
Accurate volume rendering
of unstructured hexahedral meshes

Fábio Markus Miranda Waldemar Celes
Tecgraf/PUC-Rio - Computer Science Department

Pontifical Catholic University of Rio de Janeiro, Brazil
{fmiranda, celes}@tecgraf.puc-rio.br

Abstract—Important engineering applications use unstruc-
tured hexahedral meshes for numerical simulations. Hexahedral
cells, when compared to tetrahedral ones, tend to be more
numerically stable and to require less mesh refinement. How-
ever, volume visualization of unstructured hexahedral meshes is
challenging due to the trilinear variation of scalar fields inside
the cells. The conventional solution consists in subdividing each
hexahedral cell into five or six tetrahedra, approximating a
trilinear variation by a piecewise linear function. This results
in inaccurate images and increases the memory consumption. In
this paper, we present an accurate ray-casting volume rendering
algorithm for unstructured hexahedral meshes. In order to
capture the trilinear variation along the ray, we propose the use
of quadrature integration. A set of computational experiments
demonstrates that our proposal produces accurate results, with
reduced memory footprint. The entire algorithm is implemented
on graphics cards, ensuring competitive performance.

Keywords-volume rendering, hexahedral mesh, unstructured
mesh, ray integral

I. INTRODUCTION

Volume rendering is a popular way to visualize scalar
fields from a number of different data, from medical MRI
to results of scientific simulations. By computing the light
intensity along rays as they traverse the volume, it is possible
to calculate the color and opacity for the pixels on the screen.
How to accurately calculate the interaction between light and
volume, while maintaining an acceptable rendering time, is
one of the main difficulties of volume visualization algorithms.

One approach to render volumetric data is ray-casting [1].
By tracing a ray for each pixel on the screen, we can traverse
the volume and calculate the contribution of a set of discrete
volume cells to the final pixel color, using an emission-
absorption optical model [2]. The volume dataset is usually
decomposed into tetrahedral and hexahedral cells. As the ray
traverses the volume, its color and opacity are calculated
taking into consideration the variation of the scalar field inside
each cell. As the number of nodes per cell increases, so does
the order of the scalar function inside the cell.

For obvious reasons, a linear variation of the scalar field
translates into a much simpler interaction between the ray
and the volume. That is why the common approach to
render hexahedral meshes is to split each cell into five or
six tetrahedra, approximating the trilinear variation of the
scalar function by a piecewise linear function. This results
in inaccurate image and increases the memory consumption.

In this paper we present an high-accurate ray-casting volume
rendering algorithm for unstructured hexahedral meshes that
considers the trilinear variation of the scalar field inside the
cells, and uses a quadrature integration scheme to calculate
the interaction between light and volume. We evaluate our
solution considering rendering time, image quality, and mem-
ory efficiency, and compare it against a tetrahedral subdivision
solution.

The main contribution of this paper is to propose and
evaluate an integration scheme that considers the trilinear
scalar function of an hexahedral cell, implemented on graphics
hardware. As far as we know, no other work has proposed
direct volume rendering of unstructured hexahedral meshes
considering the trilinear variation of the scalar field inside the
cells.

This paper is organized as follows: Section II reviews
previous works on volume rendering related to our proposal.
Section III details our method. In Section IV, we evaluate the
achieved results, and Section V concludes the paper.

II. RELATED WORK

A. Ray integration

The emission-absorption optical model, proposed by
Williams and Max [2], computes the interaction between the
light and the volume, within each cell, using the following
equation:

I(tb) = I(tf )e
−(

∫ tb

tf
ρ(t)dt)

+
∫ tb

tf

e
−(

∫ tb

t
ρ(u)du)

κ(t)ρ(t)dt (1)

where tf and tb are the ray length from the eye to the entry and
exit points of a cell, respectively; f(t) is the scalar function
inside the cell, along the ray; ρ(t) is the light attenuation factor,
and κ(t) is the light intensity, both given by a transfer function.

Evaluating such integral accurately and efficiently is one of
the main difficulties faced by volume rendering algorithms.
Williams et al. [3] first proposed to simplify the transfer
function as a piecewise linear function. They introduced the
concept of control points, which represent points where the
transfer function (TF) is non-linear (the TF in Figure 1b
presents, for example, 5 control points). A later work by
Röttger et al. [4] proposed to use pre-integration, storing



the parameterized result in a texture, accessed by the entry
scalar value, exit scalar value, and ray length. Their proposal
works for any transfer function, but any change on the transfer
function requires the pre-integration to be recomputed. Röttger
[5] later proposed to utilize the GPU to accelerate the precom-
putation of the 3D table. Moreland et al. [6] re-parameterized
the pre-integration result, turning it independent of the transfer
function, but under the assumption that the transfer function
was piecewise linear. The pre-integration result was then stored
in a 2D texture, accessed via the normalized values of sf and
sb (the scalar value at the entry and exit points of the cell).
However, the pre-integration results are computed by assuming
a linear scalar field variation inside the cell.

Novins and Arvo [7] presented a study about the accuracy
of different numerical integration schemes of the ray integral,
considering a maximum precision error bound.

B. Hexahedral mesh

A ray-casting algorithm for unstructured meshes was first
presented by Garrity et. al [1]. Weiler et. al [8] later proposed
a GPU solution using shaders. The main idea is to cast a ray
for each screen pixel, and then to traverse the intersecting
cells of the mesh until the ray exits the volume. In order to
properly traverse the mesh, we have to store an adjacency
data structure in textures; the algorithm will then fetch these
textures and determine to which cell it has to step to. At each
traversal step, the contribution of the cell to the final pixel
color is given by evaluating the ray integral (Equation (1)).

Volume rendering of unstructured hexahedral meshes was
explored by Shirley et. al [9] and Max et. al [10], where
they proposed to subdivide each hexahedron into five or six
tetrahedra in order to properly render the volumetric data, ap-
proximating the trilinear scalar variation by a piecewise linear
function. This not only increases the memory consumption but
also decreases the rendering quality. Carr et. al [11] focused
on regular grids and discuss schemes for dividing a hexahedral
mesh into a tetrahedral one, comparing rendering quality for
isosurface and volume rendering.

One of the first proposals to consider something more
elaborated than a simple subdivision scheme was made by
Williams et al. [3]; the authors, however, focused on cell
projection of tetrahedral meshes, only making small notes
about how the algorithm could handle hexahedral cells, but
did not discuss the results. Recently, Marmitt et al. [12]
proposed an hexahedral mesh ray-casting, focusing on the
traversal between the elements, but neglecting to mention how
they integrated the ray over the trilinear scalar function of a
hexahedron.

Marchesin et. al [13] and El Hajjar et. al [14] proposed
solutions to structured hexahedral meshes, focusing on how
the ray can be integrated over the trilinear scalar function of
a regular hexahedron. The first one proposed to approximate
the trilinear function by a bilinear one. They then stored a
pre-integration table in a 3D texture, where each value was
accessed by the scalar values at the ray enter, middle, and
exit points. To avoid the use of a 4D texture, they consider

a constant ray step size. El Hajjar et. al [14] approximated
the trilinear scalar function by a linear one and used the same
pre-integration table proposed by [4], accessed via the scalar
values at enter and exit points, and the ray length.

These papers made the assumption that the scalar function
is either linear or bilinear to calculate an integral that could be
stored in a texture with feasible dimensions. Also, their pro-
posals do not support interactive modifications of the transfer
function, because the pre-integration table must be recalculated
for each TF change. In this paper, we avoid the use of pre-
integration and propose the use of a quadrature approach to
integrate the ray, supporting interactive modifications of the
TF. We consider the actual trilinear scalar function and thus
achieve accurate results.

III. HEXAHEDRON RAY-CASTING

In this section, we describe how our ray-casting algorithm
handles hexahedral meshes. In Section III-A, we detail our
integration scheme. Section III-B describes how we find the
integration intervals. Section III-C presents our data structure,
and Section III-D describes how we traverse the hexahedral
mesh. Section III-E details how we also render isosurfaces,
and, finally, Section III-F presents the overall ray-casting
algorithm.

A. Ray integration

The trilinear scalar function inside a hexahedral cell can be
described with the following equation:

f(x, y, z) = c0 + c1x+ c2y + c3z

+ c4xy + c5yz + c6xz + c7xyz (2)

where c0, c1, c2, c3, c4, c5, c6, c7 are the cell coeficients. They
are calculated solving the following linear system:

1 x0 y0 · · · x0y0z0

1 x1 y1 · · · x1y1z1
...

...
...

. . .
...

1 x7 y7 · · · x7y7z7



c0
...
c7

 =


s0
...
s7


where {xi, yi, zi}, with i = {0, . . . , 7}, are the hexahedron
cell vertex positions, and si are the scalar values at each one
of the vertices. The system can be solved using singular value
decomposition (SVD) [15].

The position of a point inside the cell, along the ray, can
be described as:

p = e + t~d (3)

where e is the eye position, and ~d is the ray direction.
We then parameterize the hexahedral scalar function (Equa-

tion (2)) by the ray length inside the cell, denoted by t:

f(t) = w3t
3 + w2t

2 + w1t+ w0, t ∈ [tback, tfront] (4)

with:



w0 = c0 + c1ex + c2ey + c4exey + c3ez

+ c6exez + c5eyez + c7exeyez

+ c7dxdyez

w1 = c1dx + c2dy + c3dz + c4dyex + c6dzex

+ c4dxey + c5dzey + c7dzexey + c6dxez + c5dyez

+ c7dyexez + c7dxeyez

w2 = c4dxdy + c6dxdz + c5dydz + c7dydzex + c7dxdzey

w3 = c7dxdydz (5)

Considering now the ray integral from Equation (1) and
considering the transfer function as a piecewise linear function,
we can express:

κ(f(t)) =
(κb − κfront) ∗ (f(t)− f(tfront))

f(tback)− f(tfront)
+ κfront (6)

ρ(f(t)) =
(ρb − ρfront) ∗ (f(t)− f(tfront))

f(tback)− f(tfront)
+ ρfront (7)

Getting back to Equation (1), we use a Gauss-Legendre
Quadrature method to integrate the color and opacity along
the ray:

I(tb) = I(tfront)e
−ztfront,tback

+
∫ tb

tfront

e−zt,tbκ(t)ρ(t)dt (8)

where

za,b =
∫ b

a

ρ(r)dr

za,b = ρfront(b− a) +
(ρb − ρfront)

12(sback − sfront)
∗ [12(asfront − bsfront) + 12w0(b− a) + 6w1(b2 − a2)

+4w2(b3 − a3) + 3w3(b4 − a4)] (9)

going back to Equation 8 have:

I(tb) = I(tfront)e
−ztfront,tback

+
3∑
i=0

D ∗GaussPointi ∗ e−ztg,tbκ(tg)ρ(tg) (10)

where D = (tback−tfront) and tg = tfront+GaussWeighti∗
D. GaussPointi and GaussWeighti are the pre-computed
points and weights for the Gauss-Legendre Quadrature.

The Gaussian quadrature integration method gives exact
solutions for functions that are well approximated by poly-
nomials up to degree 5, considering a 3 point quadrature.
Since we split our integration into several intervals, as we shall
explain in Section III-B, we make sure that our ray integral is
accurately evaluated.

B. Integration intervals

The scalar field variation along a ray in a hexahedral cell
can be illustratively represented by the function in Figure 1a.
As a cubic polynomial function (according to Equation (4)),
f(t) has two extrema, which can be calculated from its
derivative f ′(t), a quadratic polynomial. Considering tmin
and tmax the values of minima and maxima, we calculate
tnear and tfar, such that tnear = min(tmin, tmax) and
tfar = max(tmin, tmax). If tfront denotes the point the ray
enters the cell and tback the point it exits the cell, the function
in the intervals [tfront, tnear], [tnear, tfar], and [tfar, tback] is
monotonic, so each one of these intervals has, at most, one
root of Equation (4).

To find if there is an isovalue inside an interval, we use a 2D
texture first proposed by Röttger et. al [4] for his tetrahedral
cell-projection algorithm. Given s0 and s1 (scalars at the limit
points) as parameters, this texture returns the value of the first
control point scp, if one exists, such that s0 < scp < s1 or
s1 < scp < s0.

With scp, we can find the value of tcp, which is the
ray length from the eye to the isosurface that crosses the
hexahedral. We find it by solving Equation (4) for f(tcp) = scp
using the Newton-Raphson method. One of the main problems
with such root finding method is its dependency of an initial
guess, but we can use the average ray length between the
interval limits as our initial guess.

To exemplify this procedure, let us consider the scalar
variation inside an hexahedron given by the function in Figure
1a and the transfer function illustrated in Figure 1b. We have
tmax = 0.26 and tmin = 0.73; we then calculate tnear =
min(tmin, tmax) = 0.26 and tfar = max(tmin, tmax) =
0.73. In this case, there is no control point in [tfront, tnear],
and so the first integration interval is [0, 0.26]. In [tnear, tfar],
there are three control points: 0.4, 0.5, and 0.6. These give us
four integration intervals: [0.26, 0.4], [0.4, 0.5], [0.5, 0.6], and
[0.6, 0.73]. Beyond tfar, there is no other control point, giving
us only an additional interval to complete this illustrative
integration: [0.73, 1].

0.2 0.4 0.6 0.8 1.0
t

0.88

0.90

0.92

0.94

f HtL

(a)
0.2 0.4 0.6 0.8 1.0

s

0.2

0.4

0.6

0.8

1.0

tf HsL

(b)

Fig. 1. Example of scalar field variation inside a hexahedral cell: (a) Maxima
and minima values of a trilinear function along the ray inside an hexahedron;
(b) Transfer function represented by a piecewise linear variation.

C. Data structure

In order to access information such as normals and adja-
cency, we use a set of 1D textures, presented in Table I.



TABLE I
DATA STRUCTURE FOR ONE HEXAHEDRAL CELL.

Texture Data
Coefi, i = {0, ..., 7} c0 c1 · · · c7

Adji, i = 0, ...5 adj0 adj1 . . . adj5

~pi,j , i = {0, ..., 5}, j = {0, 1} vecn0,0 vecn0,1 . . . vecn5,1

As mentioned, we need to store 8 coefficients per cell. For
adjacency information, we need more 6 values, each associated
to a face of the cell. The third line in the table represents plane
equations defined by the cell faces. To compute the intersection
of the ray with a hexahedral cell, we use a simple ray-plane
intersection test. We then need to split each quadrilateral face
of a cell into two triangles and store the corresponding plane
equations, totaling 12 planes per cell (48 coefficient values).

We then store a total of 62 values associated to each cell.
Considering 4 bytes per value, we store 248 bytes per cell.
Even optimized data structures, such as the one described
by Weiler et. Al [16], requires at least 380 or 456 bytes
per cell (considering a hexahedron subdivided into five or
six tetrahedra, respectively). In fact, one great advantage of
ray-casting hexahedral cells is its small memory consumption
when compared to the subdivision scheme.

D. Ray traversal

To begin the ray traversal through the mesh, we follow the
work by Weiler et. al [16] and Bernardon et. al [17]. They
proposed a ray-casting approach based on depth-peeling that
handles models with holes and gaps. The initial step consists
in rendering to a texture the external volume boundary, storing
the corresponding cell ID for each pixel on the screen.
The second step will then fetch the texture and initiate the
mesh traversal starting at the stored cell. The algorithm then
proceeds by traversing the mesh until the ray exits the volume.
In models with holes or gaps, the ray can re-enter the volume.
At each peel, the ray re-enters at the volume boundary, and we
accumulate the color and opacity from previous peels. The ray-
casting algorithm is finished when the last external boundary
of the model is reached.

As mentioned, to compute the intersection of the ray with a
cell, we subdivide each cell face in two triangles and compute
the distance between the eye and each triangle plane. This
intersection test is an approximation. In order to improve
accuracy, we have implemented both a ray-bilinear patch
intersection test and a ray intersection test in Plcker Space
[12]. However, neither of these solutions performed well in
our implementation. We then decided to stick with a simpler
ray-plane intersection algorithm.

E. Isosurfaces

We can extend our volume rendering algorithm to also
handle isosurface rendering. This is, in fact, very simple,
because we already compute all control points along the ray.

The surface normal is given by the gradient of the scalar field:

~n = ∇f(x, y, z) =<
∂f

∂x
,
∂f

∂y
,
∂f

∂z
>

~n =

 c1 + c4y + c6z + c7yz

c2 + c4x+ c5z + c7xz

c3 + c5x+ c6y + c7xy

 (11)

where (x, y, z) is the intersection between the ray and the iso-
surface, and is given by Equation (3), considering tcp.

Figures 2 presents an isosurface rendering of the Atom9
Dataset, from [11]. We chose to use the same isovalue (0.12)
as the one used by the authors of the paper. As can be noted, if
compared to a simple subdivision scheme, our proposal depicts
the isosurface shape with significant improved accuracy.

(a) Tetrahedral approach (b) Our proposal

Fig. 2. Isosurface rendering of the Atom9 dataset.

F. Ray-casting Algorithm

The algorithm in Table II summarizes our approach. We
traverse the mesh accumulating each cell contribution to the
pixel color. We first calculate the values of minima and
maxima of the ray as it goes through each cell, clamping values
outside the cell boundary. tnear and tfar represent the closest
and farthest min/max value to the eye position. We then iterate
through tfront, tnear, tfar, tb, fetching the texture described
in Section III-B to find if there are control points in each
interval. If there is, the algorithm integrates from the current
position ti to tcp; we then update the value of ti.

IV. RESULTS

For the evaluation of our proposal, we implemented a
ray-casting using CUDA that handles both tetrahedral and
hexahedral meshes. We measured the rendering performance
with four known volumetric datasets: Blunt-fin, Fuel, Neghip,
Oxygen.

We tested the following algorithms for comparison:
1) Hexaconst: Ray-casting for hexahedral meshes that uses

a fixed number of 100 steps in each cell to accurately
compute the illumination assuming a constant scalar
field at each step.

2) Hexaours: Our proposal for direct volume rendering of
hexahedral meshes.

3) TetraHARC : Ray-casting using a pre-integrated table
[18], with each hexahedral cell subdivided in six tetra-
hedra.



TABLE II
RAY-CAST ALGORITHM

1: color ← (0, 0, 0, 0)
2: cell.id← V olumeBoundary()
3: while color.a < 1 and ray inside volume do
4: tback, cell.nid← IntersectRayFaces(t, cell)
5: tmin, tmax = Solve(cell.f ′(t) = 0)
6: tmin = clamp(tmin, tfront, tback)
7: tmax = clamp(tmax, tfront, tback)
8: tnear = min(tmin, tmax)
9: tfar = max(tmin, tmax)

10: ti = [tfront, tnear, tfar, tback]
11: i = 0
12: while i < 3 do
13: {Find control points}
14: scp = fetch(scp, si+1)
15: if si < scp < si+1 or si > scp > si+1 then
16: tcp = Newton(cell.f(t) = scp,

ti+ti+1
2 )

17: else
18: tcp = ti+1

19: end if
20: color ← Integrate(ti, si, tcp, scp)
21: ti = tcp
22: if ti >= ti+1 then
23: i+ +
24: end if
25: end while
26: cell.id = cell.nid
27: t = tback
28: end while

Although the Hexaconst algorithm is far from being an
efficient solution, it produces accurate results, and we use it
as our rendering quality reference. We ran the experiments on
Windows 7 with an Intel Core 2 Duo 2.8 GHz, 4 GB RAM
and a GeForce 460 GTX 1 GB RAM. The screen size was set
to 800 x 800 pixels in all experiments.

A. Rendering quality

We evaluate our ray-casting algorithm regarding rendering
quality. We first devised an experiment using synthetic volume
data composed by only one hexahedral cell. Figure 3 shows the
scalar values set to each vertex and presents the three images
achieved by the three algorithms. For these images, we used
a transfer function with six thin spikes, isolating six different
slabs. Even though such a scalar field variation is rare in actual
datasets, this synthetic test aims to show how the subdivision
of an hexahedral can lead to unrecognizable results. The test
also demonstrates that our proposal is capable of accurately
rendering scalar fields with complex variations.

Figure 4 shows and compares the results achieved by the
three algorithms for rendering the Fuel model. We can note
that our proposal is quite accurate. Figures 4d and 4e shows
the difference between the images achieved with our proposal

S7=1S5=1

S6=0
S4=0

S0=1 S2=0

S1=0 S3=0

y

z

x

(a) Scalar values at vertices (b) 100 steps

(c) Our proposal (d) Hexahedron subdivision

Fig. 3. Rendering on a synthetic model composed by on hexahedron.

and the subdivision scheme when compared to our quality
reference. In Figures 4f, 4g, and 4h, a zoomed view of the
model clearly depicts the difference in quality of our algorithm
when compared to the subdivision scheme.

Figure 5 shows the result of a similar experiment but now
considering the Bucky model. As can be noted, the results are
equivalent: our algorithm produces images with much better
quality.

B. Quantitative error analysis
To properly evaluate the rendering quality of our proposal,

we compute the peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM) [19] of the rendered images in
Figure 4 and Figure 5. The error values are presented in
Table III. All values were obtained comparing the rendered
images of the subdivision scheme and our proposal to the
rendered images using constant steps. We observe that our
proposal in fact presents better results.

TABLE III
QUANTITATIVE ERROR ANALYSIS OF THE SUBDIVISION SCHEME AND OUR

PROPOSAL.

Figure Algorithm PSNR SSIM

Bucky
TetraHARC 42.10 97.9%
Hexours 58.79 99.9%

Fuel
TetraHARC 42.51 98.8%
Hexours 55.65 99.9%

C. Time results
Table IV shows a comparison of memory consumption and

rendering time. The time reported in the table represents the



(a) 100 steps (b) Our proposal (c) Hexahedron division

(d) Difference of our proposal (e) Difference hexahedral subdivision

(f) 100 steps (g) Our proposal (h) Hexahedral subdivision

Fig. 4. Achieved images for the Fuel model.

rendering time for one frame. For each entry, we repeated the
experiment 5 times, and, for each run, we changed the camera
to 64 different positions, averaging the measured time. Since
the algorithms are heavily dependent on the transfer function,
we tested them with a fixed TF with 23 control points.

As can be noted, when compared to the subdivision scheme
of 6 tetrahedra per hexahedral cell, our proposal reduces
memory consumption by a factor of 2.2. Our algorithm also
presents competitive performance. The rendering time of our
approach is about 15% worse than the algorithm based on
the subdivision scheme. To achieve accurate results, we need
to perform part of the integration computation in double
precision. That is the main reason for losing performance. If
we had used single precision, our algorithm would be 15 to
20% faster than the subdivision scheme, but this would bring
numerical inaccuracy. Figure 6 presents a comparison of the

Bluntfin model rendered with both single and double precision.
As can be noted, the use of single precision does result in
inaccurate results.

TABLE IV
RENDERING TIMES AND MEMORY FOOTPRINT OF THE SUBDIVISION

SCHEME AND OUR PROPOSAL.

Model Algorithm # cells Memory (Mb) Time (ms)

Fuel
TetraHARC 1,572,864 150,994,944 159.41
Hexours 262,144 65,011,712 177.27

Neghip
TetraHARC 1,572,864 150,994,944 152.39
Hexours 262,144 65,011,712 177.34

Oxygen
TetraHARC 658,464 63,212,544 55.24
Hexours 109,744 27,216,512 70.07

Blunt-fin
TetraHARC 245,760 23,592,960 48.57
Hexours 40,960 10,158,080 56.50



(a) 100 steps (b) Our proposal (c) Hexahedron division.

(d) Difference of our proposal (e) Difference of subdivision

(f) 100 steps (g) Our proposal (h) Hexahedral subdivision

(i) 100 steps (j) Our proposal (k) Hexahedral subdivision

Fig. 5. Achieved images for the Bucky model.

V. CONCLUSION

We have presented an accurate hexahedral volume rendering
suitable for unstructured meshes. Our proposal integrates the
trilinear scalar function using a quadrature approach on the
GPU. Although our performance was about 15%-16% worse
than a tetrahedral algorithm, our proposal produces images
with better quality. By the use of a proper integration of the

trilinear function inside an hexahedron, our proposal ensures
that no isosurface value is missed during integration.

Because of its parallel nature, we believe that ray-casting is
better suited for massively parallel environments, such as the
GPU. Its main drawback, however, is its memory consumption;
our algorithm presents a smaller memory footprint than regular
hexahedral subdivision schemes.



(a) Single precision

(b) Double precision

Fig. 6. Volume rendering of the Bluntfin Dataset.

In the future, we plan to revisit the impact of a ray-bilinear
patch intersection test, and to analyze how it could improve the
image quality and its impact on the performance. We also plan
to extend the algorithm to higher-order cells and to investigate
its use for rendering models that support adaptive level-of-
detail.

ACKNOWLEDGMENT

We thank CAPES (Brazilian National Research and De-
velopment Council) and CNPq (Brazilian National Research
and Development Council) for the financial support to conduct
this research. This work was done in the Tecgraf laboratory
at PUC-Rio, which is mainly funded by the Brazilian oil
company, Petrobras.

REFERENCES

[1] M. P. Garrity, “Raytracing irregular volume data,” in Proceedings
of the 1990 workshop on Volume visualization, ser. VVS ’90. New
York, NY, USA: ACM, 1990, pp. 35–40. [Online]. Available:
http://doi.acm.org/10.1145/99307.99316

[2] P. L. Williams and N. Max, “A volume density optical model,” in
Proceedings of the 1992 workshop on Volume visualization, ser. VVS
’92. New York, NY, USA: ACM, 1992, pp. 61–68. [Online]. Available:
http://doi.acm.org/10.1145/147130.147151

[3] P. L. Williams, N. L. Max, and C. M. Stein, “A high accuracy volume
renderer for unstructured data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 4, pp. 37–54, 1998.

[4] S. Röttger, M. Kraus, and T. Ertl, “Hardware-accelerated volume and
isosurface rendering based on cell-projection,” in Proceedings of the
conference on Visualization ’00, ser. VIS ’00. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2000, pp. 109–116. [Online].
Available: http://portal.acm.org/citation.cfm?id=375213.375226

[5] S. Röttger and T. Ertl, “A two-step approach for interactive pre-
integrated volume rendering of unstructured grids,” in Proceedings of
the 2002 IEEE symposium on Volume visualization and graphics, ser.
VVS ’02. Piscataway, NJ, USA: IEEE Press, 2002, pp. 23–28. [Online].
Available: http://portal.acm.org/citation.cfm?id=584110.584114

[6] K. Moreland and E. Angel, “A fast high accuracy volume renderer
for unstructured data,” in Proceedings of the 2004 IEEE Symposium on
Volume Visualization and Graphics, ser. VV ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 9–16. [Online]. Available:
http://dx.doi.org/10.1109/VV.2004.2

[7] K. Novins and J. Arvo, “Controlled precision volume integration,” in
Proceedings of the 1992 workshop on Volume visualization, ser. VVS
’92. New York, NY, USA: ACM, 1992, pp. 83–89. [Online]. Available:
http://doi.acm.org/10.1145/147130.147154

[8] M. Weiler, M. Kraus, M. Merz, and T. Ertl, “Hardware-based
ray casting for tetrahedral meshes,” in Proceedings of the 14th
IEEE Visualization 2003 (VIS’03), ser. VIS ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 44–. [Online]. Available:
http://dx.doi.org/10.1109/VISUAL.2003.1250390

[9] P. Shirley and A. Tuchman, “A polygonal approximation to direct scalar
volume rendering,” in Proceedings of the 1990 workshop on Volume
visualization, ser. VVS ’90. New York, NY, USA: ACM, 1990, pp.
63–70. [Online]. Available: http://doi.acm.org/10.1145/99307.99322

[10] N. L. Max, P. L. Williams, and C. T. Silva, “Cell projection of meshes
with non-planar faces,” in Data Visualization: The State of the Art, 2003,
pp. 157–168.

[11] H. Carr, T. Moller, and J. Snoeyink, “Artifacts caused
by simplicial subdivision,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, pp. 231–242, March 2006. [Online].
Available: http://dx.doi.org/10.1109/TVCG.2006.22

[12] G. Marmitt and P. Slusallek, “Fast Ray Traversal of Tetrahedral and
Hexahedral Meshes for Direct Volume Rendering,” in Proceedings
of Eurographics/IEEE-VGTC Symposium on Visualization (EuroVIS),
Lisbon, Portugal, May 2006.

[13] S. Marchesin and G. de Verdiere, “High-quality, semi-analytical volume
rendering for amr data,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 15, no. 6, pp. 1611 –1618, nov.-dec. 2009.

[14] J. E. Hajjar, S. Marchesin, J. Dischler, and C. Mongenet, “Second
order pre-integrated volume rendering,” in IEEE Pacific Visualization
Symposium, March 2008.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical recipes in C (2nd ed.): the art of scientific computing. New
York, NY, USA: Cambridge University Press, 1992.

[16] M. Weiler, P. N. Mallon, M. Kraus, and T. Ertl, “Texture-encoded
tetrahedral strips,” in Proceedings of the 2004 IEEE Symposium on
Volume Visualization and Graphics, ser. VV ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 71–78. [Online]. Available:
http://dx.doi.org/10.1109/VV.2004.13

[17] F. F. Bernadon, C. A. Pagot, J. L. D. Comba, and C. T. Silva, “Gpu-
based tiled ray casting using depth peeling,” Journal of Graphics, GPU,
and Game Tools, vol. 11, no. 4, pp. 1–16, 2006.

[18] R. Espinha and W. Celes, “High-quality hardware-based ray-casting
volume rendering using partial pre-integration,” in Proceedings
of the XVIII Brazilian Symposium on Computer Graphics and Image
Processing. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 273–. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1114697.1115365

[19] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

http://doi.acm.org/10.1145/99307.99316
http://doi.acm.org/10.1145/147130.147151
http://portal.acm.org/citation.cfm?id=375213.375226
http://portal.acm.org/citation.cfm?id=584110.584114
http://dx.doi.org/10.1109/VV.2004.2
http://doi.acm.org/10.1145/147130.147154
http://dx.doi.org/10.1109/VISUAL.2003.1250390
http://doi.acm.org/10.1145/99307.99322
http://dx.doi.org/10.1109/TVCG.2006.22
http://dx.doi.org/10.1109/VV.2004.13
http://portal.acm.org/citation.cfm?id=1114697.1115365
http://portal.acm.org/citation.cfm?id=1114697.1115365

	Introduction
	Related Work
	Ray integration
	Hexahedral mesh

	Hexahedron Ray-Casting
	Ray integration
	Integration intervals
	Data structure
	Ray traversal
	Isosurfaces
	Ray-casting Algorithm

	Results
	Rendering quality
	Quantitative error analysis
	Time results

	Conclusion
	References

