
Semi-Automatic Navigation on 3D Triangle
Meshes Using BVP Based Path-Planning

Leonardo Fischer, Luciana Nedel
Institute of Informatics

Federal University of Rio Grande do Sul – UFRGS
Porto Alegre, Brazil

{lgfischer, nedel}@inf.ufrgs.br

Fig. 1. Paths produced on the Costa Minimal Surface [1]. Note how lines starting in different points of the surface smoothly reach the target point (green).

Abstract—Efficient path-planning methods are being explored
along the years to allow the movement of robots or virtual
agents in planar environments. However, there is a lot of space to
improve the quality of paths restricted to 3D surfaces, with holes
and bends for instance. This work presents a new technique
for path-planning on 3D surfaces called 3DS-BVP. This path
planner is based on Boundary Value Problem (BVP), which
generates potential fields whose gradient descent represents
navigation routes from any point on the surface to a goal position.
Resulting paths are smooth and free from local minima. The
3DS-BVP works on complex surfaces of arbitrary genus or
curvature, represented by a triangle mesh, without the need of
2D parametrizations. Our results demonstrate that our technique
can generate paths in arbitrary surfaces with similar quality as
those generated by BVP-based methods in planar environments.
Our approach can be applied in the development of new tools to
automate the navigation on 3D surfaces, like the camera control
in the exploratory visualization of 3D models.

Keywords-3D path-planning; navigation; surfaces exploration.

I. INTRODUCTION

Navigation on three-dimensional surfaces is a relevant prob-
lem for many application areas, such as: scientific visual-
ization, where a user needs to inspect different objects, as
organs in a medical application or engines in a CAD system;
robotics, with the automatic definition of paths and motions
for robots; and entertainment, more specifically on the video
games domain, where the exploration of complex 3D worlds
are much more challenging for the player than planar ones.

Navigation is a complex interactive task and is usually
divided in two parts [2]: travel, and wayfinding. While the
travel is the motor component of navigation, the low-level
actions that a user makes to control the position and orientation

of his/her viewpoint, the wayfinding is the cognitive compo-
nent, and includes high-level thinking, planning, and decision
making. It includes spatial understanding and planning tasks,
such as determining a path from the current location to a goal
location.

Path-planning algorithms are being explored for years. Sev-
eral solutions were applied into robotics and virtual environ-
ments, with some of them focusing on a high performance
path finding – normally including a pre-processing phase [3]
–, and others on providing better paths. Although most of
these solutions focus on the problem on the Euclidean plane,
some of them are robust enough to handle systems with more
than two degrees of freedom (as 3D path-planning [4] or path-
planning for robotic arms with several joints [5]). However,
path-planning methods restricted to arbitrary surfaces is not
well explored in the literature.

Methods that focus specifically on 2D path-planning cannot
be trivially modified to handle arbitrary surfaces. One possible
approach is to use a sophisticated projection technique from
the 3D surface to the Euclidean plane, and then modify the
2D path-planning algorithm to work on this projection, which
is not a trivial task (due to the nature of this projection).
Algorithms that handle 3D environments depend on their
nature to be adapted to 3D surfaces, as in a given point
of the surface the algorithm should behave as a 2D path
planner. Graph based approaches are fast enough for real-time
applications, but the generated paths are not as smooth as other
approaches. In all these cases, the required work for porting
is not negligible, and it is not clear how these algorithms will
behave in this kind of environments.

In this work we developed a solution for the second part of
the navigation problem on arbitrary surfaces, the wayfinding.

We present a new path-planning technique that handles the
arbitrary 3D surface case, so called 3DS-BVP, an acronym
to 3D Surface Path Planner using Boundary Value Problems
system. The technique uses boundary value problem (BVP)
systems to generate potential fields using a triangle mesh
discretization. Using the gradient of the potential field, the
agent can be guided through the environment. Briefly, the main
contributions of this paper are:

• A numerical method that generates potential fields using
a triangle mesh discretization;

• A path planner based on potential fields that draws
smooth paths on 3D triangular surface meshes.

Our technique is based on a path-planning algorithm that is
able to generate smooth paths with low probability of collision
with obstacles, using potential fields.

The remainder of this papers is organized as follows.
Section II presents the related work on path-planning for
interactive applications and robotics. Sections III and IV
describe the technique, while Section VI presents the results
achieved and some discussion about it. Finally, in Section VII
our conclusions and future works are discussed.

II. RELATED WORK

Path-planning algorithms are being used to find a path to
be followed from a given position to a goal one on a virtual
environment. Many algorithms have been proposed to solve
this problem, and the most part of them assume that the free
space can be projected on a 2D surface.

Kallmann [6] used constrained Delaunay triangulations to
discretize the free space of the environment in a triangle mesh,
and a graph approach to search for free paths. Afterwards,
he has also proposed a method that search for paths in an
environment with specific clearance [7]. Despite the fact that
these methods use triangle meshes as main data structure, they
are developed only for planar environments. Our method do
not make any difference between planar and 3D surfaces.

Techniques based on potential fields for navigation include
the work of Rosell and Iniguez [8], Trevisan et al. [9], Treuille
et al. [10], and Park [11]. These techniques use positions of
obstacles and agents to compute a function. The result is a
field from where the directions to a target position are derived.
These techniques differ from each other in the function that
is used to compute the field and how directions are derived,
resulting in different behaviors for each technique. For exam-
ple, the work of Trevisan et al. favors the exploratory behavior
of an agent, while the work of Treuille et al. favors its use
with crowds of autonomous agents. All these techniques were
developed for 2D environments. Some of them can also be
applied for 3D environments by adding one dimension to their
equations, but this will significantly degrade its performance.

A path planner based on geodesic distances on triangular 3D
meshes was recently proposed by Torchelsen et al. [12]. This
work focuses on multi-agent systems, an uses a CPU/GPU
architecture to handle the collision avoidance between the
agents. The main advantage of this method is the high per-
formance achieved. On the other side, the paths generated are

close to the shortest ones, which can lead to a high probability
of collision paths with static obstacles. Our potential field
approach produces smooth paths that whenever is possible
avoids getting very close to the obstacles.

Due to its performance and low memory requirements,
graph-based approaches are the most common in the game
industry. Popular game engines as Unreal Engine® and
CryEngine® made use of it. In these methods, a graph repre-
sents the environment and the Dijkstra algorithm [13] (or one
of its derivations) is used to find a path between two nodes.
The difference between the approaches (as the ones proposed
by Kavraki et al. [14], Barraquand et al. [15], Lavalle [16],
and Kang et al. [17]) is the algorithm used to sample the graph
from the environment and how it is updated. All these methods
seem to be easily adaptable for 2D and 3D path-planning, but
they are not being explored for arbitrary surface path-planning.

III. BVP PATH PLANNER

The BVP Path Planner [9] is a 2D Path Planner that
generates paths using the potential information computed from
the numeric solution of

∇2 p(r) = εv · ∇p(r) , (1)

with Dirichlet boundary conditions, where v ∈ <2 and
|v| = 1 corresponds to a vector that inserts a perturbation
in the potential field; ε ∈ < corresponds to the intensity of
the perturbation produced by v; and p(r) is the potential at
position r ∈ <2, respectively. Both v and ε must be defined
before computing this equation. The gradient descent on these
potentials represents navigational routes from any point of the
environment to the goal position. Trevisan et al. [9] shows that
this equation does not produce local minima and generates
smooth paths.

To solve numerically a BVP, we consider that the solution
space is discretized in a regular grid ([9], [18]). Each cell
(i, j) is associated to a squared region of the environment and
stores a potential value p(i, j). Using the Dirichlet boundary
conditions, the cells associated to obstacles in the environment
store a potential value of 1 (high potential) whereas cells
containing the goal position store a potential value of 0 (low
potential).

A high potential value prevents the agent from running into
obstacles whereas a low value generates an attraction basin that
pulls the agent. The relaxation methods employed to compute
the potentials of free space cells is the Gauss-Seidel (GS). The
GS method updates the potential of a cell c through:

pc =
pb + pt + pr + pl

4
+
ε((pr − pl)vx + (pb − pt)vy)

8
(2)

where v = (vx, vy), and pc, pb, pt, pr and pl are cells of a
grid, as illustrated in Figure 2.

The GS method allows the use of partial results as an
approximation of the potential field [19]. Since the exact
solution is not necessary, we can control the accumulated
error e(t) at each iteration through a tolerance threshold emax

Fig. 2. Cells of a grid, when Equation 2 is evaluated for the cell pc.

according to:

e(t) =

m∑
i=1

n∑
j=1

|p(i, j)t − p(i, j)t−1| ≥ emax. (3)

where p(i, j)t is the potential of the cell (i, j) at the iteration
t, p(i, j)t−1 is the potential of the same cell in the previous
iteration and m and n are the grid dimensions.

After the potential computation, the agent moves following
the direction of the gradient descent of this potential at its
current position (i, j).

IV. PATH-PLANNING ON TRIANGLE MESHES

In our proposal, the 3DS-BVP generates potential fields that
produce smooth paths in triangle meshes. The method works
accordingly to the steps: (1) discretize the environment in a
set of cells; (2) calculate the potential field; (3) compute the
gradient of the potential field.

A. Discretizing the environment

Triangle meshes are widely used in computer graphics
industry to model objects and virtual environments, what
means that our technique can be easily applied to existing 3D
models and surfaces. Then, we assume that the environment
is represented by a triangle mesh that is used as a triangular
grid to compute the potential field.

The triangular grid is represented by a Doubly-Connected
Edge List (DCEL) data structure [20] due to its simplicity,
capability to find the neighbors of a vertex, face or edge in
constant time, and ability to handle closed and open triangle
meshes. For the scope of this work, an open mesh is a mesh of
triangles that is topologically equivalent to a 2D plane. Meshes
with holes in its surface are also considered open meshes. A
closed mesh is not topologically equivalent to a plane, in such
a way that it should be broken into two or more open meshes
to build a mapping function from the mesh to a plane. Closed
meshes also don’t have holes in its surface.

As shown in Figure 3, an edge in the DCEL connects two
vertices and is actually defined by a pair of half-edges, each
one being a twin of the other. A face is then defined by a
sequence of half-edges starting at the boundary half-edge of
the face, usually in a counter-clockwise order. The half-edges

Fig. 3. DCEL data structure. Edges are represented by pairs of parallel blue
arrows, vertices by red circles, and faces by green polygons.

are connected among themselves through the next and previous
pointers.

The first step of the 3DS-BVP algorithm works as follows.
To each vertex of the DCEL data structure, a potential value
is assigned – in the same way of the BVP path planner cell in
Section III. Then, each triangle of the grid is divided into three
regions by connecting the medians of the edges of the triangle
to its centroid (see Figure 4). Each triangle region is associated
to the near vertex and, for a given vertex v of a triangle t, the
function Region(v, t) returns that associated region. Also, the
algorithm assumes that each vertex v in the triangle mesh is
associated with a set of triangles Triangles(v), where each
triangle in Triangles(v) has one vertex equals to v (i.e. they
share the same vertex). The cell associated to a given vertex
v is then defined by function Cell(v) = {Region(v, t)|∀t ∈
Triangles(v)}. The function V ertex(c) returns the vertex
associated to the cell c. Figure 5 illustrates these concepts.

We also define the concept of neighbor cell as two cells
that have their associated vertices connected through a single
pair of half-edges. This means that two cells c1 and c2 are
neighbors if the function Link(V ertex(c1), V ertex(c2))! =
null satisfies. Assuming that the set C contains all the cells
derived from the triangle mesh, the function Neighbors(ci) =
{cj |∀cj ∈ C, i! = j, Link(ci, cj)! = null} returns the set of
neighbor cells for a given cell ci.

B. Calculating the potential field

In order to execute the relaxation over the set of cells,
the boundary conditions must be defined. These boundary
conditions are set according to the positions of obstacles and
the goal in the environment. We assume that obstacles and
goal positions are constrained to the surface. As in the BVP
Path Planner, each cell receives a tag and an initial potential
value, as follows:

• cells associated with occupied areas of the environment
and cells associated with limiting vertices (vertices in the

Fig. 4. Triangles are divided in order to build the cell mesh. In highlight,
the area returned by the function Region(v1, t).

Fig. 5. A triangle mesh and its corresponding cell division. The five
highlighted triangles ({v1, v2, v3}, {v1, v3, v4}, {v1, v4, v5}, {v1, v5, v6}
and {v1, v2, v6}) share the same vertex v1 and, therefore, they are in the
set Triangles(v1). Applying the function Region(v1, t) for each triangle
t in Triangles(v1) results in the cell associated to the vertex v1, which is
highlighted with the dotted line around v1.

border of the mesh or in the limit of a hole in the mesh)
are tagged as occupied and receive the high potential
value;

• the cell associated with the goal position receives the goal
tag and the low potential value;

• cells associated with free navigable areas of the environ-
ment are tagged as free and receive a mean value between
the low and high potential values, as in the BVP Path
Planner.

In order to update the potential value of the free cells,
a set of functions need to be defined. Assuming that the
function Dist(v1, v2) returns the Euclidean distance between
the vertices v1 and v2, Dmin(ci) and Dmax(ci) return the
minimum and maximum distance, respectively, between the
vertex of a cell ci and the vertices in its neighborhood.

The influence of a cell cj over the cell ci, relative to the
neighborhood of ci is given by

I(ci, cj) = Dmin(ci) +Dmax(ci)

−Dist(V ertex(ci), V ertex(cj) (4)

Equation 4 is an heuristical measure of how much the
potential of one cell cj has over its neighbor ci. As Dmin(ci)
and Dmax(ci) are computed from the same input set, it is
guaranteed that Dmin(ci) <= Dmax(ci). The closer the cell
cj is to ci, closer the value of I(ci, cj) is to Dmax. The farther
a cell cj is from the cell ci, closer the value of I(ci, cj) is
to Dmin. Then, the result of I(ci, cj) can be interpreted as
how close a cell cj is to ci, in a scale between Dmin(ci) and
Dmax(ci).

Based on Equation 4, the function

Itotal(ci) =

#Neighbors(ci)∑
j=1

I(ci, cj) (5)

computes the sum of the influences that a cell receives from
its neighbors. This function is then used in the equation

p(ci) =

#Neighbors(ci)∑
j=1

p(cj)
I(ci, cj)

Itotal(ci)
, (6)

which is used to update the potential p(ci) of a free cell ci.
The potential values of the free cells are updated using

Equation 6 until the convergence sets in, as in the BVP
Path Planner. A threshold error emax is used to verify if the
potential field has converged. Equation 3 is used over the
whole set of cells C to compute the error at a given iteration.

C. Computing the gradient of the potential field

Calculating the potential field, an agent should be able to
follow the gradient descent in order to reach the goal position.
Equation 6 is able to mimics the results produced by the
Laplace’s Equation. We can then calculate the gradient of
Equation 6, as we use to do with the Laplace’s Equation.

One possible solution for the calculus of the gradient of
the Laplace’s Equation in an unstructured triangular mesh
involves the use of the integral form of that equation, which
can be obtained by integrating the equation over some volume
Ω, and then applying the Gauss Divergence Theorem. The
integral form of the Laplace’s Equation and its equivalent after
applying the Gauss Divergence Theorem is∫

Ω

∇2p(r)dΩ =

∮
∂Ω

∇p(r) · n̂dA = 0. (7)

The relation between the gradient of the function p(r) over
a volume and the integral on the surface of the volume of the
function times the normal area vector is∫

Ω

∇p(r)dΩ =

∮
∂Ω

p(r)n̂dA. (8)

The relation above, when computed in sufficiently small
volumes can be used to compute an approximation of the
gradient. This results in

∇p(r) ≈ 1

Ω

∮
∂Ω

p(r)n̂dA. (9)

Assume that we want to compute the approximation of the
gradient in the triangle t = {v0, v1, v2}. For this, we calculate
the normal vector of each edge of each triangle and multiply
each one by the length of the respective edge. The area of the
triangle t is calculated by the function Area(t). Function p(r)
is already computed in each vertex.

The approximation of Equation 9 on the triangle t yelds the
equation

∇p(t) ≈ 1

2Area(t)
[− p(v0)n̂1 − p(v1)n̂2 + p(v2)n̂0] . (10)

that is then used to approximate the gradient of the potential
field at the centroid of the triangle t.

To move towards the target position in the environment, an
agent a must follow the gradient descent of the triangle where
he is on. This triangle is kept as a pointer to the current face in
the DCEL strucutre. When the agent walks out of the current
face, the functions provided by the DCEL data structure can
be used to check which one of the edges was crossed. The
crossed edge will be represented by a half-edge h, and the
function Face(Twin(h)) will be set as the current face of the
agent. The function UpdatePosition(a, g) is used to update
the agent position and the current face based on the gradient
g.

V. POTENTIAL FIELDS IN 3D SURFACES

In a completely planar environment discretization, the path
planner presented in Section IV behaves in a similar way to the
BVP Path Planner (see Section III). The goal position must
be checked with a goal tag while the obstacles are tagged
as occupied. The limits of the environment are also tagged
as occupied and all the remaining cells are tagged as free.
All cells receive some potential value, according to what was
specified in the Sub-section IV-B. Then, the relaxation step
evaluates adequate values for free cells. And finally, the agent
can use the gradient of the potential field to build a path to
follow.

In this kind of environment, the path planner can take
advantage of a simpler math, since all the vertex positions
and normals can be manipulated in 2D. Naturally, a 3D
discretization will require a third coordinate for the position
of vertices and normals.

For 3D open meshes the path planner works with minimal
modification, and the addition of a coordinate axis does not
introduce significant changes in any of the methods presented
in the previous section. During the relaxation, only the func-
tion Dist(v1, v2) changes and must compute the Euclidean
distance in 3D. In addition, the normals used to compute the

gradient must also be stored in 3D. But the normals keep
parallel to the plane defined by the triangle which they belong.

The most relevant modification in the algorithm to deal
with 3D meshes is the handling of boundary conditions.
Our algorithm requires that at least two different boundary
conditions must be set: one goal cell and one occupied cell.
We assume that the goal is always defined, so for 3D meshes
we should take a special care with the occupied cells.

If the 3D mesh is open (as defined in Section IV-A), the
limiting vertices will force the existence of occupied cells, as
explained in Section IV-B. Closed meshes with obstacles on
its surface will also force the existence of occupied cells. This
will generate a gradient that prevents the agent from leaving
the surface limits, collides with obstacles, and guides to the
goal position.

However, if the mesh is closed and do not have any obstacle
on its surface, then our algorithm will generate only goal cells.
If this occurs, the relaxation step will stop only when all cells
have their potential value equal to low potential. This will
lead to a null gradient on the mesh (the result of Equation 10
will be (0, 0)), and the agent will have no clue about which
direction it should follow.

To avoid the occurrence of null gradients, the cell containing
the initial position of the agent is tagged as occupied and
receives the high potential value. Although the cell does not
contain any obstacle, this will force the potential field to have
a gradient capable of guiding the agent from its initial position
to the goal. Also, as the agent is leaving that position away,
the obstacle added will not modify the existence of a path
from the initial to the goal position.

Meanwhile, this approach has a drawback. The path taken
by the agent may change significantly according to the initial
position of the agent inside the modified cell. Because the cell
that corresponds to the initial position is modified to receive
the occupied tag and high potential value, the gradient on
the cell borders will be significantly different according to
the triangle where the position is. The fact that the mesh is
closed and do not have other boundary conditions allows the
situation where many different paths can be taken to reach the
same goal position.

VI. RESULTS

In order to evaluate our work, we produced a set of tests.
First, we present a comparison of our method in a planar
triangular mesh, showing that our technique is able to produce
smooth paths with low collision probability, in the same way
that the BVP Path Planner does. Then, we present some of
the results that we obtained with 3D arbitrary surfaces.

A. Comparing our method with the BVP Path Planner

We designed a set of test cases, where each test case is
composed of a squared environment with some obstacles and
goals in it. In the test cases 1 up to 4 the environment were
discretized in a regular triangle grid. The test cases 5 up to
8 used the same environments as the first cases, but with
addiction of noise to disturb each vertex position in the triangle

(a) (b) (c) (d)

Fig. 6. Planar environment. The gradual color transition from green to red represents the value of the potential in each point of the environment, from 0 to
1, respectively. (a) The environment discretized in a regular grid, with the paths computed with the BVP Path Planner; (b) the environment discretized in a
regular triangle mesh, with paths computed with the 3DS-BVP; (c) comparison between the paths generated with the BVP Path Planner and the 3DS-BVP;
(d) a discretization of the environment using a triangle mesh with noise.

TABLE I
COMPARISON BETWEEN THE POTENTIAL FIELD GENERATED WITH OUR
TECHNIQUE AND THE BVP PATH PLANNER. AS THE POTENTIAL FIELDS

GENERATED WAS NORMALIZED, THE AVERAGE ERROR IN ALL CASES WAS
ABOUT 0.8%, WITH A STANDARD DEVIATION OF ABOUT 0.9% OF THE

RESULT PRODUCED BY THE BVP PATH PLANNER.

grid (better representing the triangles found in 3D surfaces).
Figure 6 illustrates these test cases. The green region on the
border represents the goal and the yellow lines delimit the
obstacles. The white lines are the path generated by the BVP
Path Planner, starting at random positions on the environment,
while the blue lines are the path generated by our technique.
Figure 6(a) illustrates our test cases using the regular grid,
while Figure 6(b) and (d) used a triangle grid. Figure 6(c)
combines the paths produced by the BVP Path Planner and
the 3DS-BVP in a single image.

We can see that the paths produced by the 3DS-BVP
in Figure 6 are quite similar to the paths produced by the
BVP Path Planner. By adding noise, these paths loses some
smoothness due to the presence of low quality triangles, but
still mimics the results produced by the BVP Path Planner and
by 3DS-BVP on regular triangle grid.

We have also compared the potential value in each cell of
the potential field produced by the 3DS-BVP with the potential
field generated by the BVP Path Planner. Table I presents a
summary of the differences found between these values. We
can see that, in average, the potential field generated by our
method is almost the same potential field produced by the BVP

Path Planner, with a difference of only 0.8% on average.
The highest difference was 49.989%, found in the test

case 7. Although this is a considerable difference between
the 3DS-BVP and the BVP Path Planner, it occurred in an
environment that had an average difference of 1.867% and
standard deviation of 1.717%. This difference occurred due to
the existence of highly deformed triangles resulting from the
noise. The test case 8 produced very similar potential values,
and generated the paths illustrated in Figure 6(d).

B. Path-planning evaluation in arbitrary meshes

We applied our algorithm on some 3D models to analyze
how paths are generated on these surfaces. In Figure 1 we
applied our algorithm on the Costa Minimal Surface [1], a
complete minimal embedded surface with a genus with three
punctures. We generated several paths on this surface, from
several distinct initial positions to a predefined goal position.
In all cases within this surface, the algorithm found a smooth
path to reach the goal position.

In another experiment, we used a model of the Fertility
statue (Figure 7) to generate paths on its surface. The Fertility
has several genus, which also makes it a good example of
the kind of environment that our technique deals with. In
Figures 7(a) and (c), our planner has generated quality and
smooth paths to reach the goal position. In Figures 7(b) and
(d) we used the same initial and goal positions as (a) and (c),
respectively, but we also defined some regions where the path
could not crossover, simulating obstacles on the surface. The
algorithm demonstrated to be able to find quality and smooth
paths.

C. Performance evaluation

We measured the performance of our algorithm in several
cases, including the surfaces presented in Section VI-B. We
measured the time spent to compute the potential field, and
the number of iterations needed to the convergence with
a threshold error emax = 0.001. Results are presented in
Table II. The tests were executed in a Intel® Core i7 870,
2.93GHz, 4GB Ram and NVidia ® GeForce GTX 470.

(a) (b) (c) (d)

Fig. 7. Several paths produced on a complex model (Fertility mesh), with several genus. Note that in (b) the initial and goal positions are the same as (a),
but some obstacles resulted in a different path. The same occurs in (c) and (d).

TABLE II
PERFORMANCE EVALUATION ON THREE TEST CASES.

Although the quality and smoothness of paths generated
in the previous tests, our performance evaluation shows that
there is still room for improvement. For smaller but complex
models, like the Costa Minimal Surface, our algorithm is able
to solve the potential field and produce a quality path for ap-
plications, like the motion of cameras in virtual environments.
For more detailed models, like the Fertility, our algorithm still
needs some improvements in its performance.

D. Limitations and degenerated cases

Analysing Equation 4 one can conclude that if, eventually,
two vertices are in the same position, Dmin(ci) will be equal
to 0, and any vertex with a distance of Dmax(ci) will have no
influence over the vertex ci. This may result in an interruption
of the propagation of the potential from one region to another.
Also, it is clear that if the mesh has an invalid triangle (with
collinear vertices, for instance), the result of the Equation 10
is undefined.

We tested our method with many different meshes. In an
experiment with several very long non-equilateral triangles, the
paths lost its smoothness. This happens because the gradient of
the adjacent triangles presented big differences between them.

VII. CONCLUSIONS AND FUTURE WORK

We presented the 3DS-BVP, a technique based on potential
fields for path-planning in arbitrary surfaces. As the main
advantage of our technique, it generates smooth paths free
from local minima on 3D surfaces, without the need of a 2D
parametrization, or some other surface representation.

The potential field produced by the 3DS-BVP generates all
the possible paths from a point in the environment to a goal
position following the descent gradient. Paths generated on 3D
surfaces shows to be quite similar to the quality of BVP Path
Planner, with a potential field with a difference of only 0.8%

to it on average. This is a good feature, because the 3DS-BVP
uses as core a potential field with similar characteristics of the
ones produced by the BVP Path Planner.

As its main drawback, its performance is not sufficiently
good for real-time applications, as environments with several
moving agents. We believe that this drawback can be mini-
mized by improving our solution method and by developing
GPU based methods to compute the potential field.

Some possibilities to improve the algorithm performance
are being analyzed. One possible way is to improve the set of
equations that we used, in order to obtain the potential field
using less iterations. Also, the order that cells are evaluated
reflects in the speed that the potential values from the obstacles
and goals are propagated to the free cells. So, there should
be an ideal order that makes the relaxation process faster.
Another possible performance optimization is to implement
our algorithm using GPU. Our method appears to been highly
parallelizable, as the one shown in a previous work [21].

We intend to apply this algorithm mainly in virtual environ-
ments. New tools to control the virtual camera in CAD and
modeling applications can be developed, in order to help the
evaluation and visualization of 3D models. In video games like
Prey® and Super Mario Galaxy® the player and its enemies
walk on arbitrary surfaces to reach their objectives. Future
video games using this kind of environment can also have
benefits from our algorithm.

ACKNOWLEDGMENT

The authors would like to thank Renato Silveira for his ideas
and help with the text, as well as CNPq-Brazil through projects
483947/2010-5, 580156/2008-7, 309092/2008-6 and Microsoft
Brazil Interop Labs. for partially supporting this work.

REFERENCES

[1] C. J. Costa, “Example of a complete minimal immersion in IR3 of genus
one and three-embedded ends,” Bulletin of the Brazilian Mathematical
Society, vol. 15, no. 1-2, pp. 47–54, Mar. 1984.

[2] D. A. Bowman, E. Kruijff, J. J. LaViola, and I. Poupyrev, 3D User
Interfaces: Theory and Practice. Redwood City, CA, USA: Addison
Wesley Longman Publishing Co., Inc., 2004.

[3] A. Calomeni and W. Celes, “Assisted and automatic navigation in black
oil reservoir models based on probabilistic roadmaps,” in Proceedings
of the 2006 symposium on Interactive 3D graphics and games - SI3D
’06, ser. I3D ’06. New York, New York, USA: ACM Press, 2006, pp.
175–182.

[4] J. Carsten, D. Ferguson, and A. Stentz, “3D Field D: Improved Path
Planning and Replanning in Three Dimensions,” in Proceedings of
the 2006 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS ’06), 2006, pp. 3381–3386.

[5] K. Belghith, F. Kabanza, L. Hartman, and R. Nkambou, “Anytime Dy-
namic Path-planning with Flexible Probabilistic Roadmaps.” in ICRA’06,
2006, pp. 2372–2377.

[6] M. Kallmann, “Path Planning in Triangulations,” in Proceedings of
the IJCAI Workshop on Reasoning, Representation, and Learning in
Computer Games, Edinburgh, Scotland, 2005.

[7] ——, “Shortest paths with arbitrary clearance from navigation meshes,”
in Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation. Madrid, Spain: Eurographics Association,
2010, pp. 159–168.

[8] J. Rosell and P. Iniguez, “Path planning using Harmonic Functions and
Probabilistic Cell Decomposition,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Automation. IEEE, 2005,
pp. 1803–1808.

[9] M. Trevisan, M. A. P. Idiart, E. Prestes, and P. M. Engel, “Exploratory
Navigation Based on Dynamical Boundary Value Problems,” Journal of
Intelligent and Robotic Systems, vol. 45, no. 2, pp. 101–114, May 2006.

[10] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” ACM
SIGGRAPH 2006 Papers, vol. 25, no. 3, pp. 1160–1168, Jul. 2006.

[11] M. J. Park, “Guiding flows for controlling crowds,” The Visual Com-
puter, vol. 26, no. 11, pp. 1383–1391, Jan. 2010.

[12] R. P. Torchelsen, L. F. Scheidegger, G. N. Oliveira, R. Bastos, and
J. a. L. D. Comba, “Real-time multi-agent path planning on arbitrary
surfaces,” in I3D ’10: Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games. Washington, D.C.:
ACM, 2010, pp. 47–54.

[13] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[14] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[15] J. Barraquand, L. Kavraki, J.-C. Latombe, R. Motwani, T.-Y. Li, and
P. Raghavan, “A Random Sampling Scheme for Path Planning,” The
International Journal of Robotics Research, vol. 16, no. 6, pp. 759–
774, 1997.

[16] S. M. Lavalle, “Rapidly-Exploring Random Trees: A New Tool for Path
Planning,” 1998. [Online]. Available: http://msl.cs.uiuc.edu/~lavalle/
papers/Lav98c.pdf

[17] S.-J. Kang, Y. Kim, and C.-H. Kim, “Live path: adaptive agent navi-
gation in the interactive virtual world,” The Visual Computer, vol. 26,
no. 6, pp. 467–476, Apr. 2010.

[18] R. Silveira, F. Dapper, E. Prestes, and L. Nedel, “Natural steering
behaviors for virtual pedestrians,” The Visual Computer, vol. 26, no. 9,
pp. 1183–1199, Nov. 2009.

[19] E. Prestes, M. A. Idiart, P. M. Engel, and M. Trevisan, “Exploration
technique using potential field calculated from relaxation methods,”
Intelligent Robots and Systems, vol. 4, pp. 2012–2017, 2001.

[20] M. D. Berg, O. Cheong, M. V. Kreveld, and M. Overmars, Computa-
tional Geometry: Algorithms and Applications, 3rd ed. Springer-Verlag,
2008.

[21] L. G. Fischer, R. Silveira, and L. Nedel, “Gpu accelerated path-planning
for multi-agents in virtual environments,” in 2009 VIII Brazilian Sympo-
sium on Games and Digital Entertainment. IEEE, 2009, pp. 101–110.

http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf
http://msl.cs.uiuc.edu/~lavalle/papers/Lav98c.pdf

	Introduction
	Related Work
	BVP Path Planner
	Path-Planning on Triangle Meshes
	Discretizing the environment
	Calculating the potential field
	Computing the gradient of the potential field

	Potential Fields in 3D Surfaces
	Results
	Comparing our method with the BVP Path Planner
	Path-planning evaluation in arbitrary meshes
	Performance evaluation
	Limitations and degenerated cases

	Conclusions and Future Work
	References

