained
by Section III; in the middle one the smaller region was raised and in the left
one the smaller region was pushed down.

2) Depth Operator: This operator deals with the idea of
rising/sinking the selected curve c located in a region. The
user controls the affected area surrounding the curve c and
may rise or sink this curve. To do so, we calculate the distance
information of each pixel located in a tubular neighborhood of
c whose radius is the maximum distance dmax chosen by the

user. All pixels located in the tubular region will have their
normal affected by the depth operator. For each pixel pi, we
obtain its distance d(pi) to the curve and recalculate its normal
n(pi) using the following equation:

n(pi) =

(
1− ϕ

(
d(pi)
dmax

))
(k − n(pi))+

(
n(pi)ϕ

(
d(pi)
dmax

))
.

Where, n(pi) is the new normal vector of the point pi,
n(pi) is the normal vector of the point pi, k = (0, 0, 1) and
ϕ is a function where ϕ(0) = 0 and ϕ(1) = 1. We used

ϕ(x) =
− cos(πx) + 1

2
.

Fig. 6 shows the depth operator applied to a sphere.

Fig. 6. Depth operator. This figure shows the depth operator applied on
curve inside a sphere. The left one is the input image; the middle one is the
illumination process from the normal map obtained by Section III and in the
right one the curve was raised by the operator. The area surrounding the curve
is also affected to create the visual effect.

IV. AUTOMATIC COLORIZATION ACROSS A FRAME
SEQUENCE

As mentioned before, one of the most laborious steps of
a cartoon animation is the process of manually coloring its
sequence frames.

We will present an automatic recursive colorization tech-
nique based on the use of the region-tree representation to each
animation frame. This process allows the color information to
be propagated automatically from a single frame to the other
frames in the same scene of the animation.

A. Regions Tracking

Tracking is used to obtain the best associations between
regions in consecutive frames. In general, those frames present
small variations throughout the scene. Therefore, the asso-
ciations can be performed by analyzing the parameters of
position, area, shape, and topology [4].

In a given frame, the local area form A associated to each
point pi in the border curve of a region is calculated by

A =
1
2

n−1∑
i=0

(xi · yi+1 − xi+1 · yi).

The region position is represented by its centroid C =
(cx, cy), where

cx =
1

6A

n−1∑
i=0

(xi + xi+1)(xi · yi+1 − xi+1 · yi),

cy =
1

6A

n−1∑
i=0

(yi + yi+1)(xi · yi+1 − xi+1 · yi).

Given a region, we define its contours as the number of
points (pixels), which compose its boundary. In Fig. 7 (left)
shows a way to represent the topology of the images with its
adjacency graph constructed from a region-tree: yellow edges
represent subset relationships and red ones represent regions
sharing the same boundary. Let R be a region and cR its
centroid. The neighborhood relationship between R and its
neighbor Q with boundary points pQj , 1 ≤ j ≤ m, is given
by a neighborhood function nFRQ:

nFRQ := (αRQ, dRQ),

where
dRQ = max

1≤j≤m
{cR, dist(pQj)},

and αRQ is the slope of the line from cR to

arg max
1≤j≤m

cR, dist(pQj).

Each image region R will have n neighborhood functions,
since they have n neighbors (see Fig. 7 (right)).

Fig. 7. This figure shows the adjacency graph (left); the scheme to obtain
the neighborhood function for a region R, where α = tan(a) (middle) and
all neighborhood function of R (right).

B. Associations Between Consecutive Frames

The simplest way to create associations between regions
from two consecutive frames could be comparing all the
vertices from both frames graph. However, this option is also
computationally expensive. To solve this problem, we propose
the use of a region-tree in order to reduce the cost.

We execute a breadth-first search in the source-graph and
destiny-graph initialized from the image background, since
this is the only region of occurrence guaranteed in all images.
In each search iteration, we analyze parameters of the area,
position, contours, and neighborhood between regions repre-
sented by the compared vertices. The neighborhood parameter
is defined by the equivalence degree (ED) from two regions.
As shown in Fig. 8, the ED of two regions from consecutive
frames is the sum of two smaller quadratic difference between
its neighborhood function.

If the number of regions in the destiny-graph, in the current
iteration, is bigger than in the source-graph, these regions

1

2

3
4

5 6

Pairing Result

6

3
1

4

5
2

3

3.2
4

4.3

4.5
5

ED(A,B) = 6.2

A B

Fig. 8. Equivalence graph from two regions. In this example, the equivalence
degree ED of A and B is obtained by the sum of two smaller quadratic
difference between its neighborhood function. So, ED(A,B) = 3+3.2 = 6.2.

are taken as new regions in the animation and they are not
colored Fig. 9. Otherwise, the region color in the source-graph
is discarded along the animation process.

Root

Iteration 1

Iteration 2

Fig. 9. Automatic colorization process. In the Iteration 2, the red region
disappeared in the second graph, i.e., the region was occluded. Therefore,
this region color is discarded along the animation.

C. Recursive Regions Tracking - Recovering Occluded Re-
gions

If the region disappears in a frame, and shows up in another
one, we have an occluded region case in the sequence of
frames, so this kind of tracking will be unsatisfying in the
colorization process. Our work proposes tracking in a recursive
way to improve the recovering of these occluded regions in
the process.

In recursive regions with tracking, whenever a color in-
formation is passed from a region A to a region B in the
consecutive frame, the vertice relative to the region A is
marked. Once the frame is colorized, the algorithm verifies if
there is any region not colorized in the frame. If all regions are
colorized, the process will continue making a better association
between frames as described in Section IV-B.

In the case where there is no colorized regions, the pro-
cess is temporarily interrupted. Through the image adjacency
graph, we find out which are the n neighboring regions of
the non-colored. In this case do a reverse search through
previous frames. In each analyzed frame, we look for regions
corresponding to the n regions we identified. Once the corre-
sponding regions are found, we check if they are unmarked
neighboring regions. If this occurs, the unmarked regions are
stored in a list of possible candidates to be equivalent to the

non-colorized region. These candidates are collected in each
frame.

After the search, the algorithm goes back to the frame
where the process stopped. All the candidates are analyzed by
the same parameters: area, contour, position, and equivalence
degree. An association between the best candidate and the
non-colorized region is created passing all color information.
If two or more candidates are selected, no association is
created and the region is not colorized. Fig. 10 illustrates the
recursive colorization process, where the color of the white
region is recovered from the first frame and then is passed to
consecutive frames.

Root

Iteration 1

Iteration 2

Fig. 10. Automatic recursive colorization process. In the recursive coloriza-
tion process if a region disappeared, i.e., the number of regions in the destiny-
graph is bigger than in the source-graph, a reverse search through previous
frames is made.

V. RESULTS AND DISCUSSION

This section presents some results of our automatic coloriza-
tion and illumination technique. Fig. 11 shows the illumination
process from a black and white cartoon, and Fig. 12 shows
the illumination process from a colorized cartoon. Fig. 13
shows frames from an animation after the colorization and
illumination process.

Figs. 15 and 16 show some comparisons between our recur-
sive colorization method based on a region-tree representation
and the colorization method proposed by Bezerra et al. [4]. In
both cases, we can observe that occluded regions are recovered
by the recursive tracking when they reappear in the animation
sequence, unlike Bezerra et al. [4] method. In Fig. 15, the
character’s face, which previously was a single region (green
area) is split into two main regions. These regions are new
in the frame so the algorithm does not recognize them. In
the recursive tracking, when the character’s face comes back
to being one region representation the algorithm recovers its
color.

Fig.16 shows the occlusion problem in the bear’s left leg.
In the first image sequence, the color information can not be
recover since this information is lost in the fifth image because
there was a significant topological change such as a region
splitting into two. Secondly regions having its neighborhood
drastically altered such as the left eye, the hats brim, and the
tie are lost in Bezerra et al. [4] tracking. In the case of the
eye, it occurs when the eye links to the bear’s face region.
In the hats brim case, it occurs when the brim is linked to a
new region - the bear’s ear. Finally, in the tie case, it occurs
because one region disappears joining the bear’s arm.

A. Limitations

A limitation of normal vector calculation is that we can
not change the boundary normal vector. So, if a point is a
boundary point, the z-component is always 0. This may affect
the visual effect the process of illumination.

In the colorization tracking, a problem could occurs in
situations where the regions are similar as in walk motion
of a character. The two legs of the character are topologically
identical, they have identical area, position and neighborhood.
Then, in the motion, when the left leg surpassing the right one,
the algorithm swaps the colors of both, because the position
of the left leg is replaced by similar topological information -
right leg. Fig. 14 shows this problem.

Another limitation is once the region track is done, only
color information is propagated. So, in an animation sequence
we need to illuminate frame by frame.

Fig. 12. Illumination process. From left: original image; normal map;
illuminated cartoon.

Fig. 13. Colorized and illuminated animation. In this result, we choose the
color of the first frame than we apply the automatic colorization and finally,
the cartoon is illuminated.

VI. CONCLUSION AND NEXT STEPS

This work presented a new strategy based on a region-tree
structure to represent 2D drawings. Unlike usual colorization
methods, our method explores both the time coherence of the
topological structures, as well as the local spatial information
of each frame. Therefore our method is both suitable for
colorization and to illumination.

Due to the topological and geometrical information of this
region-tree representation, we developed a method for ap-
proximating lighting to 2D drawings: we compute the normal

Fig. 11. Illumination process from a black and white cartoon. From left: original image; colorized cartoon; segmented cartoon; normal map; illuminated
cartoon.

Fig. 14. Problem with the tracking in walk motion: The leg’s colors are
swapped since they have similar topological information.

mapping of the drawing based on a new topological structure.
As we explore both the labeling structure of each region, as
well as the vectorial structure of the boundaries, our method
is especially suited for independently shading parts of the
drawing, such as regions and curves.

With the recursive tracking method, we can recover the
most of the lost regions in the animation. For example, in
the movement of a character walking, where at times, one of
the legs is occluded, the use of this method becomes more
feasible, to obtain better results.

As future works we pretend to verify time coherence
together with local space structure and the transference of the
illumination’s information during the normal map tracking as
way to illuminate a cartoon sequence automatically. We also
pretend to define new attribute operators and explore normal
visibility in the interpolation process to avoid that invisible
parts of the region contributes to the normal vector of a point.

ACKNOWLEDGMENT

The authors would like to thank L. Velho for encouraging
this work’s production. The authors also would like to thank
J. Paixão for the text’s revision.

REFERENCES

[1] G. M. Hunter, “Computer animation survey,” Computers and Graphics,
vol. 2, pp. 225–229, 1977.

[2] J. Lasseter, “Principles of traditional animation applied to 3d computer
animation,” pp. 263–272, 1998.

[3] E. Catmull, “The problems of computer-assisted animation,” Siggraph,
vol. 12, no. 3, pp. 348–353, 1978.

[4] H. Bezerra, L. Velho, and B. Feijó, “A computer-assited colorization
algorithm based on topological differences.” in Sibgrapi, 2006, pp. 121–
127.

[5] C.-W. Chang and S.-Y. Lee, “Automatic cel painting in computer-
assisted cartoon production using similarity recognition,” in The Journal
of Visualization and Computer Animation, 1998.

[6] G. Salembier, L. Garrido, P. Salembier, and J. R. Casas, “Representing
and retrieving regions using binary partition trees,” in International
Conference on Image Processing, 1999.

[7] M. A. de Carvalho and R. D. A. Lotufo, “Hierarchical regions matching
in image sequences through association graph,” in Sibgrapi, 2001, pp.
396–404.

[8] M. A. Carvalho, M. Couprie, and R. de Alencar Lotufo, “Image
segmentation by analysis of scale-space,” in Sibgrapi, 2002, pp. 403–
411.

[9] T.-P. Wu, J. Sun, C.-K. Tang, and H.-Y. Shum, “Interactive normal
reconstruction from a single image,” Siggraph Asia, vol. 27, pp. 119:1–
119:9, 2008.

[10] B. Horn, “Obtaining shape from shading information,” pp. 123–171,
1989.

[11] T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: a sketching interface
for 3d freeform design,” in Siggraph courses, 2007.

[12] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes, “Sketch: an interface
for sketching 3d scenes,” in Siggraph courses, 2007.

[13] B. T. Phong, “Illumination for computer generated pictures,” Communi-
cations of the ACM, vol. 18, pp. 311–317, 1975.

[14] S. F. Johnston, “Lumo: illumination for cel animation,” in Non-
Photorealistic Animation and Rendering. ACM, 2002, pp. 45–ff.

[15] D. Sýkora, D. Sedlacek, S. Jinchao, J. Dingliana, and S. Collins, “Adding
depth to cartoons using sparse depth (in)equalities,” Computer Graphics
Forum, vol. 29, no. 2, pp. 615–623, 2010.

[16] S. Hock and F. Tian, “Computer-assisted coloring by matching line
drawings,” The Visual Computer, vol. 16, no. 5, pp. 289–304, 2000.

[17] D. Sykora, J. Burianek, and J. Zara, “Segmentation of black and white
cartoons.” Spring Conference on Computer Graphics, pp. 245–254,
2003.

[18] D. Sýkora, J. Burianek, and J. Zara, “Unsupervized colorization of black-
and-white cartoons.” Non-Photorealistic Animation and Rendering, pp.
121–127, 2004.

[19] P. G. Trigo, H. Johan, T. Imagire, and T. Nishita, “Interactive region
matching for 2d animation coloring based on feature’s variation,” Ieice
Transactions, vol. 92-D, pp. 1289–1295, 2009.

[20] Zhang and Suen, “A fast parallel algorithm for thinning digital patterns,”
Communications of the ACM, vol. 27, pp. 236–239, 1984.

[21] L. Vandevenne. (2004) Lode’s computer graphics tutorial flood fill.
[Online]. Available: http://lodev.org/cgtutor/floodfill.html

[22] J. Parker, Pratical Computer Vision Using C. New York: John Wiley
and Sons, 1994.

http://lodev.org/cgtutor/floodfill.html

Fig. 15. First sequence: Bezerra et al. [4] colorization tracking. Second sequence: Our recursive colorization tracking based on a region-tree representation.
Third sequence: Illumination process based on a region-tree representation. In the first sequence the character’s face, which previously was a single region
(green area) is split into two main regions. These regions are new in the frame so the algorithm does not recognize them. In the recursive tracking, when the
character’s face comes back to being one region representation the algorithm recovers its color.

Fig. 16. First sequence: Bezerra et al. [4] colorization tracking. Second sequence: Our recursive colorization tracking based on a region-tree representation.
Third sequence: Illumination process based on a region-tree representation. This result shows the occlusion problem. In the bear’s left leg, at the first image
sequence, the color information can not be recover since this information is lost in the fifth image because there was a significant topological change such as
a region splitting into two. Secondly regions having its neighborhood drastically altered such as the left eye, the hats brim, and the tie are lost in Bezerra et
al. [4] tracking. In the case of the eye, it occurs when the eye links to the bear’s face region. In the hats brim case, it occurs when the brim is linked to a
new region - the bear’s ear. Finally, in the tie case, it occurs because one region disappears joining the bear’s arm.

	Introduction
	Related Work

	Region-Tree
	Curves and Regions
	Region-tree Generation

	Illumination and Normal Mapping
	Normal Operators
	Scale Operator
	Depth Operator

	Automatic Colorization Across a Frame Sequence
	Regions Tracking
	Associations Between Consecutive Frames
	Recursive Regions Tracking - Recovering Occluded Regions

	Results and Discussion
	Limitations

	Conclusion and Next Steps
	References

