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Abstract—This paper presents a user-assisted image partition
technique that combines cartoon-texture decomposition, inner
product-based similarity metric, and spectral cut into a unified
framework. The cartoon-texture decomposition is used to first
split the image into textured and texture-free components, the lat-
ter being used to define a gradient-based inner-product function.
An affinity graph is then derived and weights are assigned to its
edges according to the inner product-based metric. Spectral cut is
computed on the affinity graph so as to partition the image. The
computational burden of the spectral cut is mitigated by a fine-
to-coarse image representation process, which enables moderate
size graphs that can be handled more efficiently. The partitioning
can be steered by interactively by changing the weights of the
graph through user strokes. Weights are updated by combining
the texture component computed in the first stage of our pipeline
and a recent harmonic analysis technique that captures waving
patterns. Finally, a coarse-to-fine interpolation is applied in
order to project the partition back onto the original image. The
suitable performance of the proposed methodology is attested by
comparisons against state-of-art spectral segmentation methods.

Keywords-Spectral cut, image segmentation, similarity graph,
cartoon-texture decomposition, harmonic analysis.

I. INTRODUCTION

Image segmentation is no doubt one of the most important
tasks in digital image processing and computer vision. The
wide range of important applications that rely on image
segmentation such as image coding, content-based image
retrieval, and pattern recognition, have motivated the develop-
ment of an enormous quantity of techniques for segmenting
images. In particular, graph-based techniques figure among the
most effective methods, mainly due to the flexibility it provides
to handle color, texture, noise and specific features [1], [2],
[3], [4], [5] in a unified framework.

The strength of graph-based approaches derive from the
solid mathematical foundation it relies on, since most of
the well-established graph theory [6] can be directly used
to handle the image segmentation problem. For instance,
spectral graph theory [7] has been the basic tool for the so-
called spectral cuts method [1], [8], [9], [10], which exploits
the eigenstructures of the image affinity graph so as to
accomplish the image segmentation. In fact, spectral graph
theory enables great flexibility in the segmentation process, as
different choices can be made towards defining the similarity
graph connectivity as well as the assignment of weights to
the edges of the graph. Such a flexibility has leveraged a

multitude techniques, turning out spectral cuts an attractive
image segmentation approach.

Despite its flexibility and powerful, spectral cuts present
some aspects that must be observed in order to ensure the suc-
cess of the segmentation process. For example, the accuracy
in detecting the boundaries between image regions is highly
dependent on the weights assigned to the edges of the graph.
Although automatic schemes have been proposed to compute
those weights [1], [10], [11], [12], [13], it is well known
that user intervention is essential in many cases to accurately
define the object boundaries [14]. Therefore, incorporating
user knowledge into the segmentation process is of paramount
importance. Another important issue in the context of spectral
cuts is the computational cost. Computing the eigenstructure
of a graph is a very time consuming task, hampering the direct
use of spectral cuts in high resolution images [15].

In this paper we present a new framework for image
segmentation that relies on spectral cuts while addressing
the issues raised above in an innovative manner. Firstly,
we decompose the target image into two new images: the
smooth and texture components. This mechanism is based on
a cartoon-texture image decomposition scheme (Section III-A)
that facilitates the identification of the different features con-
tained in the image. Next, we provide a novel mechanism to
assign weights to the edges of the affinity graph (Section III-C)
that results in accurate segmentation in most cases. In contrast
to other spectral cut-based approaches, our technique allows
for user intervention, enabling to automatically modify weights
according to the user perception (Section III-E). Moreover, we
show how to build the similarity graph from a coarse repre-
sentation of the input image without degrading segmentation
results. Building the graph in a coarser resolution reduces
the size of the graph, thus lessening the computational effort
during the eigendecomposition, which permits to handle large
images. Our results show (Section IV) that the proposed
approach outperforms existing spectral image segmentation
techniques in aspects such as accuracy and robustness.

Contributions We can summarize the main contributions
of this work as:
• an image segmentation technique that combines cartoon-

texture decomposition and spectral cuts;
• a novel method to compute and assign weights to the edges

of a similarity graph using the cartoon component of the
image;
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• a new strategy to modify the weights of the graph ac-
cording to user interaction, taking into account the texture
component of the image.

II. RELATED WORKS AND BASIC CONCEPTS

The literature on image segmentation is huge and a com-
prehensive overview about this theme is beyond the scope of
this paper. In order to contextualize this work, we focus our
discussion on methods based on graph partition to perform
image segmentation.

Spectral methods: Given an image I it can be modeled
as a weighted graph G = (V,E,W ), also called pixel-affinity
graph, where each node vi ∈ V represents a pixel Pi ∈ I, each
edge eij = vivj ∈ E connects a pair of neighbor pixels and the
weight wij = w(eij) is defined in terms of specific attributes
such as luminance, position, and gradient in Pi and Pj . M.
Fiedler, in his seminal work in graph theory [16], proposed a
graph partitioning scheme based on spectral properties of the
graph Laplacian matrix L = (lij), which is defined as:

lij =


−wij , if eij ∈ E∑
j wij , if vi = vj

0, otherwise
(1)

Since L is symmetric and positive semi-definite, the solution
of the eigenproblem

Lx = λx . (2)

is given by non-negative real eigenvalues with respective real
eigenvectors. The eigenvector associated to the second smallest
eigenvalue of L is the so-called Fiedler vector. According
to Courant Nodal Domain theorem [17], the zero-set of the
Fiedler vector splits G into two disjoint graphs, thus the
recursive computation of the Fiedler vector splits the graph
hierarchically as a binary tree. This strategy has been used
successfully in many approaches to segment images such as
[18], [19], [20] (average cut) and [1] (spectral cut with un-
normalized laplacian).

Normalized cut methods: Shi and Malik [1] introduced
the concept of Normalized Cut (NCut), a graph optimization
problem that aims to subdivide a graph so as to minimize the
normalize sum of weights in the resulting graphs. They show
that finding the optimal NCut is an NP-hard problem, but good
solutions can be reached from the Fiedler vector computed by
solving a generalized eigenvalue problem.

More specifically, the NCut method builds a graph G from
a given image I by considering each pixel as a node of the
graph and connecting two nodes vi and vj with an edge eij if

‖Pi − Pj‖2 < r, (3)

where Pi and Pj are the pixels associated to the nodes vi
and vj while r is a parameter defining how local the edges
should be. The weights wij = w(eij) assigned to the edges
are computed from the following formula:

wij = exp

(
−‖Pi − Pj‖22

σ2
P

− ‖Ii − Ij‖
2
2

σ2
I

)
, (4)

where Ii and Ij account for intensity values in Pi and Pj .
The pair (σP , σI) are tuning parameters used to control the
scope of each term (position and intensity) in the edge weights.

Many variants of the NCut method have appeared in the
literature, most of which proposing alternative graph con-
struction and weight assignment. For instance, nodes of the
graph and weights can be defined from watershed segmenta-
tion [21], [22], quad-tree decomposition [23], Markov random
fields [24], texture descriptors [25] and biased normalized
cuts [10], just to cite a few.

Multiscale methods: Aiming at achieving multiscale im-
age segmentation, some authors have proposed to represent
the graph in different levels, varying progressively the number
of nodes and edges. The multilevel representation can be
accomplished using conventional multiscale approaches based
on a combination of graph compression and cross-scale con-
straint [11], shape information with PCA [13], and texture
descriptors [26].

Other graph-based methods: Methods that relies on
graph structures while avoiding spectral decomposition have
also been proposed. Image Foresting Transform (IFT) [3],
[27] is a good example of graph-based image segmentation
technique that does not make use of spectral analysis. In short
words, the IFT accomplishes the image partitioning by finding
paths of minimum cost between seed nodes. IFT also allows
user intervention to tune edge weights towards improving
the segmentation results. A method based on isoperimetric
regions [28] to find the shape with minimal perimeter has also
been proposed successfully in the literature.

The technique describe in this paper proposes a new
gradient-based weight computation which is only possible
due to the cartoon-texture decomposition of the input image.
Moreover, the proposed approach allows for user interaction
so as to tune weights and thus improve the segmentation.

III. PIPELINE OVERVIEW

The proposed approach is comprised of five main steps, as
illustrated in Fig. 1. The first step, Cartoon-Texture Decompo-
sition decomposes the target image I into two images, C and
T , where C and T hold the cartoon and texture information
contained in I. In the second step an image coarsening is
applied to C and T . In the second step of the pipeline those
images are coarsened so as to build smaller affinity graphs
in the third step of the pipeline, namely the affinity graph
construction. Besides speeding up the spectral decomposition,
the reduced number of edges also lessen the computational
burden during the weights assignment phase. Weights are
derived from an inner-product-based metric defined on the
coarse cartoon image. The spectral decomposition is carried
out in the spectral partition step, being the result mapped
back the original image through a coarse-to-fine interpolation
procedure. The user can change the partition by stroking
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Fig. 1. Pipeline of our image segmentation framework.

the resulting segmentation. This step is performed by com-
bining the coarse texture component with a recent technique
of harmonic analysis.

Details about each step is presented below.

A. Cartoon-Texture Image Decomposition

Cartoon-Texture Decomposition (CTD) separate the input
image I into two images, C and T . The cartoon component C
holds the geometric structures, isotopes and smooth-piece of
I while the texture component contains textures, oscillating
patterns, fine details and noise. Mathematically, these decom-
position satisfies I = C+T (see [29], [30] and the underlying
mathematical theory in [31]).

Both cartoon C and texture T components can be obtained
by solving the following system of partial differential equa-
tions:



C = I − ∂xg1 − ∂yg2 +
1

2λ
div

( ∇C
|∇C|

)
µ

g1√
g21 + g22

= 2λ

[
∂

∂x
(C − I) + ∂2xxg1 + ∂2xyg2

]
µ

g2√
g21 + g22

= 2λ

[
∂

∂y
(C − I) + ∂2xyg1 + ∂2yyg2

] (5)

with initial conditions for C, g1, and g2 given by
∇C
|∇C| · (nx, ny) = 0

(I − C − ∂xg1 − ∂yg2) · nx = 0
(I − C − ∂xg1 − ∂yg2) · ny = 0

, (6)

Mathematically, the cartoon component C is a bounded
variation function and the pair −→g = (g1, g2) ∈ L2(R2) are
such that the texture component T = div(−→g ). The constants
λ, µ > 0 are tuning parameters. Equations (5) are usually
discretized by a semi-implicit finite difference schemes and
solved using an iterative algorithm based on fixed point
iteration [29]. Fig. 2 shows the result of the CTD scheme
applied to an image.

In our context, both C and T are used to computed the
weights assigned to the edges of the affinity graph. Since C is

(a) input image (b) cartoon component (c) texture component

Fig. 2. Illustration of cartoon and texture decomposition.

a texture-free denoised image, edge and shape detectors work
well when applied to C [29]. This fact is exploited to define
the weights, as we detail later. Information contained in T is
handled only at the end of pipeline, during user interaction.

B. Image coarsening

In order to reduce the size of the affinity graph towards
alleviating the computational burden during the spectral de-
composition we perform a fine-to-coarse transformation on
C (resp. T ), resulting in a coarse version C̃ of C. Such a
transformation is accomplished using the bicubic interpolation
method described in [32], which minimizes the blurring effect
while still preserving gradients in the coarse image.

Our experiments showed that coarsening the image to one-
fourth of its original resolution is a good trade-off between
computational times and accuracy, speeding up the processing
up to 6 times.

C. Building the affinity graph

The affinity graph G is built by associating each pixel from
C̃ to a node of the graph, connecting the nodes according to
the distance between corresponding pixels (Eq. (3) with the
supremum norm instead of euclidian). The weight assigned to
each edge of G is derived from the proposed inner product-
based metric. In contrast to the original NCut, which takes into
account only spatial positions and pixel intensities (Eq. (4)),
the inner product-based metric considers the variation of the
image in the directions defined by the edges of the graph.
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Fig. 3. Geometric interpretation of the inner product-based metric. Maximum
weights occurs when the gradient and the direction defined from the graph
edge point to the same direction (a). Moderate weight is highlighted in (b)
and the third case, where opposite directions (c) produces minimum weights
(zero).

More specifically, the weight wij associated to the edge eij is
defined as:

wij =
1

1 + ηg2(i, j)
, g(i, j) = max

{
∂C̃(Pi)

∂
−→
dij

,
∂C̃(Pj)

∂
−→
dji

, 0

}
,

(7)
∂C̃(x)
∂
−→
dij

= ∇C̃(x)−→dij ,
−→
dij =

−−→
PiPj

|−−→PiPj |
(8)

The left term in Eq. (8) is the directional derivative of
C̃ in the direction

−→
dij , which is defined from the graph G.

Therefore, image properties as well as the adjacency structure
of the affinity graph is taken into account when assigning
weights to the edges of G. In other words, similarly to
Eq. (4), our formulation considers the intensity and geometric
information to define the weights into a unique measure:
the inner-product in the edges direction. Fig. 3 provides a
geometric interpretation of the proposed inner product metric.

The effective weights wij are chosen from Eq. (7) rather
then using the exponential measure usually employed by other
authors [1], [23], [26]. The scheme proposed in (7) does not
push values to zero as fast as the exponential function, which
allows for considering the influence of a larger number of
edges when carrying out the spectral decomposition. Eq (7)
is indeed derived from the Malik-Perona diffusivity term
[33], which was originally used for establishing the notion of
anisotropy in the heat equation. Moreover, the inner product-
based similarity metric (7) holds the property wij = wji,
which ensures symmetry for the graph Laplacian matrix L.
This fact is of paramount importance to guarantee that the
eigenstructure of L is made up of only real numbers.

D. Spectral cutting and coarse-to-fine

Given the affinity graph G built from C̃ and the number of
partitions initially defined by the user we carry out the spectral
decomposition using the same methodology proposed in [1].
More specifically, we first decompose the graph Laplacian
matrix as L = D −W where D and W contain the diagonal
and off-diagonal elements of L (Eq. (1)). Then, the Fiedler

(a) Without the CTD (b) The complete
pipeline

Fig. 4. Automatic result with the proposed approach.

vector f is obtained by solving the generalized eigenvalue
problem

(D −W )x = λDx,

getting f as the eigenvector associated to the smallest non-zero
eigenvalue.

The Fiedler vector splits C̃ into two subsets, one containing
the pixels corresponding to nodes of the graph where the
entries of f are positive and other containing the pixels with
negative values of f . Therefore, the zero-set of f is a curve
that separates the regions with different signs. The partitioning
obtained in C̃ is brought back to C using bicubic interpolation
from f . By recursively computing the spectral decomposition
for each part of the image, one can produce finer segmentation.
The recursive process can be driven by the user, who can
specify the highest level of recursion, in addition to brushing
defined by himself in any pieces of the image during each one
of recursion steps.

Fig. 4 shows the result of applying our methodology to
segment a fingerprint image. For the sake of comparison,
we show in Fig. 4a the result of computing weights (using
Eq. (7)) directly from the original image I, that is, skipping
the cartoon-texture decomposition. Notice from Fig. 4b how
better the segmentation is when the CTD is employed.

E. Interactive Weight Manipulation

Weights can be interactively tuned so as to force the spectral
cut to accurately fit boundaries between textured regions of the
image. Our tuning scheme relies on the texture component T
obtained from the cartoon-texture decomposition. The compo-
nent T is processed by an harmonic analysis tool [34], [35]
called wave atoms, which, in short words, assigns a scalar
S(Ti) ∈ [0, 1] to each pixel Ti of T , where values close to
1 means the pixel belongs to the ”wave” of a texture pattern,
similar to that used in [36], [37]. Therefore, pixels nearby the
boundary between two textured regions tend to be identified
as not belonging to a texture wave, thus assuming values close
to zero.

Starting from this premise, the weights of edges incident to
pixels brushed by the user are modified as follows:

wij = k ∗ min
eij∈E

wij ∗max(S(T̃i), S(T̃j)), (9)



where k ∈ (0, 1) is the smallest non-zero weight of the edges
in G and T̃ is the coarse version of T , which was generated in
Section III-A. The constant k enforces a more drastic change
of weights in the region stroked by the user.

IV. RESULTS AND COMPARISONS

The following parameters were used in all experiments
presented in this section: λ = 0.05 and µ = 0.1 in the cartoon-
texture decomposition (Section III-A), the default parameters
suggested in [32] for the bicubic interpolation (Section III-B
and Section III-D) and a hard threshold at 3σ (noise-to-signal
ratio of the image) combined with cycle spinning [34] for
the wave atom transform (Section III-E). We set r = 1 and
η = 5 in equations (3)-(7), respectively. Finally, we have used
parameters and implementations suggested by the authors for
the methods used in our comparisons: k-way NCut [1] and
multiscale NCut [11] (with radius 2, 3 and 7 for each scale,
respectively). Color images are converted to grayscale in order
to be processed by the techniques.

User intervention We start showing how user intervention
can be used to fix imperfections in the segmentation process.
Fig. 5 shows the result of segmenting Fig. 5a using our
methodology for 10 partitions. Notice from Fig. 5b that most
parts of the image is accurately segmented, attesting the
accuracy of the proposed method for the case where the image
contains texture and moderate gaussian noise. The spectral cut
deviates from the correct boundary in just a few small regions
which are easily fixed through user interaction, as depicted in
Fig. 5c and d.

Fig. 6 shows that the user does not need to perform a large
number of interactions to fix a bad segmentation. The red curve

(a) Original image (b) Automatic segmentation

(c) Brush made by user (green) (d) Final result

Fig. 5. Improving segmentation of the noise-textured image from user’s
strokes.

(a) Original image (b) Small stroke (c) Final result

Fig. 6. A simple stroke (greenish region on the dog’s head) is enough to
improve the segmentation.

in Fig. 6b is the result produced by our method without user
intervention for two partitions. The simple greenish stroke
on the top of the dog’s head is enough to enforce a more
satisfactory segmentation, as shown in Fig. 6c.

Comparisons In order to confirm the quality of the pro-
posed methodology we provide comparisons against two other
techniques: the well known normalized cut [1] and the multi-
scale NCut technique [11], as mentioned earlier in this section.
The first comparative test (Fig. 7) presents the result using user
interference while all other results were performed through our
automatic pipeline.

The experiment in Fig. 7 presents a comparative analysis
of our technique against the other two approaches where user
intervention is needed to improve the segmentation. We can
see that both classical NCut (Fig. 7b) and multiscale NCut
(Fig. 7c) badly segment parts of the image. Our approach
results in a better partitioning (Fig. 7d), although some regions
are also segmented in an incorrect way. After user intervention,
shown in Fig. 7e, the result improves considerably (Fig. 7f).

The result of applying the three methods in a fingerprint
image for two partitions is shown in Fig. 8. Notice that the
NCut (Fig. 8a) does not segment the fingerprint correctly while

(a) Original image (b) NCut (c) Multiscale NCut

(d) Automatic result (e) With brush (green) (f) Final result

Fig. 7. The influence of the user intervention in comparison with static
approaches.



(a) NCut (b) Multiscale NCut (c) Ours

Fig. 8. The result of applying NCut, multiscale NCut, and our approach in
a fingerprint image.

(a) NCut (b) Multiscale NCut (c) Ours

Fig. 9. Our approach produces smoother segmentation curves when compared
to NCut and multiscale NCut.

the multiscale NCut and our approach do a good job. It is easy
to see from Fig. 8b that the multiscale NCut tends to produce
a jagged segmentation curve while our method results in a
smoother curve, as shown in Fig. 8c.

It becomes clear from Fig. 9 that the smoothness of the
result produced by our approach also help to increase robust-
ness. While NCut and multiscale NCut tend to generate a
segmentation curve with many artifacts and some cognition
errors, our approach produces a much pleasant results.

Fig. 10 shows the partitioning produced by NCut, multiscale
NCut, and our approach when applied to the images in the
first column. These experimental images have been extracted
from the Berkeley Image Database [38]. Fig. 10a, f, k, p
and u show the input images wherein 5, 10, 15, 20 and 25
partitions were computed for each technique, respectively.
Notice that the multiscale NCut and our method produce
much better results than the classical NCut (the ground truth
is shown in the last column). In contrast to the multiscale
NCut, our method produces smooth boundaries between the
segmented regions, a characteristic also present in the ground
truth images. Moreover, it can be seen that our method is
more robust to identify structures contained in the images.
For example, the man in the first row (Fig. 10d), the surfer
(Fig. 10i), the soldier (Fig. 10s), and the stem of the mushroom
(Fig. 10x) were better captured by our technique.

Computational effort The results presented in this paper
were generated on a 1.80GHz AMD with 1GB of RAM. Ta-
ble I describes some usage statistics recorded while producing
the results. Our approach is considerably faster when com-
pared against two other techniques. Based on our experiments

and observations, the potential bottleneck in our framework is
due to the Laplacian matrix assembly.

TABLE I
SOME STATISTICS AND TIMINGS (IN SECONDS) OF THE LAST EXPERIMENT.

image figure NCut NCut multiscale Our approach
man Fig. 10a 95 18 8

surfer Fig. 10f 200 30 17
bison Fig. 10k 130 55 19

soldier Fig. 10p 210 60 21
mushroom Fig. 10u 240 60 21

V. DISCUSSION AND LIMITATION

The combination cartoon-texture decomposition and spec-
tral cut turns out to be a quite efficient methodology for image
segmentation. Moreover, the proposed inner product-based
weight assignment mechanism has produced more accurate
results than the exponential weighting function used by other
spectral segmentation methods.

The comparisons presented in Section IV clearly show
the effectiveness of the proposed spectral cut segmentation
method, surpassing, in terms of accuracy, the state-of-art
methods. Moreover, the flexibility as to user intervention is
an important trait of our method, which enables the user to
fix the segmentation locally.

There are two aspects to be observed when using our
technique. First, the segmentation may not behave as expected
if the user changes the weights substantially by stroking many
parts of the image. It is worth noticing the this is a extreme
case, since our method tend to produces quite satisfactory
results without any user intervention. Another aspect to be
considered is that the fine-to-coarse process may miss small
details of the image.

VI. CONCLUSION AND FUTURE WORKS

In this work we proposed a new methodology for spectral-
cut-based image segmentation which relies on cartoon-texture
decomposition. A new metric to measure the similarity be-
tween pixels and a new scheme to update weights of the
affinity graph according to user intervention have also been
presented. The evaluation we provided shows that our ap-
proach outperforms existing techniques in terms of accuracy
and robustness, producing smoother segmentation curves.

We are currently investigating how to adapt the proposed
methodology to become a truly multiscale method, in addition
to evaluate the use of eigenvectors other than the first one.
Moreover, we are also extending this methodology to 3D
images in the context of medical data and to incorporate the
texture component in an automatic pipeline for 2D images.
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(a) Input image (b) NCut (c) Multiscale NCut (d) Ours (e) Ground truth

(f) Input image (g) NCut (h) Multiscale NCut (i) Ours (j) Ground truth

(k) Input image (l) NCut (m) Multiscale NCut (n) Ours (o) Ground truth

(p) Input image (q) NCut (r) Multiscale NCut (s) Ours (t) Ground truth

(u) Input image (v) NCut (w) Multiscale NCut (x) Ours (y) Ground truth

Fig. 10. Partitioning produced by NCut, multiscale NCut, and our methodology. From top to bottom, the three methods partition the images in 5, 10, 15,
20 and 25 regions respectively.
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