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Abstract—Many image segmentation algorithms have been
proposed, specially for the case of binary segmentation (ob-
ject/background) in which hard constraints (seeds) are provided
interactively. Recently, several theoretical efforts were made in
an attempt to unify their presentation and clarify their rel ations.
These relations are usually pointed out textually or depicted in
the form of a table of parameters of a general energy formulation.
In this work we introduce a more general diagram representation
which captures the connections among the methods, by means of
conventional relations from set theory. We formally instantiate
several methods under this diagram, including graph cuts, power
watersheds, fuzzy connectedness, grow cut, distance cuts,and
others, which are usually presented as unrelated methods. The
proposed diagram representation leads to a more elucidated
view of the methods, being less restrictive than the tabular
representation. It includes new relations among methods, besides
bringing together the connections gathered from differentworks.
It also points out some promising unexplored intermediate
regions, which can lead to possible extensions of the existing
methods. We also demonstrate one of such possible extensions,
which is used to effectively combine the strengths of regionand
local contrast features.
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I. I NTRODUCTION

Image segmentation involving the extraction of an object
from a background is a well pursued topic in image processing
and computer vision. However, in order to guarantee reliable
and accurate results, user supervision is still required inseveral
segmentation tasks, such as the extraction of poorly defined
structures in medical imaging and arbitrary objects in natural
images. These problems motivated the development of several
different methods for semi-automatic segmentation, aiming
to minimize the user involvement and time required without
compromising accuracy and precision.

These methods are usually divided in three classes, depend-
ing on the type of user input: 1) Initial contour/surface, 2)
boundary-based constraints (anchor points), 3) region-based
constraints (seeds).

On the first type, the user specifies an initial curve, close
to the target boundary, which deforms automatically usually
evolving into a local minimum that is returned as the final
segmentation. This class includes the family ofactive contour
(snakes) [1] and level setmethods [2], [3].However, a problem

associated with these methods is that when the returned result
is not satisfactory, the user options are parameter adjustments
or re-initialization (with a new input curve), which may be
difficult for a non-expert user.

The second class, includes mainlylive wire (intelligent
scissors) [4], [5] and its extensions [6], [7], [8], and some
snakes variants, which detect the global minimum of an active
contour model’s energy between two end points [9]. In relation
to other methods from the first class, likesnakes[1], live wire
provides much tighter control to users since the desired path
can be interactively selected from multiple candidate paths.
More recently, theriverbed [10] approach was also proposed
in order to handle complex shapes without shortcutting the
boundary. However, one disadvantage of the methods under
this class is that they are usually hard to be extended to
multidimensional images [11].

The third class comprises seed-based image segmentation
methods which adopt basically the following steps: The user
provides a partial labelling of the image by placing hard
constraints (known as seeds). After that, the seed’s labels
are propagated to all unlabeled regions by following some
optimum criterion, such that a complete labeled image is
constructed. Correction of wrongly segmented parts is accom-
plished by the addition and/or removal of seeds followed by
the recomputation of the segmentation. This class encloses
many of the most prominent methods for general purpose
segmentation. In this work, we focus on this seed-based
class, although some ideas presented here (e.g., the diagram
representation) can be easily adapted to the other classes.

Several seed-based image segmentation methods have been
developed based on different theories, supposedly not related,
leading to different frameworks, such as watershed [12], [13],
random walks [14], fuzzy connectedness [15], [16], graph
cuts [17], [18], distance cut [19], and grow cut [20]. However,
they usually make direct/indirect use of some image-graph
concept, such as arc weight between pixels, which may be
interpreted as similarity, speed function, affinity, cost,distance;
depending on different frameworks used.In view of this, recent
works have started to seek for theoretical relations among
different frameworks as an important topic of research [21],
[22], [23], [24], [25], [26], [27]. In these works, the relations
are usually textually presented [22], [23], [24], or they use a



tabular representation, where each cell content reflects a dis-
tinct method resulting from different parameter configurations
of a generic energy formulation [25], [26], [27]. However,
the tabular representation based on an unique general energy
formulation has some drawbacks:

• The extension to include new algorithms usually involves
the addition of more parameters in the general energy for-
mulation (e.g., a second parameter in [27] was necessary
in order to extend the previous work [25]). This limits
the inclusion of more methods, given that, the addition
of a third parameter would lead to a three-dimensional
table which is hard to visualize.

• Only a few special cases of some methods can be
represented in this table. For example, in [26] what they
call a watershed is, in fact, only a specific solution within
a wider universe of existing definitions of watershed [28],
that can not be represented on that table cell1. Also many
methods closely related to watershed are not included,
such as the fuzzy connectedness family [29].

• In order to fit in a particular table cell, some methods
are presented without considering explicitly important
regularization parameters, that could be used to establish
new connections with other methods (e.g., shortest paths).

• Lastly, the general energy formulation used is very com-
plex (e.g., it involves a continuous solution that is later
discretized on a second step), while some methods can
be more naturally described using a more intuitive and
simpler energy formulation already designed for hard
segmentations, as presented in [23], [24].

In view of these problems, in this work we introduce
a more general representation in the form of a diagram,
which captures the connections among methods by means of
conventional relations of set theory. We formally instantiate
several methods under this diagram, including graph cuts,
power watersheds, fuzzy connectedness, grow cut, distance
cuts, and others. New relations among methods are depicted,
as well others gathered from different works, which are all
brought together in a common representation. The proposed
diagram representation presents the following advantages:

• It allows to properly represent the full universe of solu-
tions of each method.

• It leads to a more elucidated view of the methods,
explicitly treating all parameters of each method.

• It is less restrictive than the tabular representation, and
can be arbitrarily extended.

• It also points out some promising unexplored intermedi-
ate regions, which can lead to possible extensions of the
existing methods.

The diagram representation is introduced in Section II. In
Section III, we give a short overview of several seed-based
methods, already pointing out existing and new connectionsby
taking advantage of a more uniform and formal presentation.
Section IV instantiates the diagram and presents a summary of

1On the later paper [27], the authors changed the name of this cell from
“watershed” to the more specific “power watershed q=1”.

all relations depicted for quick reference. Possible extensions
are discussed in Section V, including the demonstration of the
combination of two methods yielding to new solutions over an
unexplored region. Our conclusions are stated in Section VI.

II. D IAGRAM REPRESENTATION

We are restricting our analysis to the case of binary
segmentation for sake of simplicity, and also because some
involved methods are hard to be extended to multiple objects
(e.g., graph cut). But it is important to note that the diagram
here presented can be trivially extended to the analysis of
segmentation involving multiple objects.

Since all methods to be included in the diagram can be
reformulated based on image graphs (although the original
papers sometimes ommit this), we decided to explain the ideas
already focusing on image graphs, as exposed next.

A multi-dimensional and multi-spectral imagêI is a pair
(I, ~I) whereI ⊂ Zn is the image domain and~I(p) assigns a
set of m scalarsIi(p), i = 1, 2, . . . , m, to each pixelp ∈ I.
The subindexi is removed whenm = 1. An imageÎ can be
interpreted as a graphG = (N ,A) whose nodes inN are
image pixels inI, and arcs(p, q) are defined by anadjacency
relation A ⊂ N × N . We useq ∈ A(p) and (p, q) ∈ A
to indicate thatq is adjacent top. For each arc(p, q) we
have an associated arc weightw(p, q). Although some methods
can be directly executed over directed graphs, we will assume
undirected graphs in order to standardize the discussion, i.e.,A
is taken as an irreflexive and symmetric relation, andw(p, q) =
w(q, p). For example, one can takeA to consist of all pairs
of nodes(p, q) in the Cartesian productN × N such that
d(p, q) ≤ ρ and p 6= q, whered(p, q) denotes the Euclidean
distance andρ is a specified constant (e.g., 4-neighborhood,
whenρ = 1).

Some methods may require an extended graph with addi-
tional nodes and arcs (e.g., graph cut) but since for most of the
methods these additions are usually completely disregarded,
we will postpone their explanation to a more specific section.

A binary seed-based segmentation can be defined by a
labeled imagêL = (I, L), which must satisfy two sets of hard
constraints,So ⊂ I andSb ⊂ I (So∩Sb = ∅), containing seed
pixels selected inside and outside the object, respectively (i.e.,
L(p) = 1 if p ∈ So, L(p) = 0 if p ∈ Sb, andL(p) ∈ {0, 1}
otherwise).

For any input image graphG = (N ,A) and seed setS =
So ∪Sb, the possible results of a methodX are defined by its
list of parametersP = {P1, P2, . . . , Pk} and by its internal
free choices made in the case of multiple valid solutions for
the selected parameter values.

To depict the relations among the methods, we introduce a
diagram representation where each methodX is represented
by a setX(P ) of its possible parameters values and internal
variability depicted as a simple closed curve. WhenX presents
a unique solution for any image graph and seed set, its closed
curve collapses to a single dot in our representation. The
relations among the methods are captured by the following
rules:



• Two methods are considered to overlap when for any
image graphG = (I,A) and seeds they can produce the
same result for some proper selection of their parameters
and internal choices. In this case their diagrams present
an intersection.

• Two methods are disjoint if there exists an image graph
and seed set for which they cannot guarantee the same
solution for any selection of their parameters (although
they may eventually produce the same result for some
simple images).

• A methodX is a subset of another methodY if for any
image graph and seed set, all of its predicted solutions
are also valid solutions ofY for some suitable parameter
selection on that graph.

IFT minƒ

KCC

IFT wƒ

IRFC

RFC

PW2

Otsu

THR

MF

DC

Voronoi l1 norm

IFTƒΣ

shrinking
problem

λ=0

η 0→

λ=0

η→∞

λ→∞

η=0

→∞η

PW1

IFT minƒ
FIFO

IFT minƒ
LIFO

AFC

Voronoi l2 norm

η=0

→∞η

RW

Fig. 1. Schematic representation of the relations between methods.

Figure 1 shows the proposed diagram for the seed-based
methods, shown later in next section, as well their relations to
be instantiated in details on Sections III and IV.

III. SEED-BASED SEGMENTATION METHODS

In order to instantiate the diagram, we give in this section
a short description of several methods, including their list of
considered parameters. But first, in Section III-A, we describe
the image foresting transform(IFT) [21], which will be used
as an underpinning in establishing the relations among several
segmentation methods. In view to standardize the presentation,
we adopted a canonical formulation of the arc weightsw(p, q)
of the graph, so that:

1) For all (p, q) ∈ A, we have that0.0 < w(p, q) ≤ 1.0.
2) Low values are assigned to the arcs that cross the

object’s boundary, and high values to the remaining arcs
(ideally∼ 0.0 and1.0 respectively, although in practice
this is usually not possible).

For example, we could use the complement of some normal-
ized gradient magnitude on an arc asw(p, q). When we refer

to a non-canonical weight, we will adopt a different symbol,
such asδ(p, q).

Although several of the described approaches allow zero
weighted arcs, we are avoiding such values in our discussion
for the following reasons: In some frameworks, the connec-
tivity through these weights is not allowed (i.e., zero-valued
weights are interpreted as non-existing arcs). Moreover, zero-
valued weights can also lead to additional differences between
some approaches such as the creation of holes inside the
objects. However, these differences are not that substantial, and
they are usually implementation details that could be easily
changed, so we decided to skip them in order to simplify
our analysis. Also, zero-valued weights make impractical some
transformations between dual representations of some methods
due to division by zero.

A. Image Foresting Transform

The image foresting transform(IFT) [21] is a tool for the
design of image processing operators based onconnectivity
functions (path-value functions) in graphs derived from the
image. It has been used as an unifying framework for several
image processing operators (not restricted to segmentation).

In the physical universe the IFT can be explained as a theory
of the ordered formation of communities, in the mathematical
universe as an image transformation into an optimum-path
forest, and in the computational universe as an extension of
Dijkstra’s algorithm to more general connectivity functions
and multiple sources [21].

Ordered formation of communities: Consider a population
in which each individual has an intrinsic desire to lead groups.
Individuals, with greater desire to become a leader, offer
rewards to their acquaintances, inviting them to become part
of their communities. If the offered reward is greater than
their current desire, they consent to the proposal. A member
of one of these communities, who was more rewarded, also
invites his/her own friends, offering to them a reward to change
to his/her community, and the process continues. However, a
member never offers a reward higher than his/her own reward,
and an individual only changes community when the new
offered reward is greater than his/her current reward. The
process follows the order of individuals with higher reward
to the ones with lower reward through their acquaintances,
until the population is divided into communities, such that
each individual will belong to the group that offered the best
(maximum) reward to him/her. At the end, a leader is an
individual whose intrinsic desire is greater than any reward
that was offered to him/her. A leader can also be a lonely
individual who could not conquer anyone else.

From the mathematical point of view, each individual of the
population corresponds to a node (pixel), his/her acquaintances
are defined by the adjacency relationA, and each community
is given by an optimum-path tree. In the case of seed-based
segmentation methods the leaders are always the seeds inS



(roots by imposition)2. The seed setsSo and Sb give us a
partial labelling of the image, and this labelling is propagated
to all pixels in I\S, such that each community receives the
same label of its leader.

The propagation of invitations from a leader to an indi-
vidual q, follows a chain of friend pairs, forming apath
π = 〈p1, p2, . . . , pn〉, (pi, pi+1) ∈ A, i = 1, 2, . . . , n − 1,
with origin at the leaderp1 ∈ S, and terminus atq = pn /∈ S.
The reward offered toq through this path is defined by a
connectivity functionf(π). Let πq denote such a path with
terminus at a nodeq. A pathπq is optimumif f(πq) ≥ f(τq)
for any other pathτq in (N ,A), with terminus atq. The
optimum-path valueV (q) is uniquely defined for allq ∈ N
by V (q) = max∀πq in (N ,A){f(πq)}.

By assuming that the leaders are the seeds inS, we can
restrict the search for optimum paths only to paths starting
in S. So to simplify the discussion we will only define the
connectivity functions for such paths (i.e.,p1 ∈ S andpi /∈ S
for i > 1). Some commonly used functions are given below:

fmax(π) = max
i=1,2,...,n−1

δ1(pi, pi+1) (1)

fmin(π) = min
i=1,2,...,n−1

δ2(pi, pi+1) (2)

fΣ(π) =
∑

i=1,2,...,n−1

δ3(pi, pi+1) (3)

fΠ(π) =
∏

i=1,2,...,n−1

δ4(pi, pi+1) (4)

The maximization of the reward offered by the connectivity
functions always has a dual equivalent definition involvinga
minimization problem (i.e.,V (q) = min∀πq in (N ,A){f(πq)}).
For example,V (q) must be maximized forfmin(π), and
fmax(π) is used to solve the dual problem whereV (q) must
be minimized while searching for optimum paths.

In the case of functionsfΣ(π) andfΠ(π), the dual definition
is obtained by applying a transformation to the arc weights:

• Function fΣ(π): V (q) must be minimized whenδ3 ≥
0.0, and maximized forδ3 ≤ 0.0. (i.e., the dual form is
obtained by changing the sign of weights).

• FunctionfΠ(π): V (q) must be maximized when0.0 <
δ4 ≤ 1.0, and minimized forδ4 ≥ 1.0 (i.e., the dual form
is obtained by the inversion of weightsδ−1

4 ).
Moreover, functionsfΣ(π) andfΠ(π) are in fact equivalent

for image segmentation, in the sense that they can be converted
into each other by using a logarithmic transformation (one
to one correspondence). Since the logarithm conserves the
order of the connectivity values, it won’t affect the final
segmentation (Eq. 5).

log (fΠ(π)) = log





∏

i=1,2,...,n−1

δ4(pi, pi+1)





=
∑

i=1,2,...,n−1

log(δ4(pi, pi+1)) (5)

2It is also possible to implement the IFT such that a seed may not become
a leader, but since the seeds are selected by the user, it is usually preferable
to assume them as hard constraints by using root imposition.

Therefore, in order to standardize the presentation, we
consider only the functions that are indeed distinct, and we
instantiate them in relation to the canonical weightsw(p, q), so
that the optimum solution is obtained through a maximization,
being consistent with the description given for the formation
of communities:

fmin(π) = min
i=1,2,...,n−1

w(pi, pi+1) (6)

fΣ(π) =
∑

i=1,2,...,n−1

− [1.0 − w(pi, pi+1)]
η (7)

whereη is a regularization parameter that will be important for
theoretical connections, andfΣ uses a sum of negative terms in
Eq. 7, because of the maximization problem, as explained ear-
lier. Note that a division by any positive constant, to normalize
the weightsδ2 andδ3, does not affect the segmentation results
of functions fmin(π) and fΣ(π), therefore, we can always
instantiate them based on the canonical weights without loss
of generality.

From our discussion we have already two segmentation
algorithms: IFTfmin

(P = ∅) with no parameters and
IFTfΣ

(P = {η}) with one parameter. Both of these meth-
ods can present multiple valid solutions. The setT of all
pixels with ambiguos labelling constitutes the tie-zone re-
gions. These ambiguos pixels can be partitioned in several
possible ways, and this is a free choice of these algorithms,
being all connected solutions equally valid. We also include
explicitly two commonly used subcases ofIFTfmin

, denoted
by IFT FIFO

fmin
(P = ∅) and IFT LIFO

fmin
(P = ∅), which are

obtained by using the specific tie-breaking policiesFIFO and
LIFO [21], respectively.

B. Fuzzy connectedness: AFC, RFC, IRFC

In absolute-fuzzy connectedness(AFC) [30], the optimum-
path values to all pixels inI\So are computed using only the
seeds inSo, with function fmin(π), such that the labelling
of unmarked pixels is obtained by thresholding the resulting
connectivity mapVo(q):

Vo(q) = max
∀πq in (N ,A)|org(πq)∈So

{fmin(πq)}, (8)

whereorg(πq) denotes the origin of the pathπq.
The resulting segmentation is defined as the maximal subset

of I, wherein all pixelsq are reached by optimum paths whose
valuesVo(q) are greater than or equal to a given thresholdκ,
or q ∈ So (i.e., we are assuming marker imposition).

In relative-fuzzy connectedness(RFC) [31], [15], a separate
connectivity mapVb(q) taking into account only the back-
ground seeds is also computed:

Vb(q) = max
∀πq in (N ,A)|org(πq)∈Sb

{fmin(πq)}. (9)

The final segmentation is obtained by comparing the two
connectivity mapsVo(q) andVb(q), such that each pixelq ∈
I\S is given to the label with higher connectivity values. The
tie regions of the RFC approach (i.e.,TRFC = {q ∈ I\S |
Vo(q) = Vb(q)}), are larger than the tie zones produced by



the IFTfmin
(i.e., TIFTfmin

⊆ TRFC ) [23]. In RFC, the tie-
breaking policy is fixed such thatL(q) = 1 only if Vo(q) >
Vb(q), andL(q) = 0 otherwise. Since the tie regions are not
assigned to the object in RFC, the resulting object is always
smaller or equal to theIFTfmin

result, usually causing holes
within the object.

Later, the iterative relative-fuzzy connectednessmethod
(IRFC) [16] was proposed to improve RFC, aiming at the
reduction of the tie regionsTRFC . It is basically an iterative
refinement strategy that imposes additional constraints based
on results from the previous RFC iterations. In fact,IFTfmin

already solves this problem due to the simultaneous label
propagation from all seeds with online competition (i.e.,
TIRFC = TIFTfmin

). Indeed, IRFC was later reformulated
based onIFTfmin

[24], the only remaining difference is that
the ties are left unassigned to the object on the IRFC approach,
while IFTfmin

also allows other tie-breaking policies.
From the above discussion, we have now other three algo-

rithms: RFC(P = ∅) and IRFC(P = ∅) with no param-
eters, andAFC(P = {κ}) with one threshold parameter3.
Both RFC and IRFC produce unique segmentation results
for any image graph, due to their conservative tie-breaking
policy. Also, there is anAFC extension calledκ-connected
components(KCC) [32], which considers the resulting object
as the union of allAFC results computed separately, with
a different thresholdκi for each seed inSo. The algorithm
KCC(P = {κ1, κ2, . . . , κ|So|}) has|So| parameters.

C. GrowCut

In GrowCut (GROW) [20], a new iterative algorithm for
image segmentation is proposed based on Cellular Automata
for solving pixel labelling. The segmentation is refined with
each iteration according to an automata evolution rule. The
calculation continues until the automaton converges to a stable
configuration.

Accoring to the code in [20], during the local evolution rule,
a pixel is attacked by all its neighbors, and it is conquered
by a neighbor if the attack force is greater than its strength.
This is closely related to the theory of ordered formation of
communities presented earlier (see Section III-A), where the
attack force corresponds to the reward offered, the defender’s
strength corresponds to the best reward he/she received so
far (which is set initially as his/her intrinsic desire to lead
groups), and “conquering” translates into “becoming part of
a community”. The only difference is that it is an unordered
formation theory, leading to parallel implementations of the
IFT [33]. Therefore, the results of the proposed GrowCut
algorithm are in fact equivalent to the results obtained by IFT
with connectivity functionfΠ(π) (the attack force is defined
by a product), which are in turn equivalent to IFT withfΣ(π)
as pointed earlier. But the implementation presented in [20]
is slower for sequential processing, with resemblances to
old fuzzy connectedness implementations based on unordered

3We assume thatκ is selected such that the resulting object region does
not invade the external seeds

propagation until convergence [31], [15], while the ordered
propagation of IFT leads to linear time implementations,
depending on the priority queue used [21], [6].

D. Distance cut

In distance cut(DC) [19], an algorithm based on additive
connectivity functionsfΣ(π) is presented. In fact this work
also proposes solutions to the alpha matting problem, but
we will focus only on the main core parts used for hard
segmentation. Basically, it starts computing two connectivity
mapsV Σ

o (q) andV Σ
b (q) separatelly for object and background,

similar to what was done for RFC, but this time using the
function fΣ(π).

V Σ
o (q) = max

∀πq in (N ,A)|org(πq)∈So

{fΣ(πq)}, (10)

V Σ
b (q) = max

∀πq in (N ,A)|org(πq)∈Sb

{fΣ(πq)}, (11)

whereorg(πq) denotes the origin of the pathπq.
After computingV Σ

o (q) and V Σ
b (q), the probability of a

pixel q ∈ I\S to be assigned to the object is taken as:

Pobj(q) =
(V Σ

o (q))−1

(V Σ
o (q))−1 + (V Σ

b (q))−1
. (12)

A hard segmentation may be obtained by thresholdingPobj(q)
at 0.5. However, from our previous discussion relatingRFC
andIFTfmin

, we know that the tie regions may increase when
we compute the connectivity maps separately for object and
background. To understand this, lets consider the following
example:

Let πq be the best path fromSo to a pixel q, and letτq

the best path fromSb to q. When there is simultaneous label
propagation from all seeds with competition,πq blocks τq

(making impractical the pathτq and its future extensions) if
f(πq) > f(τq), and the opposite is also valid whenf(τq) >
f(πq). But if there is no competition (i.e., the connectivity
maps are computed separately for object and background),
thenτq may be extended even whenf(πq) > f(τq), possibly
leading to augmented paths that are as good as the best
extensions fromπq to the same nodes, thus increasing the
tie zones.

But, fortunately, in the case offΣ this problem is not
possible due to the additive nature of the function. That is,the
deficiencies of a bad path are inherited by all of its extensions,
and this extra cost can not be eliminated. Therefore, in the
example given, the extensions of the pathτq will never be as
good as the extensions fromπq whenfΣ(πq) > fΣ(τq).

As conclusion, we have that the tie regions ofDC (i.e.,
TDC = {q ∈ I\S | Pobj(q) = 0.5}) and the tie regions
of IFTfΣ

are the same (i.e.,TDC = TIFTfΣ
). The only

remaining difference is that inDC the tie regions may only
be assigned to either object or background, due to the thresh-
olding solution (i.e., the object may be taken asPobj(q) ≥ 0.5
or asPobj(q) > 0.5), while in IFTfΣ

other partitions may be
valid depending on the order of propagation of the elements
inside the tie zones.



E. Maximum Spanning Forest & Power watershed

The IFTfmin
algorithm [34], [35] captures the essential

features of thewatershed transform from markers(WT) [36],
although there is no unique and precise definition for a
watershed transform in the literature [37]. Indeed, it was
proven that the tie zones of theIFTfmin

include all solutions
predicted by many discrete definitions of WT [28].

Recent works consider the watershed solution WT as a par-
tition resulting from amaximum spanning forest(MSF) [13],
[38]. The segmentation results byIFTfmin

include all possible
MSF-WT solutions among many others not predicted by the
MSF-WT [28]. In particular, the segmentations obtained by
IFTfmin

using LIFO tie-breaking policy [21], or with fixed
label (1 or 0) to all tie zones, always correspond to a valid
MSF-WT segmentation [23]. More generally, we may also
consider the IFT with the following connectivity function for
a pathπ = 〈p1, p2, . . . , pn〉:

fw(π) = w(pn−1, pn) (13)

As discussed in [21], this connectivity functionfw(π) is not
smooth[21], and therefore, it may not lead to an optimum-path
forest. However, the IFT will still return a spanning forest,
and in this case usingfw(π), it will also be a maximum
spanning forest [32]. To understand this, please note that
the IFT usingfw(π) with a single seed becomes essentially
the Prim’s algorithm [39]. By construction, the extension to
multiple seeds naturally results in a maximum spanning forest.
Therefore, from the above discussion we have other algorithm
IFTfw

(P = ∅) with no parameters, which is equivalent to
MSF-WT. This algorithm may present multiple valid solutions.
One example of such ties are the ambiguos plateaus on the
frontier4

In order to solve ambiguous plateaus, a family of methods
calledpower watersheds(PW) [26], [27] was later proposed.
In these methods aq-cut optimization is performed on the
plateaus (e.g., a random walker [14]). However, some theoret-
ical aspects may only be ensured if the proposed algorithm
is executed over a reconstructed graphG′5. Therefore, the
authors apply first a geodesic reconstruction on the weights
before employing the proposed power watershed algorithm.

This reconstruction essentially increases the number of am-
biguous plateaus, since it converts all unmarked maxima and
their domes into plateaus. Moreover, since theIFTfmin

per-
forms simultaneously reconstruction and segmentation [40],
its tie-zone regionsTIFTfmin

correspond exactly to all am-
biguous plateaus of the reconstructed graphG′. Hence, the
power watershed PW corresponds basically to a particular
TIFTfmin

solution, where the tie zones are treated by applying
other segmentation methods over it (e.g., random walks when
q = 2 [26]).

This combination of a geodesic reconstruction, followed by
the power watershed algorithm withq = 2 as presented in [27],

4A plateau is a subgraph ofG consisting of a maximal set of nodes
connected with edges having the same weight.

5The optimality of the power watershed according to a generalenergy
formulation is achieved if seeds are the only maxima in the image graph [26].

will be denoted here as algorithmPW2(P = ∅) which has no
parameters. This method produces unique segmentation results
for any image graph.

F. Graph cut: min-cut/max-flow

Interactive segmentation using themin-cut/max-flowalgo-
rithm [17] uses extended image graphs, where two termi-
nal nodess and t (source and sink) represent object and
background, respectively. The terminal nodes are directly
connected to all pixelsp ∈ I by arcs (s, p) and (p, t). A
faster version of the min-cut/max-flow algorithm from source
to sink [41] is then used to compute a minimum-cut boundary
among all labeled imageŝL = (I, L), according to the
following equation:

E(L̂) =
∑

∀(p,q)∈A| L(p)=1,L(q)=0

[w(p, q)]η

+
∑

∀p∈I| L(p)=1

δ(p, t) +
∑

∀p∈I| L(p)=0

δ(s, p)(14)

The weightsδ(p, t) and δ(s, p) assigned to allp ∈ I are
defined as follows:

• If p ∈ So, then we setδ(s, p) = ∞ andδ(p, t) = 0.
• If p ∈ Sb, then we setδ(s, p) = 0 andδ(p, t) = ∞.
• If p ∈ I\S, then these weights are defined by Equa-

tions 15 and 16.

δ(s, p) = λ · Mo(p) (15)

δ(p, t) = λ · Mb(p). (16)

Where Mo(p) and Mb(p) are membership maps for object
and background, respectively, computed for allp ∈ I by
supervised learning from user selected scribbles; andλ ≥ 0
specifies the relative importance of the arcs with the virtual
nodes versus the arcs between pixels. Whenλ becomes low,
we may face ashrinking biasleading to solutions with small
cuts. In order to avoid this bias, we must compensate it by
using higherη values [23]. On the other hand, whenλ becomes
too high, the method degenerates into a trivial thresholding
(i.e.,L(p) = 1 if δ(s, p) > δ(p, t) andL(p) = 0 otherwise, for
all p ∈ I). If we assumeMo(p) + Mb(p) = 1.0 for all p ∈ I,
as desired for a surrogate of the probability, then this solution
for high λ assumes the formL(p) = 1 if Mo(p) > 0.5, and
L(p) = 0 otherwise, for allp ∈ I\S (the pixels inS have
fixed labels).

Therefore, we have the min-cut/max-flow approach
MF (P = {η, λ}) with two parameters. Note that, the usage
of canonical weights in the first sum of Equation 14, does not
lead to a loss of generality, since the division/normalization
by any positive constant (applied to all arcs) does not alterthe
order of the cut values. Hence, a representation with canonical
values is always possible.

IV. D IAGRAM INSTANTIATION

Figure 1 shows the proposed diagram for the seed-based
methods. Several depicted connections were extensively dis-
cussed along this paper. We also included some other simple



methods on the diagram, as for example,THR stands for
thresholding the membership mapMo(p), followed by manual
seed painting, which is related to graph cut as pointed out
in Section III-F. We also show that theIFTfΣ

(P = {η})
includes theVoronoi l1 normas a special case whenη = 0
(assuming 4-neighborhood). Next we show a quick reference
index, pointing to the related papers or sections that contain
the proper remark concerning each relation between methods.

The connections betweenIFTfmin
and MF (P = {η, λ})

are given in [23], the relations between MSF-WT (i.e.,IFTfw
)

and MF (P = {η, λ}) are given in [22], and the relations
betweenIFTfw

andIFTfmin
are given in [28]. Furthermore,

the proof thatIFTfmin
has no intersection withAFC(P =

{κ}) and RFC is given in [23]. GrowCut is equivalent to
IFTfΣ

(P = {η}) as discussed on Section III-C. The relation
betweenIRFC andIFTfmin

was given in [24], [29]. In [42],
[43], it was shown that theRFC segmentation can be viewed
to some extent as anAFC segmentation wherein the required
threshold is determined automatically. However, in general, it
is not possible to deriveRFC objects viaAFC segmentation
(e.g., when there are more than two objects involved inRFC,
or S contains three or more singletons, the thresholds for each
seed need not be equal) [42], [43]. Nevertheless,KCC [32]
can provide these different thresholds, includingRFC as a
particular case. In [42], [43], it was also proven thatIRFC
cannot be represented viaAFC(P = {κ}). The relation
betweenIFTfΣ

(P = {η}) and DC(P = {η}) was shown
on Section III-D. The relation betweenIFTfΣ

(P = {η})
and IFTfmin

was empirically suggested in [44]. The proof
that IFTfΣ

(P = {η}) has no intersection with MSF-WT
(i.e., IFTfw

) is given by the counterexample of Figure 2.
The relation betweenIFTfmin

and PW2 was discussed on
Section III-E. The relations betweenrandom walks(RW (P =
{η})) [14] andPW2, are assuming that the necessary optimal-
ity conditions forPW2 were satisfied (i.e., seeds are the only
maxima), as proved in [27], in order to simplify the analysis.

IFTƒΣIFT wƒ

η

IFT wƒ

δ :2

δ :3

2 9 2

-(8) -(1) -(8)
η η

Fig. 2. A single 1D counterexample is sufficient to show thatIFTfΣ
(P =

{η}) has no intersection withIFTfw
. We use the weightsδ2 andδ3 in Eqs. 2

and 3, as defined in Eqs. 6 and 7, but multiplied by a constant that does not
affect the results (10 for δ2, and10η for δ3). The weights are indicated for
all arcs, and the striped nodes are the seeds. According toIFTfmin

any
cut in this case is a valid solution, and all unmarked nodes form a tie zone.
However, a valid MSF-WS solution must cut a weakest link interconnecting
the seeds, so we have only the two possible solutions indicated (IFTfw

using
δ2). While, only the central cut attendsIFTfΣ

for any η value.

V. POSSIBLE EXTENSIONS

From the diagram (Figure 1), it comes to our attention that
there are some unexplored regions composed by intermediate

(a) (b) (c)

Fig. 3. Results ofIFT κ
fmin

for different α values (0, 0.1, 0.3) and fixedκ.

solutions between methods, such asAFC and IFTfmin
.

Motivated by this observation, in this section we present an
IFTfmin

extension, denoted asIFT κ
fmin

, which combines
AFC and the regularIFTfmin

. This extension provides more
smooth and controllable transitions between the methods than
in [32]. We will instantiate this combination, already focusing
on a special case of practical interest.

If we executeAFC with δ(p, q) = min(Mo(p), Mo(q)),
the method becomes a thresholding on the membership map
Mo at levelκ, followed by connectivity constraints. In other
words, it returns all marked connected components of the
thresholded image. ThisAFC solution subsumesmagic wand
from photoshop, beingκ inversely related to the tolerance
value. This AFC solution also does not suffer from the
disconnection problem that affects theMF for high λ values.

Let’s consider the following level based weightµ(p, q),
which captures allκ threshold transitions over the mapMo.

µ(p, q) =







0 if (Mmax
o (p, q) ≥ κ and

Mmin
o (p, q) < κ)

1 otherwise

where Mmax
o (p, q) = max(Mo(p), Mo(q)), and

Mmin
o (p, q) = min(Mo(p), Mo(q)). Now consider a

new graphG′ = (I,A′), with modified weightsw′(p, q),
such that(p, q) ∈ A′, only if w′(p, q) > 0 and (p, q) ∈ A.

w′(p, q) = α · µ(p, q) + (1 − α) · w(p, q) (17)

The IFT κ
fmin

(P = {κ, α}) corresponds to aIFTfmin
execu-

tion over the modified graphG′ = (I,A′). Its result becomes
the same asAFC(P = {κ}) whenα = 1.06, and it becomes
a regularIFTfmin

for α = 0.0. For intermediateα values, it
gives a mean unexplored behavior of the methods (Figure 3).
From another point of view, we also have that theµ(p, q)
component brings regional properties from the membership
Mo into the method, helping the segmentation of thin parts,
where the gradient (local contrast) does not solve well.

VI. CONCLUSION

The proposed diagram representation was instantiated with
several state-of-the-art methods, giving a more elucidated view
of their relations. Some of these relations were presented here
for the first time, including the connections between GrowCut,
IFTfΣ

, and Distance Cut;IFTfΣ
and IFTfmin

; RFC and
KCC; PW2 andIFT ; among others. We also demonstrated
an extended method,IFT κ

fmin
(P = {κ, α}), which was

6Each seedp ∈ So must be selected inside regions such thatMo(p) ≥ κ.



motivated by the unexplored regions of the diagram. As future
work, we intend to extend these analyses to other classes of
segmentation methods.
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