
Snapping a Cursor on Volume Data
Wu, Shin-Ting and José Elı́as Yauri Vidalón

School of Electrical and Computer Engineering
University of Campinas

Campinas, Brazil
www.dca.fee.unicamp.br/∼{ting,elias}

Lionis de Souza Watanabe
Hospital de Clı́nicas

University of Campinas
Campinas, Brazil

lionis@hc.unicamp.br

Fig. 1. Interactions on a raw data set (leftmost): after noise removal (left), painting on data with reduced opacity (right), and cropping (rightmost).

Abstract—In this paper we explore the architecture of GPU-
based volume ray-casting to control the cursor movements on
surfaces of volume data only on the basis of their sampled scalar
values. This method does not rely on building a tight proxy
geometry nor computing local iso-surface parametrization. In
this setting only a few instructions should be included in a ray-
casting shader: at every fragment the depth of the closest non-
transparent voxel along each viewing ray is calculated and stored
in the depth buffer. Its application in the manipulation of 3D
medical images has, however, a broad spectrum. Two of them
are presented. The proposed technique is very simple and fast,
yet produces very nice and intuitive visual feedbacks.

Keywords-3D Interactions; Ray-casting; Volume visualization;
3D medical images.

I. INTRODUCTION

Volume visualization is recognized as one important form
of displaying and exploring the internal structure of a 3D-
array of sample data, such as 3D medical images acquired
by X-ray computed tomography (CT) or magnetic resonance
imaging (MRI) scanners. Researchers have proposed different
rendering algorithms, classifiable either as a direct volume
rendering approach [1] or an iso-surface extraction one [2].
Various types of transfer function specification methods have
been proposed to highlight regions of interest and filter out
irrelevant details [1]. More recent investigations have been
focused on the multi-modal volume visualization [3], [4], [5],
[6]. This may provide a physician more precise spatial relation-
ships among the vascular structures, nerve fibers, physiologic
function and anatomic structure, when the features of interest

are “colored” distinguishably with help of appropriate multi-
dimensional transfer function.

To address the lack of a robust 3D image segmentation
algorithm, interventions of an expert is highly desirable to
discriminate features of interest in a volume data set. One
of the main obstacles in integrating a user in a segmentation
process is, however, the difficulty of specifying those fea-
tures in a spatial reference. Current applications are limited
predominantly to 3D rigid transformations and 3D clipping
algorithms, such as axis-aligned cuts [7], cuts at oblique
angles [8] and in pre-specified geometry [9]. None of those
tasks are fallen in the category of “tangible” interactions, in
which the cursor of an input device should be snapped to the
visible surface of the volume data. Unfortunately, the known
tangible interactions, such as measuring the extension of the
features of interest or curvilinear reformatting on the area of
interest, are still limited to 2D interactions.

Mouse snapping can be seen as an special mouse picking
mechanism that determines the current 3D positions of the
cursor on a visible surface. Picking is the most commonly used
intuitive operation to interact with 3D scenes in a variety of
3D graphics applications. It consists of selecting a geometric
element pointed by a 2D or 3D cursor [10]. For a 2D cursor, a
traditional implementation of picking consists in mapping the
2D mouse position in the screen space onto a set of objects
along the mouse ray in the 3D scene space. The nearest object
to the viewer that intersects the mouse ray is selected. To
extend this to surface snapping, instead of object, the nearest
3D intersection point is returned. Performing this continuously

http://www.institution1.eud/~firstauthor
mailto:name@xyz.com


in time will produce the perception that the cursor is snapped
to the surface [11].

The basic operation of a tangible interaction is, therefore,
the determination of the x, y and z coordinates of where a user
intends to touch in the 3D scene space, from the 2D mouse
position in the screen space where s/he actually clicks. The
crucial difference of our work from previous ones is that in
the volume visualization only the shape of the data domain is
known, not the shape of the object contained in the data [1].

Contributions: This paper aims at an essential task for
tangible interactions with volume data, even when the shape of
the object of interest is not analytically given. Our proposal,
based on “what you see is what you snap” paradigm, is a
hybrid of two well-known techniques: ray-casting picking [12]
and depth buffering [13]. It explores the feature of the former
that delivers correct world coordinates by just intersecting
the mouse ray against the volume elements, while it takes
advantage of the latter that avoids per pixel single-pass ray-
casting whenever the mouse is moved on the 3D rendition
of the volume data. We show that our proposal only requires
slight adjustments in the existing ray-casting volume rendering
techniques to make them appropriate for interactive visualiza-
tion. The key to our solution is to store in the depth buffer the
z value of the closest visible voxel along the viewing ray in
the same way as the fixed-function graphics pipeline stores, so
that the traditional depth buffering approach may be employed
for getting the actual 3D location that the user intends to click
on. We also apply our proposed technique for implementing
two tangible interactions with 3D medical image data sets:
painting and measuring.

A. Related work

There are two approaches to map back a 2D screen point
to a 3D scene point. One method, available in the D3DX
extension library of the industry standard API Direct3D [14], is
to generate a ray using the mouse’s location and then intersect
it with the world geometry, finding the object nearest to the
viewer. It works by locking the model’s vertex and index
buffer, computing a ray-triangle intersection test with each face
and sorting the intersection points according to the distance
to the viewer. Alternatively we can determine the actual 3-D
location that the user has clicked on by sampling the depth
buffer and performing an inverse transformation, as provided
both in D3DX and in OpenGL [15]. As for volume rendering
the shape of the object contained in the volume data is not
given, in both approaches the application must first estimate
its surface and then perform the object space intersection test
with the resulting geometry. We propose in this work a way to
circumvent this pre-processing by exploring the volume ray-
casting features.

To snap a cursor to the surface of 3D models whose
geometry is arbitrarily deformed by a programmable hardware
fragment and vertex processor, Batagelo and Wu introduced
the idea of snapping a 3D cursor to the visualized surface
fragment [16]. They extended the idea to volume data sets
by snapping the cursor to its iso-surfaces [17]. Bürger et al.

presented a similar interaction paradigm [18]. They introduced
the idea of surface particles to map annotations onto the iso-
surfaces at sub-voxel accuracy. Actually, the way that they
move a particle on the surface had been previously described
by Wu et al. in [11]. With such improved interactive tools one
may easily specify any visible region to be edited. In addition,
Bürger et al. showed that one may use the same annotation
grid to create a shape aligned windowed-cutaway section.
The procedures provide very nice interactivity. Nevertheless,
for computing 3D position where the cursor is snapped it is
necessary to shoot for each mouse position a pick ray into the
volume data in order to determine if and which voxel the user
has clicked on the volume data. In this work we show that
we may combine the volume ray-casting and the volume ray
picking into a single-pass processing, since the depth buffering
is supported.

Chen et al. presented a mask-based interaction tool for
peeling, cutting and pasting [19]. Through a sequence of input
points provided by the user, their system generates a mask
covering the area of interest. The authors have remarked that
the mask only works appropriately if the selected surface
contains a smooth change of gradients. This is because the
procedure relies heavily on the estimated gradients. When the
volume data are very noisy, the geometry of their iso-surfaces
is rough, compromising gradient smoothness. Although a
smoothing filter may attenuate the roughness, the original data
values may be prohibitively changed. Our technique does not
alter the original scalar values. We explore the interactivity
letting expert remove the noise through two interaction modes:
threshold level setting and paintbrush erasing.

B. Technique overview

Provided that there is a depth buffer in the graphics pipeline,
Benstead presents in [13] a C source code that converts screen
2D coordinates to the 3D coordinates where a user in fact
clicked on the object space. We further consider that the 2D
projection of the 3D data set is rendered in a single-pass
GPU volume ray-casting. The volume data are stored as a
3D texture in the texture memory and is mapped to a proxy
geometry which is actually rendered. Fragments are generated
after rasterization and processed by a fragment shader. Our
proposal consists in simply storing the depth of the nearest
non-transparent voxel to the viewer in the depth buffer when a
light ray is traversed in the shader loop. After then, to mitigate
performance penalty we make a copy of the information stored
in the depth buffer. This information is used by an event
handler to interactively control the mouse’s spatial position
in the CPU while the 3D rendition is not changed. Visual
feedbacks are either sent to programmable graphics pipeline
or directly to the framebuffer. The process is schematized
in Fig. 2. The modules of a programmable graphics pipeline
that are involved in processing are highlighted in thicker, red
line. Also observe the integration of the user’s actions in the
process.



shader

Vertex

Evaluator
Per−fragment

operations
Rasterization

Per−vertex

operations

Primitive

assembly

Texture

Memory

Fragment

shader

Framebuffer

Depth buffer

Pixel
transfer

operations

Screen/viewport space
Normalized

space

Camera

space

GPUCPU

space

Object

Per−pixel

depth value

Visual Feedback

handler

Event

dataset

Volume

Proxy

geometryMouse

event

Fig. 2. Data-flow of our proposed snapping algorithm.

II. TECHNICAL BACKGROUND

To take full advantage of the depth buffering in the fixed-
function pipeline, we only need to calculate in the fragment
shader the z-values of the closest non-transparent voxel to the
viewer in the same way as that pipeline would compute. We
have worked on how to compute these z-values.

To be self-contained, it is convenient to give a brief de-
scription of the components involved and their interfaces.
Those details are particularly relevant here since our proposal
explores the features presented in the existing technologies and
fills the gaps between them. The components are: the basic
structure of ray-casting, the transformations from the object
space to the screen space in the fixed-function pipeline, and a
mouse picking method based on depth buffering in the fixed-
function pipeline.

A. Volume rendering with ray-casting

The basic goal of volume rendering is to estimate per pixel
the light intensity that reaches the viewer after traversing the
volume data along the light ray in the object space. One
pragmatic approach is to resample the volume data at regular
intervals along the ray, as shown in Fig. 3. By means of an
appropriate transfer function T F , optical properties, namely
color Ci and opacity αi, are assigned to each sample i. These
optical properties are recurrently composited in the same order
as the ray traversal, usually in the front-to-back order (i=0 to
i=n), to provide a final pixel intensity Cn and opacity αn [1]:

Ci = Ci−1 + (1− αi−1)Ci

αi = αi−1 + (1− αi−1)αi.

The initial values are the values of the first sample along the
ray C0 = C0 and α0 = α0. The results are clamped to [0, 1.].
Engel et al. describe how this procedure can be implemented
on GPU architectures via fragment shader functionality [1].
Two relevant features of their presented algorithms have been
explored in our work.

First, observe that when a sample has αi = 0, its color is
effectively discarded from the composition and, consequently,
not “visible”. For example, we consider in Fig. 3 that the
samples with αi = 0 are drawn as circles with dotted lines.

1

2

3

Fig. 3. Ray-casting.

Applying the composition procedure, we get “no color” for
the pixel 1 and “opaque” final colors to the pixels 2 and
3. This correspondence between opacity and visibility is an
important ingredient for the “what you see is what you snap”
interaction paradigm. Through an appropriate transfer function
from the scalar to the opacity values, it is possible to control
the contribution of each voxel to the final 3D rendition.

Second, the initial value C0 does not have to be the first
voxel with scalar value greater than zero along the viewing
ray. It could be a color corresponding to a threshold density
level dth chosen by the user, i.e. C0 = T F(dth), such that
the composition only starts with the voxels that meet it. In the
case of medical volume data, most of organs have their own
scalar levels d and they may be used to selectively enable
or disable distinguishable objects of interest contained in the
volume data. Fig. 4 illustrates the visual effects of two distinct
values of dth in the same volume data.

(a) (b)

Fig. 4. Ray-casting with (a) dth = 1375 and (b) dth = 2803.



B. Projection transformation

OpenGL graphics pipeline breaks the transformation from
the object space to the screen space down into several space
transformations. In Fig. 2 two intermediary spaces along
the fixed-function graphics pipeline are distinguished. We
denote the matrix transformation from the camera space to
the normalized (device) space as P . It is called projection
matrix. In the normalized space the range of coordinates is [-
1.0,1.0]. The transformation from the coordinates (nx, ny, nz)
of the normalized space to the coordinates (sx, sy) of the
screen space, with dimensions w × h and the leftmost corner
at (x0, y0), is given by the transformation [15]:

s =


sx

sy

sz

1

 =


w
2 0 0 w

2 + x0

0 h
2 0 h

2 + y0
0 0 1

2
1
2

0 0 0 1



nx

ny

nz

1

 = Vn.

(1)
This transformation matrix is referred to as the viewport
matrix. Observe that the per-fragment operations in the fixed-
function pipeline are applied to the coordinates (sx, sy, sz, 1),
where sz is the depth value stored in the depth buffer of
the fixed-function pipeline. This depth value is in the range
[0.0, 1.0], with 0.0 at the near clip plane and 1.0 at the far clip
plane.

In addition, it is allowed to transform affinely each scene
object from its own object space to the camera space. The com-
position of such transformations may be described by a view
matrix M. The use of M and P allows us to algebraically
express the conversion of the coordinates p = (x, y, z, 1) to
the coordinates (sx, sy, sz, 1). We simply plug the result of
the conversion n = PMp into Eq. 1 and get

s = VPMp

In the GLSL shading language, there are built-in uniform
variables gl ModelViewMatrix and gl ProjectionMatrix per-
mitting shaders to access, respectively, the state of matricesM
and P . Direct access to the composition PM is also possible
through the variable gl ModelViewProjectionMatrix [20].

The knowledge of these transformation functions is helpful
in the computation of the depth sz in a fragment shader. We
should, however, draw attention to the largest issue with per-
formance: writing to gl FragDepth prevents early-z culling.
It is, therefore, best to reduce fragment depth updates to avoid
overdraw.

C. 2D to 3D mouse coordinate conversion

In the fixed-function OpenGL graphics pipeline, if the depth
buffering is enabled, the depth value sz of each rendered pixel,
normally the pixel that is closest to the viewer, is automatically
stored in it. This depth value is determined based on the view
matrix M, the projection matrix P , and the viewport matrix
V , as explained in Section II-B. In addition, there is a utility
library providing a function that converts the coordinates in
the object space to the coordinates in the screen space from
those matrices, or vice-versa. They are, respectively, glProject

and glUnProject. In this section we summarize the main steps
of the procedure.

To initialize the conversion procedure, the depth buffer
should be enabled and the mouse motion callback specified.
Then, whenever the mouse moves, its position is captured
by an event handler and the corresponding callback issued
(Fig. 2). In this callback, the function glReadPixels is used
to get the sz depth of the surface rendered in the pixel
(sx, sy). After retrieving the matricesM, P and the viewport
parameters with the function glGet, the function glUnProject
is applied to map the coordinates (sx, sy, sz) onto the coordi-
nates (x, y, z) in the object space.

Provided that the depth buffer is correctly filled, this han-
dling fits our proposal like a glove.

III. OUR PROPOSAL

In this section we present a simple, yet effective, way to
snap a cursor on the visible surface of a volume data set.
We aim at proposing a procedure that maximally reuses the
existing tools presented in Section II and requires minimal
changes in the existing ray-casting based volume rendering
techniques available as a fragment shader.

A. Problems

(a)

(b)
Fig. 5. Two images resulting from distinct transfer functions (scalar value
× {opacity,grayscale}).

As already stated, the basic problem that should be solved
is how to efficiently calculate the depth value for the nearest
opaque sample to the viewer, such as the red circles in Fig. 3.
The opacity of each sample is, nevertheless, strongly depen-
dent on the underlying transfer functions, as illustrates Fig. 5
in which the red and black lines depict, respectively, the color
and the opacity transfer functions. Observe that in Fig. 5.(a)
all samples with scalar values greater than zero have their
light information accumulated in the pixel’s color, while
in Fig. 5.(b) only samples with values greater than a pre-
specified threshold, in this case 1317, enter into the light
composition.

Fig. 6.(a) and Fig. 6.(b) show, respectively, the correspond-
ing depth maps of Fig. 5.(a) and Fig. 5.(b). Note that the darker
the shade is, the closer from the viewer is the sample. If the
purpose is interacting with the head’s scalp, the latter transfer



(a) (b)
Fig. 6. Depth buffer of (a) Fig. 5.(a) and (b) Fig. 5.(b).

function is much more appropriate as all noisy data have been
removed. On the other side, we may miss relevant internal
structures that possess scalar values less than a threshold,
compromising the rendering quality of the regions of interest.
This is the second problem that we should solve to ensure that
our proposal is useful in practice.

B. Depth computation

For meeting the “what you see is what you snap” require-
ment, we adopt the front-to-back ray traversal order and take as
the visible sample along the mouse ray the first ray position
p that is in a non-transparent voxel. Obtaining p we should
calculate its depth value in the range [0.0,1.0] and store it
in the depth buffer. For reuse the procedure presented in
Section II-C, this value should be consistent with the one that
the fixed-function graphics pipeline computes.

Since in the fragment shader all the sample position and
direction vectors are described with respect to the object
space, we use gl ModelViewProjectionMatrix to determine
the depth of p with respect to the normalized space, as shown
in Section II-B

n = (gl ModelV iewProjectionMatrix)p.

Then, we apply Eq. 1 to find the depth value in the screen
space

sz =
1
2
nz +

1
2
.

To alleviate the performance drop the drawing mode
GL FRONT and the face culling are applied in the 3D
rendition of the proxy geometry.

C. 3D Eraser tool

For circumventing the noisy samples that hinder desirable
direct manipulations, we may in principle either provide
an appropriate transfer function or employ an adequate 3D
image segmentation function. However, the existing solutions
fall far short of covering a large variety of situations and
we end up adopting a trial-and-error paradigm for dealing
with unsolvable situations. In this work, we propose manual
removal of the noisy data by an expert. The interactivity of
our proposed snapping algorithm and the rendering quality is

a good combination for an intuitive interface. The user can
erase the noises to transparency with a few interactions.

Similar to the paintbrush eraser in the Adobe R© Photo-
shop [21], the user can erase the sample data by simply
painting them in transparency. The difference is, in the place
of a 2D space, our proposed eraser tool works in the 3D
domain. In order to preserve the original volume data, we
set up a control volume that has the same spatial resolution as
the original one and its voxel values are used to control the
modulation of the original volume data. In the fragment shader,
both the original volume data and the control volume data are
used in combination for deciding the light contribution of each
data sample. When a sample is tagged as transparent in the
control volume, it is simply skipped and the feedback to the
user is that the sample is no longer visible. If there are more
noisy data behind the erased ones, they are going to become
visible and further interactions are necessary to “remove” them
completely.

D. Thresholding

The erasing interaction mode is, however, very stressful and
time-consuming. It should preferably be applied only as an
option for retouching a few unwanted samples. To remove the
majority of the noisy data that obstruct the visibility of the
voxels that the user wants to see without altering the opacity
of the voxels behind those wanted voxels, we propose to use
“transfer functions” that also consider the threshold density
level dth, explained in Section II-A, for assigning opacity and
color to the range of the scalar values. We call this value
the noise threshold. In our “transfer functions” a scalar value
d < dth may have two correspondences. If it has d < dth and
lies between the observer and the first voxel with dth from the
observer to the volume data, its opacity and color are set to
zero; otherwise we use the pre-specified transfer functions to
assign the optical properties.

Fig. 1.(b) illustrates the result of the actions of our proposed
eraser tool on the volume data depicted in Fig. 1.(a). The noise
threshold was set at 1600 and some remaining noisy samples
have been painted in transparency.

IV. IMPLEMENTATION

Based on our proposal, any single-pass GPU ray-casting
should be adaptable to make it able to perform mouse picking
at interactive rate. To validate that our procedure is easily
integrable into an existing ray-caster, we chose an implemen-
tation of the texture-based ray-casting architecture developed
by Stegmaier et al. [22]. The ray-caster was implemented in
C++ using GLSL. In this section we present the modifications
that we have included.

Besides the original volume data, we need to store the
control volume as a 3D texture. According to the tag set
in its entry, the shader either reads the optical properties
dstColor of the data sample (x, y, z) or skip it. To accom-
plish it we added the following if-statement in the fragment
shader
tag ⇐ ControlV olume[x][y][z]



if tag is transparent then
dstColor ⇐ (0, 0, 0, 0)

else
idx⇐ OriginalV olume[x][y][z]
dstColor ⇐ TransferFunction[idx]

end if
In the fragment shader loop that traverses a light ray,

we need to look for the first non-transparent sample with
d ≥ dth among the traversed points P and determine its
depth. Another if-statement was inserted for carrying out this
task

if P is the first non-transparent sample and d(P ) ≥ dth

then
n⇐ gl ModelviewProjectionMatrix · P
depth⇐ 0.5 ∗ n.z + 0.5

end if
And before leaving the shader, the fragment’s depth value

must be updated
gl FragDepth = depth

Done these adjustments, the depth buffer is filled with the
depth values of all visible data samples whenever its proxy
geometry is rendered. The implemented fragment shaders are
available in [23].

V. EXPERIMENTS

We validated our proposed snapping technique through a
series of experiments on a desktop Intel Core2 Duo E7500
2.936 GHz CPU with a NVIDIA GeForce GT240 GPU. The
experiments have been performed on the 3D medical images.
The data were acquired either by an Elscint 2T Prestige MRI
Scanner or by a RM 3T Philips Intera-Achieva Scanner at our
university hospital.

First, the evaluation was done to assess the performance
drop. We measured the variations in the time spent to carry
out 3D rendition, with and without the computation of depth
map, of a set of 240×240×180 volume data for different
output image resolutions, from 64×64 to 1362×1362. Then,
we measured the time spent by glReadPixels to read the depth
map back from the depth buffer for these output resolutions.

Second, we checked how our proposal is sensible to the
variations of the opacity transfer function. We would like
to know whether our proposal meets the “what you see is
what you snap” requirement, i.e. whether the depth buffer is
correctly filled, even when the opacity of the samples are very
low. We kept the noise threshold constant in the value 423
and varied the opacity of the volume data. We observed that,
except when the opacity is zero (totally transparent), the depth
map is opacity insensitive. Fig. 7 illustrates five renditions
with distinct opacities and their corresponding depth map. In
particular, the color clamp effect to 1.0 is shown in Fig. 7.(d).

Third, we compared the visual effects of the noise threshold
parameter and the opacity transfer function. As we claimed,
the adjustments through the noise threshold parameter is
local, making selectively some samples transparent, while the
transfer functions affect globally the optical properties of the

depth map (a) α = 1.0

(b) α = 0.45 (c) α = 0.29

(d) α = 0.07 (e) α = 0.01
Fig. 7. Distinct opacity transfer functions, from the highest (a) to the lowest
opacity (e), lead to the same depth map.

(a) (b)
Fig. 8. Noise removal with (a) noise threshold and (b) opacity transfer
function.

samples. Observe the subtle differences in the sharpness and
in the structure between Fig. 8.(a) and Fig. 8.(b). In the
former the noisy data have been removed by setting the noise
threshold in 1056 and in the latter the opacity of the voxels
with scalar values in the range [0, 1056] has been assigned
zero.

Finally, we show how to apply our proposed technique in
implementing two tangible interactions with a volume data set:
painting and measuring.



A. Painting

Painting is mostly employed in volume editing, affecting
primarily in the optical properties of the picked data samples.
It provides a nice visual feedback that may guide the user
in a variety of tasks, such as selection and segmentation.
It works just like counterparts its eraser tool explained in
Section III-C. As the mouse is moved on the visible data
samples, their spatial locations are continuously computed and
the corresponding voxels in the control volume are accordingly
tagged. These tags are used to switch the transfer functions and
the optical properties of the painted samples are immediately
changed to the pre-specified ones. More to highlight some
parts of the object of interest, the painting tool may be
employed in specifying the samples of an initial geometry,
as illustrates Fig. 1.(c), for further processing. Fig. 1.(d) and
Fig. 9 present the application of painted samples in cropping
away the shell of a volume data set in order to expose its
internal structures [24].

(a) (b)
Fig. 9. Cropping: (a) painting and (b) removal of the painted region.

B. Measuring

Measuring is an important tool for evaluating both the
size and the extension of some features. It follows the same
interaction principle as the painting. First the user selects a
sequence of points {p0, p1, p2, . . . , pn} on the curve of interest
by clicking on them. We use our proposed method to find the
coordinates (xi, yi, zi, 1) of those points in the object space.
For providing visual feedback, the corresponding voxels in the
control volume are tagged in accordance with the previously
attributed tags. In addition, the distance between the samples
are estimated, so that when the last sample of a sequence is
inserted, the length L is computed from

L =
n∑

i=1

‖(kx(xi − xi−1), ky(yi − yi−1), kz(zi − zi−1))‖,

where kx, ky and kz are the voxel spacing values in the x-, y-,
and z-direction respectively. Fig. 10.(a) illustrates the visual
feedback of a sequence of points from the interaction view
and Fig. 10.(b) show another view to emphasize how the points
are ”stitched” to the visible surface. With our 3D measurement
algorithm, the depth and the extent of the cropped region were
computed. It is 19mm in depth, 90mm in width and 108mm
in length.

Fig. 10. Measuring the length of user specified curves.

VI. RESULTS AND DISCUSSION

We have evaluated our proposed method in view of the
following aspects:

Performance: As only two if-statements and one as-
signment are included in the classical ray-caster to make
it suitable for interactions, time performance degradation is
expected to be almost imperceptible in view of interactivity.
In fact, the volume data can be, at interactive rate, moved
around the screen and manipulated by controlling a cursor
with a mouse. Nevertheless, our expectation has not been
corroborated by the performance experiments described in
Section V. The performance presents larger time variations
with the output resolution when the depth buffer is enabled.
Table I summarizes the frame rates for different rendering
modes: without depth buffer, with depth buffer, and with
depth buffer and optimized rendering mode explained in
Section III-B. Observe in the fourth column that till 4002 the
degradation is imperceptible, but when the output resolution
further increases, the performance drops almost linearly. This
behavior may be due to the number of parallel cores and video
memory available in the graphics card.

TABLE I
PERFORMANCES RESULTS IN FPS.

Resolution No Depth Depth Depth+Optim. Degradation
1282 62 62 61 0
4002 60 32 60 0
5122 60 21 57 -3
7002 60 12 36 -24
9002 59 7 22 -37
13622 58 3 10 -48

With respect to the performance of reading data back from
the depth buffer, the time variations only depend on the output
resolution. For the image resolutions presented in Table I the
times spent are, respectively, about 0.06ms, 0.47ms, 0.78ms,
4.22ms and 9.69ms.

Visual quality: To assess the quality of the outcomes,
we asked neurologists and neurosurgeons working at our
neuroimaging laboratory to manipulate and explore the volume
data with the interaction tools we developed. Mostly two or
three attempts suffice to identify serious injuries. No more than
ten attempts were necessary for a specialist in dysplasia diag-
nosis to discover subtle abnormal patterns. One motive given
by the doctors for their rapid finding is that the interface of



our prototype is much faster and easier to use than the systems
currently installed at our neuroimaging laboratory [25], [26],
[27]. It is worth commenting that one reason for presenting
3D rendition in grayscale is that the physicians are used to
this art of display.

Domain coverage: Although we have used ray-casting
based volume rendering approach in this work, other rendering
methods may be used. The key ingredient is to find out the
first visible element in the view direction that is nearest to the
viewer and to store its depth, given in the screen space, in the
depth buffer.

Limitations: The main limitation of our proposed tech-
nique is that it is not suitable for noisy data. Nevertheless,
we devised an intuitive way for the user to erase these noises
by combining the flexibility of a transfer function editor and
the interactivity of our mouse picking method. The erasing
tool has not been exhaustively validated yet. This validation
should be conducted shortly. As a mid-term goal we would
like to search for transfer functions more appropriate for 3D
medical images.

VII. CONCLUSION

We presented a basic tool to interact with volume data even
when their shape is not describable analytically. We showed
that our tool is particularly simple to be integrated in the
existing volume rendering implementation. Only commands
to detect the visible samples and to compute their depth in
the screen space are necessary. Despite its simplicity in im-
plementation, our proposed technique has potential application
in a large spectrum of 3D interaction tasks with volume data.
Two of them have been detailed in this paper. As further work
we plan to develop a pre-surgical planning tool for removal
of cortical lesions on top of our proposal.

ACKNOWLEDGMENT

The authors would like to thank the colleagues at their
university hospital, in particular Dr. Clarissa L. Yasuda and
Prof. Dr. Fernando Cendes, for providing medical images and
valuable feedbacks. This work has been supported by CAPES
(Coordination for the Improvement of Higher Level Person-
nel), FAPESP (The State of São Paulo Research Foundation)
under grant no. 2011/02351-0.

REFERENCES

[1] M. Hadwiger, J. M. Kniss, C. Rezk-Salama, D. Weiskopf, and K. Engel,
Real-time Volume Graphics. Natick, MA, USA: A. K. Peters, Ltd.,
2006.

[2] A. C. Telea, Data Visualization: Principle and Practice. AK Peters,
Ltd, 2007.

[3] D. Valentino, J. Mazziotta, and H. Huang, “Volume rendering of
multimodal images: application to mri and pet imaging of the human
brain,” Medical Imaging, IEEE Transactions on, vol. 10, no. 4, pp. 554–
562, Dec. 1991.

[4] R. J. Frank, H. Damasio, and T. J. Grabowski, “Brainvox:
An interactive, multimodal visualization and analysis system for
neuroanatomical imaging,” NeuroImage, vol. 5, no. 1, pp. 13–30,
1997. [Online]. Available: http://www.sciencedirect.com/science/article/
B6WNP-45KKTNX-17/2/43e0a7bff46654ab121941deb138bd38

[5] T. Ropinski, M. Specht, J. Meyer-Spradow, K. H. Hinrichs,
and B. Preim, “Surface glyphs for visualizing multimodal volume
data,” in Proceedings of the 12th International Fall Workshop on Vision,
Modeling, and Visualization (VMV07), nov 2007, pp. 3–12. [Online].
Available: http://viscg.uni-muenster.de/publications/2007/RSMHP07

[6] C. Rieder, M. Schwier, H. K. Hahn, and H.-O. Peitgen, “High-
Quality Multimodal Volume Visualization of Intracerebral Pathological
Tissue,” C. Botha, G. Kindlmann, W. Niessen, and B. Preim, Eds.
Delft, The Netherlands: Eurographics Association, 2008, pp. 167–176.
[Online]. Available: http://www.eg.org/EG/DL/WS/VCBM/VCBM08/
167-176.pdf

[7] C. Roden and M. Brett, “Stereotaxic display of brain lesions,” Be-
havioural Neurology, vol. 12, pp. 191–200, 2000.

[8] C. Rezk-Salama, K. Engel, and F. V. Higuera, “The OpenQVis
Project,” accessed in April 2011. [Online]. Available: http://openqvis.
sourceforge.net/

[9] D. Weiskopf, K. Engel, and T. Ertl, “Interactive clipping techniques
for texture-based volume visualization and volume shading,” IEEE
Transactions on Visualization and Computer Graphics, vol. 9, no. 3,
pp. 298–312, 2003.

[10] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer
Graphics: Principles and Practice, 2nd ed. Reading, MA: Addison-
Wesley Publishing Co., 1990.

[11] S.-T. Wu, M. Abrantes, D. Tost, and H. C. Batagelo, “Picking and
snapping for 3d input devices,” Brazilian Symposium on Computer
Graphics and Image Processing, pp. 140–147, 2003.

[12] T. O. S. Project, “Mouse picking demystified,”
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/MousePicking,
accessed in April 2011.

[13] L. Benstead, “Using gluunproject,”
http://nehe.gamedev.net/data/articles/article.asp?article=13, accessed
in April 2011.

[14] DirectX 9.0 Programmer’s Reference, Microsoft Corporation, October
2004.

[15] Opengl, D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL(R)
Programming Guide : The Official Guide to Learning OpenGL(R),
Version 2 (5th Edition). Addison-Wesley Professional, August 2005.

[16] H. C. Batagelo and S.-T. Wu, “What you see is what you snap:
snapping to geometry deformed on the GPU,” in Proceedings of the
2005 Symposium on Interactive 3D Graphics, SI3D 2005, Washington,
DC, USA, 2005, pp. 81–86.

[17] H. C. Batagelo and S.-T. Wu, “A framework for GPU-based application-
independent 3D interactions,” The Visual Computer, vol. 24, no. 12, pp.
1003–1012, 2008.

[18] K. Bürger, J. Krüger, and R. Westermann, “Direct volume editing,” IEEE
Transactions on Visualization and Computer Graphics, vol. 14, no. 6,
pp. 1388–1395, 2008.

[19] H.-L. J. Chen, F. F. Samavati, and M. C. Sousa, “GPU-based point
radiation for interactive volume sculpting and segmentation,” The Visual
Computer, vol. 24, no. 7, pp. 689–698, 2008.

[20] R. J. Rost, OpenGL(R) Shading Language (2nd Edition). Addison-
Wesley Professional, Jan. 2006.

[21] B. Brundage, Photoshop Elements 9: The Missing Manual, 1st ed.
Pogue Press, 2010.

[22] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, “A simple and flexible
volume rendering framework for graphics-hardware-based raycasting,”
in Volume Graphics, 2005, pp. 187–195.

[23] W. S. Ting, J. E. Y. Vidalón, and L. de Souza Watanabe. [Online].
Available: http://www.dca.fee.unicamp.br/projects/mtk/wu/vmtk2.html

[24] S.-T. Wu, C. L. Yasuda, and F. Cendes, “Interactive curvilinear reformat-
ting in native space,” IEEE Transactions on Visualization and Computer
Graphics, vol. 99, no. PrePrints, 2011.

[25] R. R. Inc., BrainSight – User Manual, Version 1.7, Accessed
in February 2010. [Online]. Available: http://www.icts.uci.edu/
neuroimaging/BransightTMS.pdf

[26] F. Bergo and A. X. Falco, “Fast and automatic curvilinear reformatting
of MR images of the brain for diagnosis of dysplastic lesions,” in 2006
International Symposium on Biomedical Imaging, Arlington, Virginia,
USA, 2006, pp. 486–489.

[27] G. Flandin and K. J. Friston, “SPM2 – Statistical Parametric Mapping,”
accessed in July 2011. [Online]. Available: http://www.fil.ion.ucl.ac.uk/
spm/software/spm2/

http://www.sciencedirect.com/science/article/B6WNP-45KKTNX-17/2/43e0a7bff46654ab121941deb138bd38
http://www.sciencedirect.com/science/article/B6WNP-45KKTNX-17/2/43e0a7bff46654ab121941deb138bd38
http://viscg.uni-muenster.de/publications/2007/RSMHP07
http://www.eg.org/EG/DL/WS/VCBM/VCBM08/167-176.pdf
http://www.eg.org/EG/DL/WS/VCBM/VCBM08/167-176.pdf
http://openqvis.sourceforge.net/
http://openqvis.sourceforge.net/
http://www.dca.fee.unicamp.br/projects/mtk/wu/vmtk2.html
http://www.icts.uci.edu/neuroimaging/BransightTMS.pdf
http://www.icts.uci.edu/neuroimaging/BransightTMS.pdf
http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
http://www.fil.ion.ucl.ac.uk/spm/software/spm2/

	Introduction
	Related work
	Technique overview

	Technical background
	Volume rendering with ray-casting
	Projection transformation
	2D to 3D mouse coordinate conversion

	Our proposal
	Problems
	Depth computation
	3D Eraser tool
	Thresholding

	Implementation
	Experiments
	Painting
	Measuring

	Results and Discussion
	Conclusion
	References

