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Abstract—This paper presents a novel patch-based approach
for object tracking robust to partial and short-time total occlu -
sions. Initially, the original template is divided into rectangular
subregions (patches), and each patch is tracked independently.
The displacement of the whole template is obtained using a
weighted vector median filter that combines the displacement
of each patch and also a predicted displacement computed based
on the previous frames. An updating scheme is also applied to
cope with appearance changes of the template. Experimental
results indicate that the proposed scheme is robust to partial
and short-time total occlusions, presenting a good compromise
between accuracy and execution time when compared to other
competitive approaches.
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I. I NTRODUCTION

Nowadays, with the widespread use of cameras in our
society, the need for automated video analysis has become
imperative. This need has greatly increased the interest in
object tracking algorithms, which main goal is to identify
objects (or parts of objects) in a succession of frames. The
object to be tracked is usually referred to as thetarget.

There are several different approaches to address the prob-
lem of object tracking relying on a variety of mathematical
tools. However, there are still several factors that influence the
performance of tracking algorithms, such as noise, complex
object motion, occlusions, varying scene illumination, appear-
ance changes and real-time requirements. In fact, the large
number of papers published on this subject indicates that the
problem is still open.

This work1 presents a novel patch-based approach for
object tracking. The initial template is split into smaller
non-overlapping patches, which are tracked individually.The
results of tracked patches are combined in a robust way
to determine the displacement of the whole template, such
that partial occlusions can be handled. Moreover, a predictor
scheme is included in the tracking process, so that, in some
cases, even complete occlusions can be handled. Finally, a fast
updating scheme is applied to cope with appearance changes.

The remainder of this paper is organized as follows. Sec-
tion II presents some related work on region-based object
tracking, and Section III describes the proposed approach.

1Author Claudio Jung would like to thank CNPq for partially financing this
work.

Some experimental results are provided in Section IV, and
a discussion of the proposed method is given in Section V.
Finally, the conclusions are drawn in Section VI.

II. RELATED WORK

There are several approaches for object tracking in video
sequences, and region-based techniques try to match the same
region in adjacent frames, using a variety of matching func-
tions. A classical approach is the KLT (Kanade-Lucas-Tomasi)
tracker [1], which is based on minimizing the squared error of
a (usually small) window centered at corner-like features.The
minimization procedure is performed iteratively, being very
fast, but facing problems in the presence of occlusions within
the window.

Another popular approach for region-based object track-
ing is histogram matching. In [2], the authors explored the
principle of color histogram distance within a probabilistic
framework. In their approach, particle filtering was used to
handle clutter in the background and occlusions. Comaniciu
et al. [3] developed a kernel-based tracking scheme, where
each region is characterized by its histogram, and masked with
an isotropic kernel that assign smaller weights to pixels far
from the center of the region. Similar templates in adjacent
frames are found through an iterative scheme based on the
Bhattacharyya coefficient. This approach is very fast and can
deal with partial occlusions on the peripheral regions of the
target, but tends to fail when the occlusion gets closer to the
center of the target (where the weights for the histogram are
larger). An important issue is that object kernels should have
a certain overlap in the consecutive frames, despite recent
efforts to improve convergence issues [4], [5]. Lerdsudwichai
and collaborators [6] proposed a face tracking algorithm
using the Bhattacharyya coefficient as a similarity measure
for template matching, where each template is represented
by color histograms (CbCr components in theYCbCr color
model) modulated by Epachinekov kernels. The value of the
similarity metric is used to detect total occlusions explicitly,
and the color of the shirts are used to recover individual
faces after the occlusion. Porikli [7] proposed a fast way
to extract multidimensional histograms based on integral im-
ages, allowing exhaustive search for object tracking basedon
histogram matching with low computational cost. Marimon
and Ebrahimi [8] combined gradient orientation histogram
matching and template matching through Normalized Cross



Correlation, aiming to estimate rotation along with region
matching. Porikli et al. [9] used the covariance matrix as a
parametric representation of the target, and adopted a distance
metric for covariance matrices based on generalized eigenval-
ues to compute region similarity.

Multiple patches have been adopted to overcome this prob-
lem, since some patches may present tracking errors when
analyzed individually, but the non-occluded patches may lead
to robust template tracking. Hager et al. [10] proposed a new
iterative scheme for matching kernel-modulated histograms,
and introduced objective functions optimizing more elaborate
parametric motion models based on multiple spatially dis-
tributed kernels. Adam et al. [11] proposed a fragments-based
tracking algorithm based on histogram matching using the
Earth’s Mover Distance (EMD). In their approach, different
template fragments are used to build a single robust distance
map, where occluded fragments present a smaller weight.
Their approach presents good tracking results in substantial
partial occlusions, but fails as the number of occluded patches
increases. The approach in [12] employs the same basic idea
of covariance matching as [9], but using multiple overlapping
templates to cope with partial occlusions, and focused mainly
on object recognition. Zhu et al. [13] dealt with occlusions
by dividing the object in smaller blocks, and explored the
similarity in local color and texture features for each of
the blocks. Despite the good results, the approach in [13]
uses a background subtraction algorithm, which limits its
application to static cameras. Liu and colleagues [14] use a
local sparse representation to model the appearance of target
patches, and a sparse coding histogram is used to represent the
basis distribution of the target. Despite the promising results,
computational time was not informed by the authors.

Although the use of multiple patches tends to present more
robust tracking results, the presence of occlusions (particularly
total occlusions) is still a challenge. This work presents a
patch-based tracking approach, where each patch is tracked
individually, and the individual displacement vectors arecom-
bined in a robust manner to obtain the overall displacement
of the object. The proposed method is described next.

III. T HE PROPOSEDMODEL

A. Patch-Based Templates

The use of multiple patches presents additional information
for object tracking, that can be used to resolve ambiguities,
model complex motion, and improve robustness w.r.t. oc-
clusions. Clearly, this selection is highly dependent on the
dissimilarity measure used to compare the patches. The ideal
patch selection is a complex task, and it is out of the scope of
this paper. In fact, our work follows the idea of [11] regarding
patch selection. The original rectangular template, representing
the region to be tracked, is split into a grid ofn×m adjacent
rectangular patches. Although this subdivision may produce
ambiguous patches presenting erroneous tracking results,the
remaining patches that present a correct match help to compute
the displacement of the whole template in a robust manner.
Also, a non-uniform patch distribution could bias the tracking

result in the presence of partial occlusions, particularlywhen
portions of the template containing a higher density of patches
are occluded (so that just a few non-occluded patches would
remain).

As it will become clear in Section III-B, each patch is
represented through a mean vector and a covariance matrix.
Hence, the selected patches must be sufficiently large to
provide reliable estimates of these statistical parameters. Given
the minimum desired side for each patchnp, the user-selected
target is divided uniformly into squares which sizes are as
close to np as possible. Figure 1 illustrates the selection
of patches for some video sequences analyzed later in this
work, where np = 20 was experimentally defined as the
default desired patch side. The outer (thicker) rectangle is the
manually inserted template, and the smaller squares are the
obtained patches.

(a) Woman (b) Face1

Fig. 1. Automatic selection of patches from the user-defined rectangular
template.

B. Patch Matching

There are several methods for template matching based
on pixel statistics, such as direct histogram matching using
different similarity measures [8], [11], kernel-weightedhis-
tograms [3], or comparing statistical parameters that describe
each region, such as the covariance tracking algorithm pro-
posed in [9].

One problem of histogram-based methods is the rapid
growth in the computational complexity as the dimension of
the feature space increases: ifNb bins are used to represent
each of thed dimensions, the histogram requiresNd

b bins for a
full representation. For example, only intensity values are used
in the histogram-based tracking algorithm proposed in [11],
since the authors claim that using 3 color channels would
lead to an expensive algorithm. On the other hand, statistical
feature descriptors usually require a small amount of memory
and matching metrics which are cheaper to implement, but the
choice of the features and the statistical descriptors is still a
challenge. For example, the tracking algorithm described in [9]
uses a compact representation of each region (the covariance
matrix, requiringd(d + 1)/2 parameters) to perform region
matching. However, it is clear that distinct regions may have
the same covariance matrix, leading to possibly erroneous
matching.

The definition of the dissimilarity measure for object match-
ing is also a disputed issue. Rubner and collaborators [15]



performed an empirical comparison of several matching al-
gorithms (including the Bhattacharyya distance, Kullback-
Leibler divergence and EMD, among others) focused on color
and texture features, and concluded that “there is no measure
with best overall performance, but the selection depends on
the specific task”.

For some parametric models, there are closed-form expres-
sions for classical measures for comparing two probability
density functions (such as the Bhattacharyya distance) that
involve only the statistical parameters of both distributions. If
the estimation of these parameters is cheap (in the computa-
tional point of view), such closed-form expressions are very
fast to evaluate.

One model that can be computed very fast and that leads to
a closed-form expression for the Bhattacharyya distance isthe
multivariate Gaussian distribution. This distribution ischarac-
terized by the sample mean vectorµ and covariance matrixC,
which can be computed efficiently in any rectangular region
using the integral representation described in [12]. In fact, the
cost for computing an integral image in a rectangular region
with dimensionsH × W using feature vectors of dimension
d is O(HWd2), and the cost to estimateµ andC within any
rectangular subregion of arbitrary size isO(d2).

Given two Gaussian distributions with parametersµ1, C1

andµ2, C2, the Bhattacharyya distance between them is given
by

B =
1

8
(µ1 − µ2)

T

[

C1 +C2

2

]−1

(µ1 − µ2) +

+
1

2
ln

(

|(C1 +C2)/2|
√

|C1||C2|

)

. (1)

The matrix inversion is the most expensive operation when
evaluating the dissimilarity, and it is traditionally computed
with O(d3) operations. Also, if thed features are uncorrelated,
the covariance matrix is diagonal, and the cost to evaluate
Equation (1) reduces toO(d).

One problem with the Gaussian assumption is that, in
general, the distribution of features vectors (e.g.RBG color
channels) is not even unimodal for most objects. In people
tracking, for instance, the person may have a shirt in one color
and the pants in another, leading to a bimodal distribution.
Other models (such as a mixture of Gaussians) would be
more adequate, but at a greater computational cost. In our
approach, since the region of interest is split into smaller
patches, the distribution of feature vectors within each patch
is more likely to be roughly homogeneous, and the deviation
from the normal may not be very large. A possible drawback
of using patches is that large homogeneous regions in the
template could accommodate different similar patches, which
could lead to tracking errors for these patches. However, the
overall displacement of the whole template is computed using
a robust weighted average of individual displacements, so that
a few patches with wrong results are overwhelmed by the
remaining ones. In fact, the experimental results shown in
Section IV indicate the robustness of the proposed technique.

To obtain the individual displacement vectorvi for each
patchi, a search region with dimensionSn ×Sm is placed at
the center of the patch in the current frame. The Bhattacharyya
distance between the patch and every candidate in the search
region is computed exhaustively, and the selected patch is the
one presenting the smallest distance.

C. Motion Prediction

Motion prediction can be very useful to reduce the search
area or to eliminate spurious movements under heavy occlu-
sion. There are two important issues with motion prediction:
how to do it fast, and how to use the information in a easy
and coherent way. In this work, we adopted the Double Ex-
ponential Smoothing technique proposed in [16] for position
prediction, which is very fast and has prediction performance
equivalent to Kalman filters.

Given a temporal series of vectorsvt, the prediction at time
t+ τ is given by

vt+τ =

(

2 +
ατ

1− α

)

Svt −

(

1 +
ατ

1− α

)

Sv
[2]
t , (2)

whereSvt andSv[2]
t are auxiliary variables computed through

Svt = αvt + (1− α)Svt−1, (3)

Sv
[2]
t = αSvt + (1− α)Sv

[2]
t−1. (4)

Here, α is the degree of the exponential decay (smaller
values forα produce smoother predictions). In the proposed
approach, we usedα = 0.1 to get a smooth prediction, and
τ = 1 (to get a prediction at each frame) to generate a
predicted vectorvp = vt+1.

D. Combining Patch Information and Motion Prediction

The matching measure and the motion prediction described
previously generate a set ofNp displacement vectorsvi (where
Np is the number of patches) and one predicted displacement
vectorvp, in a total ofNp +1 individual motion information.
For sakes of simplicity, we will definevNp+1 = vp.

For translational only movements, all these vectors should
be similar. However, partial occlusions, patches on uniform
regions and illumination changes may corrupt the displace-
ment vectorvj for one or more patches. Computing the mean
displacement vector would be a naı̈ve approach, since the
mean can be significantly affected by a single outlier. A more
adequate approach, commonly used in color image denoising
[17], is the use of Weighted Vector Median Filters (WVMF),
that implicitly account for outlier rejection. In the original
formulation of the WVMF [17], the first step consists of
computing the distance from each vector to all others:

Dj = D(vj) =

Np+1
∑

i=1

‖vj − vi‖, j = 1, ..., Np + 1, (5)

whereNp + 1 is the total number of vectors, and‖ · ‖ is a
vector norm (in this work, we employed theL1 norm). The



filtered vectorvf is then defined according to

vf =

Np+1
∑

i=1

wivi

Np+1
∑

i=1

wi

, (6)

where wi = f(Di), and f is a nonnegative monotonically
decreasing function (so that vectors that are farther from the
median carry less weight).

As it can be observed, the weightswi in the original WVMF
formulation [17] include only geometrical distances between
pairs of vectors. In this paper, we propose a modification
of the weightswi by also including the matching error (i.e.
the Bhattacharyya distance)Bi of each patch according to
Equation (1) in the filtering process, so that patches with
smaller matching errors carry more weight. More precisely,
the proposed weights for the WVMF are given by

wi = g(Di, Bi), (7)

whereg(x, y) is a nonnegative monotonically decreasing func-
tion when considering the variablesx andy individually, i.e.,
∂xg(x, y) < 0 and ∂yg(x, y) < 0, ∀x, y > 0. With this
choice forwi, vectors that present smaller matching errorsBi

and that are also geometrically consistent with the remaining
vectors (i.e., present a smaller distanceDi) are prioritized in
the weighted average.

One class of 1D functions that has shown good results
for removing outliers in color image denoising [18] is
exp(−xr/β), whereβ and r are parameters that are chosen
to give a good general purpose filter. Our choice for the 2D
function g follows the same idea, and it is given by

g(x, y) = e−
[

(x/β)2 + (y/γ)2
]

, (8)

where β and γ control the decay ofg as a function ofx
and y, respectively. Smaller values forβ and γ prioritize
displacement vectorsvi that present the smallest distanceDi

and Bhattacharyya errorBi, respectively. Asβ andγ increase,
the WVMF gets closer to the simple average filter, since all
the weightswi tend to be similar. In this work, we selected
β adaptively throughβ = mini Di, so that the decay ofg is
strong for displacement vectors far from the minimum value.
We also propose to useγ = 0.15, since our experimental
results indicated that non-occluded patches typically present
Bhattacharyya errors around or below0.15. The Bhattacharyya
coefficient b = e−B relates to a bound for the classification
error between two equiprobable classes [19], and it is used as
a similarity measure in other works [3], [6]. Hence,B = 0.15
leads tob ≈ 0.86, which is coherent with the similarity metrics
reported in [6].

It should be noticed that there is no matching errorBNp+1

associated to the predicted motion vectorvNp+1, which is
required in Equation (7). If a small value is assigned to
BNp+1, the predicted displacement will carry more weight
in the WVMF, and the opposite happens for largerBNp+1

values. The first situation is adequate during total occlusions,
since the patches do not provide reliable information. On the
other hand, the second situation is suited for normal tracking
conditions, where the information provided by the patches
should dominate. In our approach, the value ofBNp+1 is
computed adaptively in time, based on the patch errors in the
previous frames.

For each framet, there areNp+1 Bhattacharyya distances
Bi(t) related to theNp patches and the predicted vector2

vNp+1. The representative errorB(t) for whole template at
framet is retrieved from the individual displacement informa-
tion that is most coherent with the displacement of the whole
template, i.e.

B(t) = Bj(t), where j = argmin
i

‖vf − vi‖. (9)

In normal tracking conditions,B(t) is expected to represent
the Bhattacharyya distance of an existing patch. On the other
hand, during total occlusions, the patches are expected to
produce spurious displacement vectors (probably with large
matching errors), andB(t) tends to represent the Bhat-
tacharyya distance of the predicted vector at the previous
frame.

Finally, the selected errorBNp+1 for the predicted vector
vNp+1 is given by

BNp+1 = median
k∈{t−Tp,...,t}

B(k), (10)

where Tp is the temporal window (in this work, we used
Tp = 30 for videos acquired at 30 FPS, so that the median er-
ror in the past second is retrieved). Again, the rationale for this
choice is that when the object starts being occluded,BNp+1

should retrieve the matching errors of correctly matched
patches in the previous frames, tending to present smaller
errors than those of currently tracked patches (which are under
occlusion). Hence, the prediction vector tends to carry more
weight during occlusions.

It should also be noticed that there is only one predicted
displacement vectorvNp+1, and Np displacement vectors
generated from the patches. IfNp is large, the overall dis-
placement of the template tends to be dominated by the patch
displacementsvi, i = 1, ..., Np, even if BNp+1 is small. To
cope with this issue, we also introduced a compatibility factor
0 ≤ c ≤ 1 to re-weightvNp+1 as a function ofNp. More
exactly, the weightwNp+1 in Equation (6) is re-computed
through

wNp+1 = cNpg(DNp+1, BNp+1). (11)

Smaller values forc decrease the weight ofvNp+1, and the
opposite happens for larger values ofc. In this work, we used
c = 0.5 in all experiments.

An example of the procedure for combining the individual
displacement vectors for each patch to obtain the overall
displacement of the whole template is illustrated in Fig. 2.
Fig. 2(a) shows the initial template (outer red rectangle) and

2Except for the first frame, whereBNp+1(t) is not defined.



the individual patches (smaller subrectangles). The vectors
in blue indicate the individual displacement vectors for each
patch, and the green vector at the center refers to the global
displacement of the template. The displaced template in the
subsequent frame is illustrated in Fig. 2(b). It is interesting
to notice that the bottom patches were occluded from one
frame to the other, and erroneous displacement vectors were
created. Also, some unoccluded patches presented misleading
displacements. However, the WVMF discarded the influence
of these vectors, leading to a correct displacement for the
whole template.

(a) (b)

Fig. 2. Example of the procedure adopted to obtain the displacement of the
whole template based on the displacement of each individual patch through
WVMFs.

E. Model Update

To cope with object changes (appearance, illumination, etc.),
the model must be updated to improve tracking results. A sim-
ple and direct approach would be to compute the covariance
using tracked templates in different time steps, as noticedby
Porikli et al. [9]. However, as indicated by the same authors,
the cost to compute the covariance matrix directly usingT
templates with dimensionMT×NT is O

(

NTMTTd
2
)

, which
is very expensive and requires great amounts of memory. In
fact, they proposed an updating scheme based on Lie Algebras
to overcome this problem.

In this work, we use a fast and memory-efficient updating
scheme for both the mean vector and covariance matrix, based
on an iterative recomputation of these statistical descriptors.
Let µ1 andC1 be the mean and covariance of the model frame
t−1, and letµ2 andC2 denote the same parameters for current
frame t. The updated meanµ and covariance matrixC are
given by

C = (1− w)
(

C1 + µ1µ
T
1

)

+ w
(

C2 + µ2µ
T
2

)

− µµT ,(12)

µ = (1− w)µ1 + wµ2, (13)

where0 < w < 1 is the update rate of the model, such that
w ≈ 1 leads to a faster update, andw ≈ 0 leads to a slower
update of the model. Ifµ1, C1 relate to a setS1 containing
N feature vectors, andµ2, C2 relate to a setS2 containingM
feature vectors, it can be shown that the mean and covariance
using all vectors inS1∪S2 can be obtained with Equations (12)
and (13) usingw = M/(M + N) and 1 − w = N/(M +
N). Our experimental results indicated thatw = 0.1 produced
good results, and it was selected as a default value.

The computational cost of this procedure isO
(

d2
)

, and
it does not depend on the dimensions of the template. Fur-
thermore, as Equations (12) and (13) are applied recursively
every frame, the resulting mean and covariance matrix embed
information about all previous frames to which the updating
rule is applied. The proposed scheme is also very efficient in
terms of memory storage: only the previous descriptors (µ1,
C1) and the current descriptors (µ2, C2) are used, and the
samples used to compute the model in the previous frames
are not required.

IV. EXPERIMENTAL RESULTS

This Section presents some experimental results obtained
with the proposed algorithm, called the Coherent Patch Dis-
placement (CPD) Tracking algorithm. The experimental val-
idation was performed qualitatively, by visual inspectionof
tracking results, and also quantitatively, by comparing the
tracking errors produced by the proposed approach and by
two state-of-the-art techniques, namely the MeanShift algo-
rithm [3] and the FragTrack algorithm [11].

All the results presented in this Section were computed
using C++ implementations of the algorithms (the code for
FragTrack was kindly provided by Amit Adam), running
on a PC computer with a Pentium Core 2 Duo 2.33GHz
processor, 1GB RAM and windows XP operational system.
To compare the techniques we used five different video
sequences:Woman, Caviar, Face1, Face2, and Person. The
Womansequence is a video of a woman walking on a side-
walk, sometimes partially occluded by different cars (available
for download at http://www.cs.technion.ac.il/∼amita/fragtrack/
fragtrack.htm). TheCaviar sequence is one of the videos of the
CAVIAR project (http://homepages.inf.ed.ac.uk/rbf/CAVIAR
), and it consists of some people walking through a mall.Face1
and Face2 are two facial video sequences, containing head
tilts, turns and occlusions. Finally, thePersonvideo sequence
illustrates a full body person moving behind several trees
in an outdoor environment with illumination changes (from
cloudy to partly sunny), shot with a moving camera. The
WomanandCaviar video sequences are available with ground
truth data, while the remaining sequences were manually
ground truthed by our group. Tracking results for all video
sequences, as well as the original versions ofFace1, Face2
andPersonsequences with ground truth data can be accessed
at http://www.inf.ufrgs.br/∼crjung/cpd/cpdvideos.html.

For these five video sequences we computed the execution
time and the tracking error (Euclidean distance between the
actual position and the tracked position) for each frame. In
all experiments, we used the same search region (30 × 30)
for CPD Tracking and FragTrack (Meanshift does not require
a search region). For FragTrack, we used 16 histograms bins
(only luminance information), and the EMD distance as the
histogram matching procedure. For CPD Tracking, we used
the same set of 5 features for all sequences: the 3 color
channels and the 2 components of the gradient computed from
the luminance component. It is important to emphasize that,
although CPD presents other tunable parameters (np, w, Tp,



γ, and c), the same default values described in the previous
Section were used in all experiments, although, even better
results could be achieved by fine tuning those parameters to
each individual video sequence.

The plots in Fig. 3 show the tracking errors obtained with
the algorithms for the video sequences. As it can be observed,
Meanshift presents larger errors for all videos, mostly dueto
occlusions. Under partial occlusions (which happen frequently
in the Womanand Caviar sequences), FragTrack and CPD
Tracker present similar errors. However, under significant
partial occlusions (as the final portion of theCaviar video) or
total occlusions (as the regions marked with gray rectangles
in the Face1, Face2 and Personsequences), FragTrack gets
lost, and it can only recover the target if it reappears within
its search region. On the other hand, CPD Tracker can handle
those situations efficiently. and in the first total occlusion of
thePersonsequence (around frame 230 in Fig. 3(e)). For these
three video sequences, We also tried to run FragTrack with
an expanded search region (70 × 70) to evaluate its ability
to recover the target. The target was effectively recovered
for the Face1 sequences after the occlusion, but FragTrack
failed to find the target after the second total occlusion of
the Person sequence (around frame 330). In fact, the code
for FragTrack (provided by the authors of [11]) halted for
the Personsequence during the execution, when the template
reached the boundary of the image after getting lost. This
happened at frames 282 (30 × 30 search region) and 404
(70 × 70 search region). The same happened after the first
occlusion of theFace2 video sequence. Since there was no
improvement when using the extended search region for this
sequence, the error plot was not included in Fig. 3(d). It is
also interesting to note that MeanShift may recover or not
from total occlusions, depending on the color distributions of
the target and its neighborhood at the time of the occlusion.
If the iterative process that guides MeanShift pushes the
template towards the target right after the total occlusion(as
in Face1andFace2sequences), the target can be successfully
recovered. On the other hand, if the template is pushed away
from the real target (as in thePersonsequence), the target can
not be recovered.

A summary of the results is illustrated in Table I, that shows
the mean error, maximum error and standard deviation for
each technique and video sequence, as well as the average
running time. As it can be observed, Meanshift presented the
largest errors, followed by FragTrack and CPD Tracker. It
is interesting to note that both FragTrack and CPD tracker
achieved similar results in terms of accuracy when only partial
occlusions appear (Womanand Caviar sequences), but CPD
Tracker clearly outperforms FragTrack during total occlusions
(the three other sequences). In terms of execution time, CPD
was much faster than FragTrack: more than fifty times faster
in the best case and more than twenty times faster in the
worst case, considering the same search region30 × 30.
amplified when comparing CPD with the extended search
size for FragTrack. The MeanShift tracker is the fastest of
them all, mostly because it is based on an iterative search

procedure instead of exhaustive search. However, its accuracy
and robustness to occlusions (either partial or total) was far
behind FragTrack and CPD.

TABLE I
TRACKING ERROR(IN PIXELS) AND EXECUTION TIME (IN SECONDS PER

FRAME) FOR THE TRACKING METHODS: CPD TRACKER, FRAGTRACK

AND MEANSHIFT. SMALLEST VALUES ARE DISPLAYED IN BOLD.

CPD FT-30 MS FT-70

Woman

Average Error 6.03 5.23 7.20 −
Max. Error 15.86 17.57 23.28 −
Std. Deviation 3.65 3.09 4.75 −
Avg. Time 0.055 2.892 0.036 −

Caviar

Average Error 5.30 7.33 10.05 −
Max. Error 12.04 71.18 19.31 −
Std. Deviation 2.60 10.38 4.56 −
Avg. Time 0.050 2.323 0.034 −

Face1

Average Error 6.44 33.19 15.13 10.15
Max. Error 25.24 132.02 85.15 41.34
Std. Deviation 4.90 45.35 16.48 9.35
Avg. Time 0.121 2.648 0.032 14.68

Face2

Average Error 6.49 19.94 10.95 −
Max. Error 34.13 105.60 65.00 −
Std. Deviation 5.96 23.75 12.06 −
Avg. Time 0.061 2.819 0.031 −

Person

Average Error 4.50 20.04 120.65 24.53
Max. Error 46.57 154.26 217.37 176.65
Std. Deviation 4.38 38.63 63.34 43.60
Avg. Time 0.049 2.204 0.031 7.53

Fig. 4 shows some frames of the five video sequences, along
with the tracking template produced by each technique. In the
first frame of each video, all techniques were initialized with
the same template (so that only one template is visible). In
frame 17 of theWomansequence, when part of the woman’s
body is covered by the car, MeanShift has its template dis-
placed, showing that it presents difficulties to deal with partial
occlusions. On the other hand, both FragTrack and CPD are
able to follow the woman correctly. The same happens in
occlusion situations for theCaviar sequence. However, at the
end of this sequence (see frame 366), the partial occlusion
is substantial, and FragTrack misses the target. The other
three sequences present situations of total occlusions. Asit
can be observed, CPD is usually able to estimate the target
position under complete occlusions, while both Meanshift and
FragTrack wrongly find the best match on the background
(for instance, see frame 360 of theFace1sequence). In some
cases (as in theFace1, Face2andPersonsequence), Meanshift
and/or FragTrack can not recover the target after the occlusion,
and the matching template wanders around the image. Since
Meanshift is based on an iterative procedure, it may not
recover the target if it reappears sufficiently far from the
current position of the template. The ability to recover the
target for FragTrack is highly dependent on the search region,
but the computational cost increases as the search region is
expanded. In fact, CPD also presents the same drawback,
but since it predicts the motion during occlusions, the search
region can be kept relatively small.

V. D ISCUSSION

A. Selection of Feature Vectors

It is important to note that several combinations of feature
vectors can be used to build the model for each patch. Such
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Fig. 3. Tracking error for the analyzed techniques (MeanShift, FragTrack and CPD) for the five video sequences. Gray rectangles indicate portions of total
occlusion.

Initial frame Frame 49 Frame 285 Frame 380

Initial frame Frame 91 Frame 284 Frame 366

Initial frame Frame 200 Frame 320 Frame 360

Initial frame Frame 197 Frame 253 Frame 390

Initial frame Frame 229 Frame 331 Frame 461
Fig. 4. Example frames for the five video sequences. Color rectangles indicate
the matching template for the three tracking algorithms: CPD (in Red),
FragTrack (in Green), and MeanShift (in Blue). Additionally, we included the
results of FragTrack (in Yellow) with an extended search region (70 × 70)
for some of the sequences.

features may be color (using different color spaces), gradient,
second derivatives, textural information, depth information
(when stereo cameras are employed), thermal, etc. Clearly,
the best features are those that present a better separability
between the chosen object and the neighborhood, what is very
context-dependent.

We have tested the performance of our method using a
variety of combinations involving different color spaces (such
as HSV and normalizedRGB), and concluded thatRGB
features plus gradient information presents good results in
most of the cases (and no additional cost for color space
transformation is required). In fact, just usingRGB features
is usually enough to achieve good tracking results, and the
inclusion of gradient information appeared to improve the
results under occlusions. Table II illustrates the tracking errors
of CPD using onlyRGB features for the video sequences,
along with execution times. As it can be observed, errors are

typically a little larger than those obtained withRGB plus
gradient, but running times are considerably lower (in most
cases, even lower than MeanShift). A theoretical analysis of
the computational cost is provided next.

TABLE II
TRACKING ERROR(IN PIXELS) AND EXECUTION TIME (IN SECONDS PER

FRAME) FOR THECPD TRACKER USING ONLY RGBFEATURES.

Woman Caviar Face1 Face2 Person

Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max.
5.08 13.89 7.42 19.70 6.31 26.63 11.14 43.10 4.99 47.54

Std. Time Std. Time Std. Time Std. Time Std. Time
3.09 0.029 4.67 0.031 5.19 0.049 7.80 0.031 5.20 0.018

B. Computational Cost

To analyze the computational cost of the proposed approach,
let us consider that the initial template is split intoNp patches,
and the patch statistics are computed usingd-dimensional
feature vectors. Also, let us consider a search region with
dimensionSn × Sm.

The cost for computing the integral image representation
restricted to the search region isO(SnSmd2), and the com-
plexity for obtaining the mean and covariance of allNp

patches isO(Npd
2). The cost to compute the distance between

two patches using the Bhattacharyya distance isO(d3)3, and
the cost for an exhaustive comparison of allNp patches
within the Sn × Sm region isO(NpSnSmd3). The cost for
obtaining the displacement of the whole template based on the
individual patches using WVMFs isO(N2

p ), and the updating
rule presents a cost of the orderO(d2). Hence, the total cost of
the proposed procedure isO(SnSmd2+Npd

2+SnSmNpd
3+

N2
p + d2). In practice,SnSmNpd

3 is by far the largest term,
so that the complexity for a sequential implementation can be
approximated asO(SnSmNpd

3). It should be noted that, since
each patch is tracked individually, parallel hardwares (such
as multiple/multicore processors or Graphics Programmable
Units) can be explored to further reduce running times.

C. Limitations

Although the proposed method performs usually well under
partial and short-time total occlusions, there are some scenar-
ios where it is prone to errors. For example, during longer-term
occlusions, the updating rule would learn the statistics ofthe

3However, as mentioned previously, there are algorithms that reduce the
complexity toO(d2.376) [20].



occluding object. Also, if the target appearance is significantly
changed during a total occlusion, it may not be recovered when
it reappears from the occlusion.

Another issue regards the motion of the target during the
occlusion. The motion prediction scheme utilizes the displace-
ment vectors in the previous frames to estimate the future
position of the target. If the target changes its motion during
the occlusion (e.g. a person moving behind a wall stops during
the occlusion), the predicted position would provide a wrong
estimate.

It should also be noticed that the patches are tracked based
on estimates of the mean vector and the covariance matrix. If
smaller patches are used, the estimation of these parameters
may be very sensitive to changes in a few pixels of the patches,
which may lead to erroneous tracking results.

Examples of situations where the proposed approach may
fail are illustrated in Fig. 5. In Fig. 5(a), the target is very
small, and a subdivision into even smaller patches would lead
to unreliable estimates of the mean vector and covariance
matrix. In Fig. 5(b), the target gets occluded behind the
wardrobe for a long time (dashed line), so that the template
learns the statistics of the wardrobe and do not recover the
target after the occlusion. Finally, Fig. 5(c) shows a target that
changes completely its motion pattern during the occlusion,
so that the predicted template would be far from the actual
target after the occlusion.

(a) Small target (b) Long occlusion (c) Motion change

Fig. 5. Situations where the proposed approach may fail.

VI. CONCLUSIONS

This paper presented a robust patch-based approach for
object tracking. The initial template is divided into disjoint
rectangular subregions (patches), and each of these patches
is tracked independently by minimizing the Bhattacharyya
distance within a search region. The displacement vector of
each patch is combined with a motion estimated vector using
a WVMF, and the displacement of the whole template is
obtained. Finally, a simple and efficient updating scheme is
used to cope with appearance and illumination changes.

Experimental results indicated that the proposed method is
robust with respect to partial and short-term total occlusions,
and it can effectively adapt to appearance and illumination
changes. Quantitative results indicated that the performance
of the model is comparable to or better than competitive
approaches [3], [9], [11], presenting the best compromise
between tracking accuracy and execution time among all tested
methods.

There are several avenues left for improving this work.
For example, a comprehensive study on feature selection

for region-based tracking could improve the results of the
proposed algorithm. In fact, an ideal approach would consider
adaptive online feature selection based on the characteristics
of the object and its surroundings at each frame, similarly to
the method described in [21]. Also, the use of templates with
adaptive sizes could account for scale variations of the tracked
object.
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