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Figure 1. (a) Stanford Bunny model with 35.947 vertices. (b) Corrupted with zero mean Gaussian noise with standard deviation σ = 0.4 of mean edge
length. (c) Denoised with our method. Notice that no oversmoothing occurs along the surface and that, despite huge noise level, sharp details were well
recovered in the eyes and also enhanced in the ears.

Abstract—In this work we present a new method for mesh
denoising that uses an operator based on the Quadric Error
Metric. This operator is able to estimate the local shape of
the surface for each vertex, despite severe noise condition,
distinguishing corners, edges and smooth regions in order to
best adjust the vertex geometry to recover piecewise smoothing
while preserving sharp features. Our method results in a
simple algorithm for mesh denoising that can also be used
to enhance sharp features present in the surface corrupted by
noise. A frequency response analysis is also presented in order
to evaluate the characteristics of this operator in the frequency
spectrum of the mesh.
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I. INTRODUCTION

The use of three-dimensional (3D) point clouds is in-
creasing in many areas of research and development. 3D
scanning tools and computer vision techniques provide re-
construction of many objects and structures using range
images or unstructured point cloud, like those used in
robotics mapping. Surface extraction algorithms, such as
MarchingCubes, allow the access to large point clouds
sampled from implicit set of theoretical or physical data,
for example in computed tomography and seismic analysis.
Point cloud sets are subject to noise from various sources

and its attenuation or removal, while preserving features, is
an important preprocessing step for most applications.

While high-frequency filtering algorithms usually attenu-
ate noise by smoothing the surface, a denoising algorithm
should implement more specialized operators to identify and
preserve sharp features in the model that should not be
attenuated by the smoothing process. The area of digital
image processing has produced many techniques for dealing
with noise in images and most of them can be adapted
to filter 3D point cloud sets. This is specially the case of
point clouds obtained from range images, where a matrix
structure is present and allows connectivity information
among vertices and a support tangent space is well defined
for all points.

When considering general 3D point cloud sets, one should
take into account that no matrix structure is present, nor a
support tangent space can be defined for all points. Hence,
in order to adapt image processing algorithms to general
3D point clouds, a structure to define connectivity among
points and to estimate a support tangent space to each point
is usually provided.

Triangle meshes are a widely used data structure to define
connectivity for general 3D point clouds and can represent
surfaces of arbitrary topology, with or without boundary.
However, when the source of a point cloud doesn’t provide



connectivity, a mesh reconstruction algorithm, as presented
in [1], [2], [3], must be used to obtain the connectivity as a
triangle mesh. The support tangent plane for each vertex
is obtained from its unitary normal vector n, which can
be estimated as the average of normals from its incident
triangles.

In our mesh based denoising method we consider, as
input, a point cloud structured in a triangle mesh. The ad-
vantage of a mesh structure is that smoothing and denoising
are topology preserving procedures and, once the surface
topology and connectivity are defined for the point cloud,
just geometric adjustments are necessary. This adjustment is
usually calculated for each vertex v using an operator

T (v) = v + kn ,

where n is a vector normal at the vertex v in the mesh and k
is estimated by the application of some filter. This operator
constrains the space for adjustment of a vertex v to a one
dimensional space defined by its normal vector. Therefore,
the neighboring vertices cannot influence the direction for
adjustment. In our method, a new approach is used, where,
instead of estimating the amount of adjustment for each
vertex along its normal, a new position to each vertex is
directly computed as an optimization problem based on the
Quadric Error Metric (QEM). We define the operator

F (v) = −A−1b ,

where the 3× 3 matrix A and the 1× 3 vector b are blocks
from the 4× 4 matrix

Q =
(
A b
bT c

)
calculated for the vertex v as the sum of quadrics associated
to the tangent plane of its neighboring vertices, as detailed
in Section III. Using this operator we have, at first, an
unconstrained space for the adjustment of the vertex v that
will be constrained to a single point using information from
its neighboring vertices. This strategy was inspired in the
mesh simplification process by Garland and Heckbert [4]
that first introduced the QEM and its properties to describe
local geometry on the mesh.

The main contribution of this work is to present a feature
preserving approach, based on the properties of quadrics,
to adjust the geometry of a noisy mesh in order to obtain a
piecewise smooth mesh, while preserving details of its sharp
features. Our method requires a single step and does not use
iterative procedures, which is advantageous when compared
to other iterative procedures that are executed repeatedly for
many iterations depending on the noise level. Finally, our
method is able to recover some corrupted details even in
severe noise conditions.

II. RELATED WORK

Although the processes of mesh denoising and mesh
smoothing are different in terms of purposes, they are closely

related and have been studied as common tools for signal
filtering similar to those used for image processing. In [5],
Taubin generalizes the classical discrete Fourier analysis
used for two-dimensional discrete surface of intensity and
range images in order to reduce the problem of surface
smoothing of arbitrary topology to a low-pass filtering.

Still using the ideas from image processing, a mesh de-
noising algorithm based on locally adaptive Wiener filtering
was proposed in [6] using a multi-resolution approach. It has
disadvantage that the original connectivity of the mesh is not
preserved in the process. An extension of QEM was used by
Page et al. in [7] to develop a denoising technique combined
with mesh simplification that, due to local smoothing and
other computations, leads to results with corrupted mesh
quality.

The connectivity and mesh quality were well preserved
when filtering was applied in the normal direction of the
vertex, using the local operator T (v) = v + kn to adjust
each vertex v, where k is a filtered adjustment value and
n, the vertex normal. This approach was used by Fleishman
et al. in [8], where the main contribution is an adaptation
of the Bilateral Filtering [9] from image denoising to 3D
meshes, presenting an algorithm that is conceptually simple
and easy to implement. An improvement to the Fleishman’s
algorithm using similar operator was presented by Madrazo
et al. in [10] to generalize the method for point cloud
denoising without any connectivity information in the input
data set. It was inspired in the Moving Least Squares [11]
and M-estimators robust statistics theory. Similar approach
was proposed by Jones et al. [12].

Much effort has been invested to perform mesh denoising
while preserving features. In [13], Fleishman et al. presented
a new technique that determines a piecewise smooth surface
using Moving Least-squares in order to define the sharp
features to be preserved in the surface. Unnikrishnan and
Hebert [14] proposed a method for denoising non-manifold
point clouds, fitting local degenerate high-order polynomials
to the data in order to represent and estimate high-frequency
variations in point-sampled surfaces. In [15], Sun et al. used
a two-step method based on the idea of random walks for
mesh denoising, consisting of face normal filtering followed
by vertex position update to integrate the denoised face
normals in a least-squares manner. More recently, Fan, Yu
and Peng [16] introduced a piecewise surface denoising
method that seeks to preserve sharp features and volume,
also based on bilateral filtering.

Image filtering based approaches, as Bilateral Filtering, try
to locally fit a plane to the surface at each point, followed
by the application of the filter to the neighborhood of the
point. In such methods, a single plane is fitted to a point and
serves as a parametrization, over which the filter is applied.
However, as pointed out by Fleichman et al. [8], a point on a
sharp edge, that these algorithms aim to preserve, resides on
two planes rather than one. A known property of the QEM



Figure 2. Example of a vertex v and its N2(v) neighbors in the mesh.

is that, given a point whose neighborhood is defined by a
set of two or more planes, it is able to adjust this point so it
best fits to all planes. This property has been used for mesh
simplification algorithms [4], [17], [18], [19].

Many works on mesh simplification have also outlined
their potential on mesh smoothing and denoising. While
studying mesh simplification algorithms, Michael Garland
[20] experimented his techniques using QEM to reduce noise
in meshes by exploring its smoothing effect.

In this work, we explore the quadrics properties to adjust
vertex position without proceeding with any simplification
in the mesh in order to remove noise.

III. METHODOLOGY

A. Data Structure

We consider a point cloud structured in a triangle mesh as
a set M = {V, T}, where V is a set of vertices and T a set
of triangle faces. Although in our current implementation we
consider a triangulated surface, the algorithm can be easily
extended for any polyhedral surface or raw point cloud as
long as a neighboring and vertex normals are provided.

For the purpose of this work, we define a first order
neighborhood of a vertex vi ∈ V as a set N1(vi) of vertices
that share a common edge with vi, including itself. A second
order neighborhood of vi is the set N2(vi) of vertices
that share a common edge with any vertex vj ∈ N1(vi).
Recursively, a kth order neighborhood of vi is the set
Nk(vi) of vertices that share a common edge with any
vj ∈ Nk−1(vi).

Fig. 2 shows an example of a N2(v) neighboring set of a
vertex v. Notice that, due to the irregular connectivity of the
usual mesh, the vertices in the boundary of the neighboring
set may have distances to v that vary significantly. In order
to well balance the influence of each u ∈ Nk(v), filtering
based algorithms define a weight based on ‖u− v‖.

Many data structures can be used to efficiently access
the neighborhood of a vertex in a mesh. In this work we

use Topological Mesh Operators [21] that is a data structure
based on Half-Edge data structure and is also specialized for
triangle meshes operations in connectivity and topology.

B. Quadric Error Metric

The QEM was proposed by Garland and Heckbert [4] for
mesh simplification based on edge collapsing that preserves
the local similarity between the simplified and original
surfaces. Originally, the quadrics were defined, for each
vertex v, as the sum of quadrics associated to the support
planes of the triangles incidents to v.

For the purpose of our denoising algorithm, we will define
the quadrics for each vertex v as the quadric associated to
the plane given by the normal vector n estimated for v.

The plane π defined from the normal vector n of ver-
tex v is the set of all vectors w for which nT w = d,
where n = (nx, ny, nz)T is the unit normal vector to v,
w = (x, y, z)T is a vector in R3 and d is a constant related
to the perpendicular distance from origin to π. Hence, the
signed distance from w to the plane π is given by

D (w, π) = nT w− d,

which can be written as

D (w, π) = (nx, ny, nz,−d)T (x, y, z, 1).

Writing n̄ = (nx, ny, nz,−d)T and w̄ = (x, y, z, 1) we
have the distance from w to the plane π in a simple notation

D (w, π) = n̄T w̄.

The squared distance from w to the plane π is then cal-
culated using associative properties of matrix multiplication
as the bilinear form

D (w, π)2 =
(
n̄T w̄

)2 =
(
w̄T n̄

) (
n̄T w̄

)
= w̄T

(
n̄n̄T

)
w̄.

The 4× 4 matrix n̄n̄T is called the quadric Qv associated
to the vertex v. Once Qv is defined for each v ∈ V , the
squared distance from w ∈ R3 to the plane π tangent in v
is given by the bilinear operation

D (w, π)2 = w̄TQvw̄,

where

Qv = n̄.n̄T =


nxnx nxny nxnz nxd
nxny nyny nynz nyd
nxnz nynz nznz nzd
nxd nyd nzd d2

.

An important property of quadrics is that they can be
summed up easily for the entire neighborhood Nk(v) of a
vertex v, and the summed displacement F (w) of a point w
relative to all tangent planes in that neighborhood is retrieved
in a single bilinear application

F (w) = w̄T

 ∑
u∈Nk(v)

Qu

 w̄.



C. Algorithm Outline

Given a vertex v ∈ V , it is expected that its position in the
neighborhood Nk(v) has the smallest possible displacement
to the shape defined by the tangent spaces in that neigh-
borhood. So, in order to best fit v in the shape defined by
Nk(v), we adjust it to a new position w ∈ R3 that minimizes
the summed displacement from w to all tangent planes in
Nk(v). This w is the one that returns the smallest value from
the bilinear form

F (w) = w̄T

 ∑
u∈Nk(v)

Qu

 w̄.

In order to well model our optimization problem, we write
this summed quadrics in blocks(

A b
bT c

)
=

∑
u∈Nk(v)

Qu.

Therefore we have a more feasible bilinear form to evaluate,

F (w) =
(

wT 1
)( A b

bT c

)(
w
1

)
,

or equivalently,

F (w) = wTAw + 2bT w + c.

The minimal value for the bilinear form F (w) occurs in
w such that

∇F = 2Aw + 2b = 0.

Hence, we have to solve only a simple 3×3 linear system
to find the optimal position w for vertex v. If A is not a
singular matrix, w is given by

w = −A−1b.

Fig. 3 illustrates the behavior of our algorithm in a sharp
region of the mesh. We give a vertex v and its second
order neighbors N2(v) = {v, u1, u2, u3, u4}. Note that, the
point w that minimizes summed distance to all tangent
spaces in N2(v) should lie in the region marked with an
empty circle. This point adjustment in sharp regions of the
mesh is a strong characteristic of our method which allows
feature preserving and enhancing, while smoothing noise in
planar regions as illustrated in Fig. 4. In our experiments,
we present an analysis of this behavior, concerning the
frequency response of our methodology.

The aforementioned process leads to our denoising al-
gorithm that is described in the pseudocode presented in
Algorithm 1. The inputs are a mesh M = {V, T} and a
parameter k to the order of neighborhood. The output is a
mesh M̄ = {V̄ , T} where only the geometry is changed and
connectivity is preserved.

Figure 3. Example of a local sharp feature point adjustment.

Figure 4. Example of a planar region point adjustment.

IV. EXPERIMENTS

A. Results

In this section we discuss the experimental results. Firstly,
our experiments were performed using a computer with the
following configuration:

• Hardware: Notebook Dell Inspiron 1525 with an Intel
Core 2 Duo CPU running at 2.0 GHz and 2 GB RAM;

• Software: Operational system Ubuntu Linux 9.04, com-
piler gcc and graphic library resources of OpenGL.

In our first and second experiments, we used models with
natural acquisition noise in order to explore the potentials of

Algorithm 1 Denoise( M,k )

1: for each v ∈ V do
2: Set Quadric Qv
3: end for
4: for each v ∈ V do
5: Q = Qv

6: for each u ∈ Nk(v) do
7: Q = Q+Qu
8: end for
9: A = Q(1..3, 1..3)

10: b = Q(1..3, 4)
11: w = −A−1b
12: v = w
13: end for



our method in real situations. In Fig. 5 (a) and (b) we show
a CSG model with sharp features that has been corrupted by
the surface extraction algorithm, without any artificial noise,
and its denoised version using our algorithm. The same
model is shown in Fig. 5 (c) and (d) where the mesh edges
are shown as an example of the way the algorithm adjusts
vertex positions that tend to concentrate in sharp regions.
Notice that the vertices near the sharp feature edges on the
model moved along its tangent plane to lie close to the edge,
enhancing it. Here we can also see that, although preserving
connectivity, the quality of the mesh is also improved in this
case considering the triangle aspect ratio that is enhanced in
smooth regions of the surface.

(a) (b)

(c) (d)

Figure 5. Details on the quality of the mesh. Original flat (a), denoised flat
(b) and connectivity details on corrupted sharp region feature (c) recovered
by our method (d).

Our method has presented some peculiar behavior com-
pared to traditional filter based methods. While most filter
based methods, for mesh denoising, tend to reduce volume
due to the shrinkage effect, our method doesn’t have this
drawback. It is also remarkable that while most methods tend
to oversmooth the surface, ours tends to enhance features.
In our second experiment, using a scanned face model from
INRIA Gamma team [22], this behavior is highlighted as
shown in Fig. 6 where a smooth surface have its sharp
feature enhanced.

Many algorithms in mesh denoising are based on iterative
Bilateral Filtering approach [8], [12], [1], [16]. Because of
this aspect, in our third experiment, we have implemented
the Bilateral Mesh Filtering algorithm as presented in [8],
in order to compare the results in our experiments.

(a) (b)

Figure 6. Example of a feature enhancing effect of our method. (a) original
and (b) processed mesh.

For this comparison, we used the Stanford dragon model
[23] with 437,645 vertices (Fig. 7). This model was cor-
rupted with three different levels of zero mean gaussian
noise with standard deviation σ proportional to the mean
edge length in the mesh. The difference from the denoised
vertices position and their original position were calculated
and the standard deviation of residual noise is presented in
Table I for each noise level.

Fig. 8 shows the results for σ = 0.2 mean edge, Fig. 9
shows results for σ = 0.4 mean edge and Fig. 10 shows
results for σ = 0.8 mean edge. The neighborhood size in
all experiments were set to k = 2. While our results were
obtained in a single iteration, Bilateral Filtering results are
presented after three iterations.

We have also compared the execution time for this experi-
ments in the computer described above. For the noisy model
on Fig. 8, the average time for performing our algorithm to
denoise the model was 13 seconds, while Bilateral Filtering
took average time of 4 seconds to perform each iteration.
The results from our method are presented after a single iter-
ation, while the results from Bilateral Filtering are presented
after 3 successive iterations on the same model. Hence, the
final execution time for the Bilateral Mesh Filtering was of
the same order as our method. We remark that sequential
application of Bilateral Filtering to the models is able to
recover high level of smoothness, but with high damage to
sharp features, as occurs with some image filters.

Another result of our experiments is presented in Fig. 1,
where the Stanford Bunny model [23], with 35,947 vertices,
is corrupted with zero mean Gaussian noise with standard
deviation σ = 0.4 of mean edge length and denoised with
our method. It is possible to notice that no oversmoothing

Table I
RESIDUAL NOISE COMPARISON.

Added noise Residual noise (% mean edge)
(% mean edge) Bilateral Filtering Our method

20 4.21 6.57
40 15.17 11.18
80 33.35 18.82



Figure 7. Original dragon model with 437,645 vertices and 871,414 triangle faces.

(a) Noise of 20% mean edge (b) Bilateral Filtering (c) Our Method

Figure 8. Visual comparison of Bilateral Filtering and our method in a mesh corrupted with zero mean gaussian noise, with σ = 0.2 mean edge. Our
result is too close to that from Bilateral Filtering, but it’s possible to notice that details were enhanced in our method.

(a) Noise of 40% mean edge (b) Bilateral Filtering (c) Our Method

Figure 9. Visual comparisons of Bilateral Filtering and our method in a mesh corrupted with zero mean gaussian noise, with σ = 0.4 mean edge. While
the noise level increases, the advantage of our method is evident since most features are well recovered.

(a) Noise of 80% mean edge (b) Bilateral Filtering (c) Our Method

Figure 10. Visual comparison of Bilateral Filtering and our method in a mesh corrupted with zero mean gaussian noise, with σ = 0.8 mean edge. In
this severe noise level condition, our method still recovers most features and our results are significantly better than Bilateral Filtering results.



occurs along the surface and that, despite large noise levels,
sharp details were well recovered in the area of the eyes and
also enhanced in the ears.

B. Frequency Response Analysis
This section presents an analysis concerning the frequency

response of our methodology. The analysis shows a brief
idea about what happens with the frequency spectrum of a
mesh corrupted with gaussian noise and denoised with our
method.

In order to apply the standard FFT (Fast Fourier Trans-
form) for the frequency analysis in meshes, we need a
mesh with single support plane for the signal and with
homogeneous matricial distribution of vertices, which is
not the general case. However, as presented in [24], the
frequency spectrum for general meshes can be calculated
over patches of the mesh that shares a single support plane
using a parametrization over a regular matricial grid to
recover an approximation of the original patch with the
necessary homogeneous distribution of vertices.

The mesh used in this experiment, shown in Fig. 11(a),
is a single patch with planar support for the signal and with
non-homogeneous distribution of vertices. For the frequency
analysis purposes, we used a parametrization over a matricial
grid as proposed in [24].

Gaussian noise were added along the normal on each
vertex of the model. The noise was set with zero mean and
standard deviation of σ = 40% mean edge length.

Initially, we calculate F1 as the FFT of the mesh corrupted
by noise 11(b). After that, we process the mesh using
the proposed algorithm and then calculate F2 as the FFT
of the resulting filtered mesh 11(c). Taking the difference
between the absolute values of F1 and F2, we can see an
approximation of the frequency response of the proposed
operator. This response is presented in Fig. 12. A smooth
filter was applied to this signal for visualization purposes.

It is possible to see that the operator has band-pass filter-
ing features, what was expected according to the results. This
promotes the noise suppression of high-frequencies. It can
also be observed a low gain value around the zero frequency
(mean value), differently of what occurs in smoothing meth-
ods presented in the literature. Other characteristic of our
method are the gains in the middle frequencies, that may
explain the enhancement of the features in the mesh. This
characteristic certainly contributes to the effects seen in Fig.
6(b).

V. CONCLUSIONS AND FUTURE WORK

We presented a new approach for mesh denoising that
performs an adjustment of the geometry of a noisy mesh in
order to obtain a piecewise smooth mesh, recovering some
details even for highly noisy meshes.

In our experiments, in low noise condition, the proposed
methodology presented similar qualitative results while com-
pared with Bilateral Mesh Filtering. For meshes with high

(a)

(b)

(c)

Figure 11. Frequency response analysis: (a) Original mesh, (b) corrupted
by gaussian noise and (c) denoised by our method.

Figure 12. Frequency response generated by the proposed operator.

noise levels, however, our method recovered more details
than those from Bilateral Mesh Filtering.

The time performance of the present algorithm, in a single
iteration, is worse than the time performance on a single
iteration of the Bilateral Mesh Filtering. However, since
Bilateral Mesh Filtering is an iterative process and generally
performed more than once, the final time of our method is
the same order of Bilateral Mesh Filtering.

Experiments on mesh denoising algorithms usually simu-
lates zero mean gaussian noise with standard deviation from
σ = 15% up to 20% of mean edge length. We have tested
our method in huge noise condition, σ = 20% up to 80%
mean edge, and it was able to recover some corrupted details



even in this condition.
According to the frequency analysis, we observe that there

are gain values on the middle frequencies. This means that,
if this operator is applied successively, it can reinforce these
features.

Bilateral Filtering has been the basis for many denoising
algorithms in literature, and we expect that adapting our
method to those algorithms should lead to better results.
We intend to adapt the quadrics sum to a weighted sum
using the results from the frequency response analysis in
order to achieve a better balance in smoothing and feature
enhancing.
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