
Predictive Lazy Amplification:
Synthesis and Rendering of Massive Procedural Scenes in Real Time

Carlúcio Santos Cordeiro, Luiz Chaimowicz
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
Belo Horizonte, Brasil

carlucio@gmail.com, chaimo@dcc.ufmg.br

Abstract—In this paper we propose a new paradigm for
procedural modeling that enables the real time visualization of
massive procedural scenes. For this, we use a combination of
memory and task management with two well known procedural
modeling paradigms: data amplification and lazy evaluation.
Experimental results show that, in addition to obtaining perfor-
mance gains through parallelism, the implemented system can
generate and visualize a procedural scene far greater than the
available memory in real time using only a single PC equipped
with a GPU and a multicore processor.

Keywords-Rendering ; Modeling and reconstruction

I. INTRODUCTION

Procedural modeling is a very interesting approach to
synthesize a large variety of textures and 3D models. In
this approach, geometric data are synthesized by a set of
algorithms (procedures). The use of procedural modeling
techniques can help graphic artists to create complex scenes
in less time than if they were completely shaped by hand
using 3D modeling softwares. Procedural modeling is not
intended to replace the work of artists, but to collaborate
with their productivity, providing more elaborate modeling
tools. The artists do not have to worry about the richness of
details. They just have to deal with parameters that represent
some “look and feel” of each model.

In the gaming industry, procedural modeling was exten-
sively used in the first generations of personal computers
and videogame consoles. Some classic games from mid-80s
showed us that these techniques were an interesting way
of dealing with the limitations of these old systems. Then,
for some time, the use of procedural content generation in
games was left behind, mainly due to the increased memory
capacity of the gaming systems. Nevertheless, in the last
few years, games are demanding massive environments with
richness of details and procedural modeling is becoming an
interesting approach again, not only to cope with memory
constraints, but mainly to deal with the high demand for
visual content in modern games.

This field presents at least three major research challenges.
The first one is the main theme of procedural modeling:
create procedures and algorithms that synthesize realistic

models with richness details. The second challenge is con-
trollability: with the abstraction provided by procedural
models, users may lose control over certain details of the
generated scenes [1]. The third challenge is managing the
large amount of data that are generated by procedural
models. This is a less studied problem and is the main focus
of our research.

According to Hart [2], [3], applications that use procedural
synthesis of geometry may be classified into two paradigms:
data amplification and lazy evaluation. In a concise defini-
tion, data amplification consists in generating all the geome-
try of the scene in memory before the visualization process.
On the other hand, in lazy evaluation, only the objects
needed for a given view are generated. Data amplification
can generate a lot of objects in an appropriate representation
to be rendered in real time, but it is only applicable for
scenes that, when amplified, fit in system memory. Lazy
evaluation avoids memory problems by synthesizing data
only when required, but there is no memory management
and the synthesis must be done in each frame. Thus, lazy
evaluation may be inadequate for real time applications since
the cost of generating all the data for rendering each frame
can be prohibitive. These two fundamental paradigms are
discussed in more detail in sections II-A and II-B.

A simpler solution would be to generate the entire scene
in an external file using data amplification and then use
out-of-core visualization techniques to render the massive
model. However, using this approach, the scene should be
fully synthesized on a storage device before visualization.
This method is less flexible and demands secondary memory
which can become another obstacle. To overcome these
problems we need more elaborated techniques.

In this paper we propose a paradigm for governing
procedural synthesis of geometry that enables real time
visualization of massive procedural scenes. We can briefly
define it as a compromise between data amplification and
lazy evaluation through memory and task management. The
main idea is to do a “lazy data amplification” in a speculative
way, predicting which models in the scene must be synthe-
sized and maintained in memory, as well models that should
be discarded. We call our new paradigm “Predictive Lazy



(a) Data amplification (b) Lazy evaluation

Figure 1. Fundamental procedural modeling paradigms proposed by Hart [3].

Amplification”. We also propose and implement a scene
graph technology that employs this new approach.

This paper is organized as follows: in Section 2 we discuss
relevant related work and some background in the field.
Section 3 presents our proposed paradigm and scene graph
technology. In section 4 we discuss some implementation
issues and in section 5 we provide some experimental results
that show a proof of concept of the proposed paradigm.
Finally, in Section 6, we present the conclusions and possi-
bilities for future work.

II. BACKGROUND AND RELATED WORK

Most of the works in the procedural modeling field deal
with the problem of proposing or improving some procedural
models. Researchers have designed procedural models for
various types of objects and natural phenomena. We can
cite seminal works that focus on building textures [4], [5],
[6], terrains [7], [8], plants and vegetation [9], [10], [11],
cities and architecture elements [12], [13], [14] and seashells
[15], [16]. Although our work is not directly related to
any particular procedural model class, our technique allows
the use of different procedural models, such as those just
mentioned.

There are also works that enhance or improve fundamental
procedural modeling techniques. Many of them explore
the use of GPUs to speed up procedural synthesis, for
example, procedural textures [17], terrains [18], parametric
and subdivision surfaces [19], [20] and particle systems
[21]. However, since GPUs are naturally well explored in
real time rendering applications, we are not interested in
using GPUs for procedural synthesis at first. Moreover, the
complexity and variety of procedural modeling techniques
make them hard to adapt and implement in current GPU
technology, which is still more restrictive than the traditional
CPU programming.

The rendering of massive models is discussed mainly in
out-of-core visualization works, such as [22], [23], [24].
Most solutions use techniques such as visibility calculations,
scene and memory management and parallel computing.
Some systems show that interactive visualization of large
volumes of data is possible using only a single home PC
[25]. Our solution follow this thread. The main difference
here is that geometric data is not stored and read from
disk, but generated on demand by procedural modeling
algorithms.

Few works discuss the data explosion problem in pro-
cedural modeling. Hart [2], [3] is one of the first to
address this problem. He proposed the classification of
procedural modeling systems in two fundamental paradigms
that he called data amplification and lazy evaluation. He
also proposed a scene graph technology called Procedural
Geometric Instancing (PGI) that employs lazy evaluation.
These concepts are fundamental in our work and will be
discussed in the next sections.

A. Data Amplification

Applications that follow the data amplification paradigm
synthesize all geometry before the rendering process. Smith
[26] coined the term data amplification to explain how
procedural models transform a small amount of parameters
(input data) into a large amount of geometry (output data).
Data amplification causes an explosion of intermediary data,
due to the fact that the procedural model is converted into
a geometric representation suitable for rendering. Figure
1(a) illustrates the data amplification paradigm. Observing
the diagram, we can see the serial characteristic of data
amplification. First the user articulates the procedural model
setting its parameters. Then the modeler synthesize the
intermediate representation. Finally the renderer receives the
geometry from the modeler and draws the model.

B. Lazy Evaluation

The lazy evaluation paradigm avoids the storage problems
that may occur in data amplification. For this, the procedural
synthesis is performed on demand only when the system
needs data. Unlike data amplification, which is a sequential
approach, lazy evaluation follows an asynchronous architec-
ture in a client-server fashion. The diagram in Figure 1(b)
shows that the renderer maintains a direct communication
with the modeler. Each time the renderer needs a model,
it makes a request to the modeler that then synthesizes the
data on demand.

C. Procedural Geometric Instancing

Scene graphs are spatial data structures commonly used
in graphics applications and are a frequent research subject
[27], [28]. Scene graphs can represent basic geometric
instances, but, in general, a standard scene graph is not able
to represent all types of procedural geometric instances. The



Figure 2. The Predictive Lazy Amplification paradigm proposed in this work.

scene graph technique called Procedural Geometric Instanc-
ing (PGI) is an extended type of scene graph that employs
lazy evaluation to support more classes of procedural models
[2]. Basically, PGI nodes are augmented with procedures that
are executed whenever the model is requested, i.e., whenever
it is drawn on the screen.

III. OUR APPROACH

A. Predictive Lazy Amplification

As mentioned, data amplification causes a geometric data
explosion. The intermediate representation of a complex
scene can become extremely large. For example, a poplar
tree procedural model described by 16 KB, when evaluated
yields 6.7 MB [11]. A small forest of ten thousand trees
would result in about 60 GB and easily extrapolate the main
memory of the best home PCs today. On the other hand,
using solely lazy evaluation to synthesize, draw and drop
all the models when required is an inadequate approach to
be used in real time rendering. Generating a view from a
complex scene can be very expensive to be done on every
rendered frame.

A simple solution to visualize massive procedural scenes
in real-time would be to use data amplification to generate
the scene in a file and then use an out-of-core visualization
algorithm for displaying it. However, this approach has a
limitation imposed by the use of the secondary memory.
Returning to the above example, if we want a forest with a
million distinct poplar trees, the result would be a file with
about 6 terabytes. To avoid these problems, we combine
the two fundamental procedural modeling paradigms with
memory and task management techniques in a single ren-
dering pipeline. We call this new paradigm Predictive Lazy
Amplification.

The central idea of predictive lazy amplification is to
establish a compromise between the two well known pro-
cedural synthesis paradigms, data amplification and lazy
evaluation. In a nutshell, this new paradigm consists in using
a visibility prediction method to manage memory allocation
and task management in the system. Models that are in the
current field of view or that are likely to become visible
in a near future are synthesized on demand and kept in

memory as needed. Models that are in memory and have
low probability of being seen are discarded and the memory
used by them is freed.

Figure 2 illustrates the predictive lazy amplification
paradigm. Observing the diagram, we can note that predic-
tive lazy amplification is also asynchronous, with a client-
server architecture similar to that used in lazy evaluation.
But the client here is the predictor and not the renderer.
During visualization, the predictor estimates what models
are needed and requests them to the modeler. The modeler
synthesizes data in a format suitable to be rendered. The
predictor then maintains this data in memory as long as
they are needed. With the required data in memory, the
renderer can then render the visible scene directly. When
the predictor decides that a model is no longer necessary,
it discards intermediate data and liberates the memory that
was being used.

B. Blowfish Scene Graph

In section II-C we briefly presented PGI (Procedural
Geometric Instancing) that is an extended scene graph type
capable of supporting procedural models. We also mentioned
that PGI was designed with the lazy evaluation paradigm in
mind. Likewise, we also propose a scene graph technology
that employs our new paradigm. We call it Blowfish1 Scene
Graph (BSG). The BSG object model is ilustrated as a
UML class diagram in Figure 3. All BSG components are
classified as a geometry, a attribute or a node, and all
scene graph traversals are implemented by evaluators. Two
evaluators that are fundamental for system works are the
renderer and the predictor. Next, we briefly describe the
main BSG components and operations.

1) Main Operations: In PGI, an object is always instan-
tiated when it is drawn because it uses lazy evaluation.
The approach proposed here follows a different path. The
instantiation is not related to rendering and runs in a separate
operation. The main idea of the BSG is to decouple the

1The name Blowfish is inspired by the fish that has the property of
inflating his body when threatened by a predator or other environmental
factor.



procedural instantiation operation from the rendering and
define two new operations to handle this process:

• inflate: The procedural instantiation is performed in
this operation. When a scene component is “inflated”,
it is synthesized from its parameters and an appropriate
representation is generated for rendering. We can see
this operation as applying data amplification in a scene
component.

• shrink: When this operation is applied on a scene
component, all data that was amplified by the inflate
operation is discarded, turning the component back to
its compact state. Because of its ability of inflating
and shrinking we call this scene graph “Blowfish Scene
Graph”.

2) Components: Another difference between PGI and
BSG is that instead of a single abstract scene component,
which is the PGI scene graph node, BSG defines three main
abstract scene components:

• Nodes: Nodes are used to structure scenes. In our
design, nodes are not shared among others. Shared
components are geometries and attributes, which are
attached to each node. Also, the node has other basic
attributes like geometric transformations and a bound-
ing volume.

• Geometries: Geometries are all components that can
be drawn. Examples range from the most basic objects
such as spheres, cylinders and cubes to more specific
ones like a terrain block or a tree. For a geometry to
be drawn, it must be in an amplified state (inflated),
so that it will be in an appropriate representation to be
rendered.

• Attributes: Surface details, reflection, refraction and
shadows are some examples of visual effects that can
be obtained using a variety of rendering techniques,
including lighting models, textures, shaders, shadow
algorithms and so on. Rendering techniques are imple-
mented by attributes that can be attached to the nodes
of the scene graph. When the scene graph is drawn,
an attribute component present in a node indicates that
the effect implemented by this attribute will be used to
render this node and all its children.

IV. IMPLEMENTATION

To evaluate our approach, we implemented a real time
rendering framework2 employing the ideas described in the
previous section. Due to performance and portability issues,
we decided to implement the system using C++, OpenGL
for rendering and SDL for threads and events. The main
characteristics of our system are:

• Extensibility: Our architecture is plugin-based. New
scene graph components and evaluators can be added
at runtime. Each of the components mentioned above

2Source code will be available at http://psygen.sourceforge.net/

Figure 3. The Blowfish Scene Graph (BSG) object model.

define an interface that must be implemented by each
plugin. Developers can easily create new components
simply by writing classes that inherits from the three
abstract components in question. So far, we have de-
veloped only a minimal set of plugins, just enough to
evaluate our approach. The main plugins that we have
implemented are procedural terrains, rocks, trees and
others like scene graph nodes, textures and shaders.

• Parallelism: We employ a multithreaded design. Our
system uses at least three threads, one for the main
loop, one for the predictor, and a third one for a
modeler. Our system also allows the use of more than a
single modeler, according to the number of processing
cores available. The theory leads us to believe that if
we have extra processing cores available, we can use
them as modelers. This idea is based in using task
parallelism through the manager-worker technique [29].
The predictor takes the role of manager and modelers
act as workers. Thus we can accelerate the procedural
synthesis by distributing the models that should be
generated to the available modelers.

We developed a quite simple visibility algorithm for the
predictor. It basically consists in defining a sphere relatively
larger than the view frustum, that is initially centered at the
camera position. All components of the scene graph that
are inside or overlaps the sphere must be amplified and
all others should be shrunken. At each update the predictor
determines whether the view frustum is near the limit defined
by the visibility sphere. When this occurs, the sphere is again
centered on the current camera position and the predictor
thread starts running, traversing the scene graph and defining



which components should be amplified or shrunk based on
their position relative to the visibility sphere.

Finally we should emphasize that predictive lazy ampli-
fication is based on technology independent assumptions.
For example, the renderer can be implemented using APIs
such as OpenGL or Direct3D. The memory used to amplify
models can be main memory (RAM) or video memory
(GPU). Our approach also does not impose a visibility
prediction method to be used by the predictor neither other
techniques to be employed in the implementation.

V. EXPERIMENTAL RESULTS

In this section we present the experimental results ob-
tained using our implementation. This results provide an
initial analysis of our paradigm and technology. For these
experiments, we used a massive procedural scene composed
of several terrain blocks, with trees and rocks distributed
across each block. The detailed scene data is:

• Number of terrain blocks: 64.
• Number of trees across each block: random between

6000 and 7000.
• Number of rocks across each block: random between

1000 and 1500.
• Estimated scene size: 32 GB
The tests consisted in collecting some data during virtual

flights across the scene. In each test we varied only the
number of modelers used. The scene and camera path were
identical to maintain consistency among results. In each
run we logged: (1) the framerate, (2) number of pending
objects waiting to be amplified and (3) the used GPU
memory. We used a Linux system composed of a Intel
Core i7 2.666 GHz processor with 3GB of RAM and a
NVIDIA GeForce 280 GTX GPU with 1 GB of video
memory. Because this is a quad-core processor with SMT
(Simultaneous MultiThreading), we varied the number of
used modelers from one to eight.

Figure 4 shows the GPU memory usage and pending
models waiting to be amplified during the execution using
a different number of modelers. The main result is that the
system never requires more than 500 MB of GPU memory
at any time. If the scene was entirely amplified, we would
need about 32 GB to store all the geometry. We may also
notice that, when the number pending objects is greater than
zero, there is a change in the amount of memory used, since
objects were generated and discarded in those moments.

Figure 5 shows the frame rate behavior and pending
models waiting to be amplified during the execution using a
increasing number of modelers. In all situations, even with
a large number of models waiting to be amplified, the frame
rate never dropped below 30 Hz (tests were performed with
vertical sync on, so the maximum obtained frame rate was
60 Hz). Also, looking at the graphs, we can see that when
three or four modelers were used, the impact caused by
secondary threads on frame rate was minimal. Particularly

(a) 1 modeler

(b) 4 modelers

(c) 7 modelers

Figure 4. GPU memory used by the amplified models.

in our results, the frame rate was more stable when we used
three or four modelers.

To estimate the gain due to parallelism, we measured the
total time spent with amplification of models in each run.
We did this by adding all the time intervals in which the
number of pending models was greater than zero. Then we
compared the total time for the run in which we used only
one modeler with each run using more than one. This was
done in a similar way to speedup computation, that refers to
how much a parallel algorithm is faster than a corresponding
sequential version. But in our implementation, even in the
simplest case using only one modeler, the algorithm is also
parallel, with three threads: the renderer, the predictor and
one modeler. These results are shown in table I and in the
graph of Figure 6.

Although we have not done a formal analysis of the
limits of our system, we present here an informal discussion.
Particularly, the limits are dictated mainly by the following
factors:

• The visibility algorithm of the predictor, that establishes
the set of objects that must be in inflated state.

• The size of the scene graph in shrunk state.
• The synthesis time of objects, that must be less than

each predictor call.



(a) 1 modeler (b) 2 modelers

(c) 3 modelers (d) 4 modelers

(e) 5 modelers (f) 6 modelers

(g) 7 modelers (h) 8 modelers

Figure 5. Frame rate and pending models.

Figure 6. Total amplification time and performance gain with parallelism.

Finally, Figure 7 presents some screenshots of our system
running. But we must emphasize again that the focus of
our work is not the diversity of procedural models, but
the performance with the massive scene is synthesized and
rendered. Another important observation is that, although we
use a terrain-based scene in tests, our approach allows any
type of scene provided that it is structured using a BSG.

VI. CONCLUSION

In this paper we proposed a new procedural modeling
paradigm that we called predictive lazy amplification. This
paradigm can be defined as a compromise between data
amplification and lazy evaluation. If we analyze memory
usage, lazy evaluation can handle massive scenes while data
amplification only allows the visualization of scenes that



Figure 7. Screenshoots taken from our system viewing a massive procedural scene.

Table I
PERFORMANCE GAIN THROUGH MODELERS (THREADS) USED.

Number of Number of CPU total amplification Performance
modelers threads used time Gain

1 3 27.56 1.00
2 4 26.17 1.05
3 5 10.73 2.57
4 6 14.92 1.85
5 7 8.71 3.16
6 8 10.65 2.59
7 9 8.07 3.42
8 10 8.67 3.18

can be fully amplified in the available memory. But if we
take into account the real-time rendering capability, lazy
evaluation may not be an appropriate choice. Depending
on the scene complexity, only the time spent on procedural
synthesis can preclude a good frame rate for real time
rendering.

Predictive lazy amplification can cover cases in which
these two basic paradigms do not work well. We presented
some tests as proof of concept. We used a scene with about
32 GB on a PC with 3 GB of RAM and 1 GB of video
memory. Our implementation was able to visualize the used
scene at 60 frames per second. This same scene could not
be visualized using data amplification since it would not
fit in available memory, or with lazy amplification, since
depending on the camera position, only the synthesis of the
models that appear in the field of vision would take about
one second.

Our implementation makes good use of multicore pro-
cessors. This approach can be interesting for applications
designed to run on home PCs, as games for example. Dual-
core and quad-core processors are already quite common
and accessible to most users. Another detail is that we can
not assume that using fewer threads, we will have better
frame rate. As a result shown in this paper, the best overall
performance was using five threads on a quad-core processor
with SMT. One improvement that we want to do is to

control the thread affinity. So we can guarantee a unique
core for rendering. In particular we have implemented using
SDL threads, which offers no function to control the thread
affinity.

Another problem of our implementation is memory frag-
mentation. Whenever the models are amplified by the mod-
elers, they allocate memory and when they are shrunk, they
release the used memory. Because this is a frequent pro-
cess, it causes fragmentation. We want to improve memory
management and prevent fragmentation in a future work.
Another paths for future work are:

• Better visibility prediction algorithm: The visibility
prediction algorithm that we used is fairly simple.
Occlusion culling and other camera data such as speed
and acceleration can be used to optimize the algorithm.
Another alternative is to experiment other algorithms in
this category, such as PLP [25].

• Load balancing and sorting: As the time spent with
the synthesis for each model can vary widely, the
way they are distributed to the modelers can generate
unbalanced load. With an estimated synthesis time of
each model, we can achieve a better scheduling of the
modelers. Another possibility is to sort the models to
be synthesized relative to the camera.

• Level of detail support: Procedural models are usually
multi-resolution. They can be generated at the level of
detail that is desired. Then we can use more detailed
models closer to the camera. The challenge here is to
compute what level of detail is more appropriate for a
given model and your distance to the camera.

• Modelers running on GPU: As we said earlier, in
this first work we had no intent to exploit the GPU as
a general purpose processor. Real time rendering ap-
plications are already exploiting the ability of graphics
processors. However, an implementation that can detect
whether the GPU is not being fully exploited and take
advantage of it for modelers can be very interesting.



ACKNOWLEDGMENT

We would like to thank Wagner Toledo Corrêa, for all
comments and suggestions.

REFERENCES

[1] D. S. Ebert, K. F. Musgrave, D. Peachey, K. Perlin, and
S. Worley, Texturing & Modeling: A Procedural Approach,
Third Edition. Morgan Kaufmann, December 2002.

[2] J. C. Hart, “The object instancing paradigm for linear fractal
modeling,” in Proceedings of the conference on Graphics
interface ’92. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1992, pp. 224–231.

[3] ——, “Procedural synthesis of geometry,” in Texturing &
Modeling: A Procedural Approach, Third Edition. Morgan
Kaufmann, 2002, ch. 11, pp. 305–334.

[4] K. Perlin, “An image synthesizer,” in SIGGRAPH, P. Cole,
R. Heilman, and B. A. Barsky, Eds. ACM, 1985, pp. 287–
296.

[5] ——, “Improving noise,” in SIGGRAPH, T. Appolloni, Ed.
ACM, 2002, pp. 681–682.

[6] S. Worley, “A cellular texture basis function,” in SIGGRAPH,
1996, pp. 291–294.

[7] F. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis
and rendering of eroded fractal terrains,” in SIGGRAPH ’89:
Proceedings of the 16th annual conference on Computer
graphics and interactive techniques. New York, NY, USA:
ACM, 1989, pp. 41–50.

[8] K. Musgrave, “Building worlds in cyberspace,” in Computer
Graphics International, 1999, pp. 164–.

[9] P. Prusinkiewicz, “Applications of l-systems to computer
imagery,” in Graph-Grammars and Their Application to
Computer Science, ser. Lecture Notes in Computer Science,
H. Ehrig, M. Nagl, G. Rozenberg, and A. Rosenfeld, Eds.,
vol. 291. Springer, 1986, pp. 534–548.

[10] P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty
of plants. New York, NY, USA: Springer-Verlag New York,
Inc., 1990.

[11] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr,
and P. Prusinkiewicz, “Realistic modeling and rendering of
plant ecosystems,” in SIGGRAPH ’98: Proceedings of the
25th annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM, 1998, pp. 275–286.

[12] Y. I. H. Parish and P. Mller, “Procedural modeling of cities,”
in Proceedings of ACM SIGGRAPH 2001, E. Fiume, Ed.
New York, NY, USA: ACM Press, 2001, pp. 301–308.

[13] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool,
“Procedural modeling of buildings,” vol. 25, no. 3, pp. 614–
623, 2006.

[14] P. Müller, G. Zeng, P. Wonka, and L. V. Gool, “Image-based
procedural modeling of facades,” vol. 26, no. 3, 2007.

[15] D. R. Fowler, H. Meinhardt, and P. Prusinkiewicz, “Modeling
seashells,” in SIGGRAPH, J. J. Thomas, Ed. ACM, 1992,
pp. 379–387.

[16] H. Meinhardt, The algorithmic beauty of sea shells. New
York, NY, USA: Springer-Verlag New York, Inc., 1995.

[17] G. James, “Operations for hardware-accelerated procedural
texture animation,” in Game Programming Gems 2. Charles
River Media, 2001, pp. 497–509.

[18] R. Geiss, “Generating complex procedural terrains using the
gpu,” in GPU Gems 3. Addison-Wesley Professional, 2007,
chapter 1, pp. 7–37.

[19] C. Eisenacher, Q. Meyer, and C. Loop, “Real-time view-
dependent rendering of parametric surfaces,” in I3D ’09: Pro-
ceedings of the 2009 symposium on Interactive 3D graphics
and games. New York, NY, USA: ACM, 2009, pp. 137–143.

[20] L.-J. Shiue, I. Jones, and J. Peters, “A realtime gpu subdi-
vision kernel,” in SIGGRAPH ’05: ACM SIGGRAPH 2005
Papers. New York, NY, USA: ACM, 2005, pp. 1010–1015.

[21] P. Kipfer, M. Segal, and R. Westermann, “Uberflow: a gpu-
based particle engine,” in HWWS ’04: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware. New York, NY, USA: ACM, 2004, pp. 115–122.

[22] D. Kasik, “Course 4: State of the art in massive model
visualization,” in SIGGRAPH ’07: ACM SIGGRAPH 2007
courses. New York, NY, USA: ACM, 2007, p. 1.

[23] D. Kasik, A. Dietrich, E. Gobbetti, F. Marton, D. Manocha,
P. Slusallek, A. Stephens, and S. E. Yoon, “Massive
model visualization techniques: course notes,” in SIGGRAPH
’08: ACM SIGGRAPH 2008 classes. New York, NY,
USA: ACM, 2008, pp. 1–188. [Online]. Available:
http://dx.doi.org/10.1145/1401132.1401190

[24] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha,
“Cache-oblivious mesh layouts,” in SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers. New York, NY, USA: ACM, 2005,
pp. 886–893.

[25] W. T. Corrêa, J. T. Klosowski, and C. T. Silva, “Visibility-
based prefetching for interactive out-of-core rendering,” in
Proceedings of PVG 2003 (6th IEEE Symposium on Parallel
and Large-Data Visualization and Graphics), 2003, pp. 1–8.

[26] A. R. Smith, “Plants, fractals, and formal languages,” SIG-
GRAPH Comput. Graph., vol. 18, no. 3, pp. 1–10, 1984.

[27] H. Sowizral, “Scene graphs in the new millennium,” IEEE
Computer Graphics and Applications, vol. 20, no. 1, pp. 56–
57, 2000.

[28] J. Döllner and K. Hinrichs, “A generalized scene graph,” in
VMV, B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel,
Eds. Aka GmbH, 2000, pp. 247–254.

[29] M. J. Quinn, Parallel Programming in C with MPI and
OpenMP. McGraw-Hill Education Group, 2003.


