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Abstract—Virtual reality has applications in different fields
of knowledge such as engineering, science, arts, entertainment
and education. In this work, virtual reality is used to help
solving the problem of missing persons. The proposed method-
ology uses simulated diploid reproduction of virtual characters
carefully modeled taking into account the traits of the missing
persons parents. The genetic characteristics of both parents are
stored into their genomic data structure, which will be used
to construct pools of male and female gametes to be used in a
simulated fecundation. The descendants are generated with the
same age of the missing person at the time of disappearance.
Through an interactive process, a plausible model of the
missing person is selected among the generated descendants
and its genomic data structure is saved. The parents models
and corresponding data structures are updated to reflect the
age of the missing person at search time. Next, the genomic data
structure of the missing person is updated with the information
contained in the updated data structure of the parents, and an
updated model of the missing person is generated. This updated
model is a plausible model, upon which perturbations can be
applied to generate several plausible variants. Case studies that
demonstrate the potentials of the proposed methodology are
presented.
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I. INTRODUCTION

Virtual reality has applications in different fields of knowl-
edge such as engineering, science, arts, entertainment and
education. In this work, virtual reality is used to help solving
the problem of missing persons. The proposed methodology
uses simulated diploid reproduction of virtual characters
carefully modeled taking into account the traits of the
missing persons parents. One of the biggest difficulties
of working with virtual characters is growing and aging
simulation. This problem is also found in picture-based
aging simulations, such as those used nowadays in the search
for missing people, where, using old pictures of the person,
attempts are made to recreate a plausible face after a certain
number of years have passed. Aging simulation is a difficult
problem because its process is influenced not only by genetic
factors but also by environmental and life-style factors.

The proposed technique consists of nine steps: 1) Selec-
tion of pictures of the missing person and her parents with
the approximate age of the missing person at the time of
disappearance (reference age); 2) Construction of the 3D
virtual models (father, mother and missing person), taking

into account the information extracted from the selected
photographs of Step 1; 3) Construction of genomic data
structures for both parents, feeding traits extracted from
the 3D models of Step 2; 4) Generation of two pools of
gametes one for each parent through repeated meiosis
simulation (meiosis is a cellular division process, respon-
sible for gametes generation) applied to the genomic data
structures constructed in Step 3; 5) Generation of offspring
by simulating fertilization of ovules from the pool of female
gametes with spermatozoids from the pool of male gametes;
6) Comparison of the 3D virtual models of the offspring
with the 3D virtual model of the missing person the closest
offspring model and its genomic data structure are saved; 7)
Construction of the 3D virtual models of both parents at the
target age (current age of the missing person); 8) Update of
the genomic data structures of the parents to reflect the aging
process that occurs during the elapsed time from the time
of disappearance and the current time this update process
is similar to steps 1 and 2 ; 9) Update of the genomic data
structure selected in Step 7, using the updated genomic data
structures of Step 8, and reconstruction of the updated 3D
virtual model of the missing person. This updated model is
a plausible model, upon which perturbations can be applied
to generate several plausible variants. It is also desirable to
apply accessories such as beard, moustache, hairstyles, hats,
etc., to help with the investigation. Steps 3 to 5 are detailed
in Vieira et al. [1], [2].

The remainder of this paper is organized as follows:
in Section II, related works dealing with facial modeling
and aging are presented; in Section III, the technique of
creation of virtual characters through simulated reproduction
is summarized; in Section IV, the proposed solution to
the missing persons problem by simulated reproduction of
virtual characters is described; in Section V, case studies
demonstrate the power of the proposed methodology; in
Section VI, conclusions about the work are presented.

II. RELATED WORK

Several techniques of facial modeling have been proposed
in the literature which, in one way or another, can be used
in facial prediction. In this section, a selection of the most
relevant work is briefly presented.



Blanz and Vetter [3] proposed the morphable model tech-
nique for generating facial models. That technique constructs
a base facial 3D model as a result of the combination
of various facial models, and, then, it is able to generate
intermediate faces between the initial faces.

DeCarlo et al. [4] described a process where variational
techniques are used for automatically generating the geomet-
ric models of human faces. The process takes a collection of
anthropometric measures of a given facial model and applies
random disturbances that do not violate the corresponding
statistical bounds defined for a specific population.

Vieira et al. [1], [2] studied the automatic transfer of phys-
ical characteristics of parent models to their descendants,
through simulation of human reproduction.

Lee et al. [5] dealt with the problem of automatic age
progression. They proposed a method of cloning and simu-
lation of the aging in a family. Initially father, mother, son
and daughter of the same family are rebuilt, and their shapes
and textures are combined to obtain virtual characters with
some variation. Next, an automatic texture mapping is done,
followed by a method of interpolation and morphing. Finally,
wrinkles are generated in at certain facial points.

Ramanathan and Chellapa [6], [7] proposed a craniofacial
growth model that is characterized by the variations related
to the shape growth of observed human faces over the years
of formation. The model takes into account anthropometric
evidences collected from facial growth. Therefore, it agrees
with the growth patterns observed in human faces over the
years. The facial proportions of growth, measured by anthro-
pometry, were translated into linear and nonlinear constraints
of the facial growth parameters in an optimization problem,
which was set up in order to adjust those parameters.

Scherbaum et al. [8] focused their work in the construction
of aging trajectories with the purpose of identifying missing
children. Until then, this type of work was the responsibility
of forensic artists, which reconstructed the model of a
missing person at the target age in a totally manual fashion.
To simplify the process, Scherbaum and his co-workers
proposed a new algorithm to calculate aging individual
trajectories of certain faces, based on a nonlinear function
that assigns to a vector the age of the face. The algorithm
exploited the morphable model technique developed by
Blanz. The model proposed is a learning method, from a
data set of 3D children face images in different stages of
growth. The aging trajectories exhibit nonlinear dependence
of both the age and individual faces.

Suo and Zhu [9] proposed composition and dynamics
model of facial aging. They adopt a hierarchical three-
level And-Or graph representation to account for the rich
information crucial for age perception and large diversity
among faces in each age group. The aging process is
modeled as a Markov chain to describe the evolution of parse
graphs across age groups and to account for the intrinsic
randomness of the aging process. The first level of the graph

describes face and hair appearance, the facial components
are refined at the second level, and wrinkles and skin marks
are further redefined at the third level.

Scandrett et al. [10] proposed a statistically rigorous ap-
proach to human face aging, applied to the missing children
issue. The technique is based upon a Principal Component
Analysis (PCA) and involves the definition of an aging
direction through the model space, using an age-weighted
combination of model parameters.

Albert et al. [11] presented a synthesis of findings of
adult age-related craniofacial morphological changes. They
focus on the relevance of this information to forensic science
research and applications, such as the development of com-
puter facial age-progression and face recognition techniques
and contributions to forensic sketch artistry.

Fu and Huang [12] developed a pattern classification
framework for estimating human age, using quadratic re-
gression on the discriminative aging manifolds of face im-
ages. They find a low-dimensional aging manifold subspace,
which embodies the discriminative properties, by applying
Conformal Embedding Analysis. Then, they fit the extracted
low-dimensional feature with a learned regression model in
order to estimate age or an age interval.

Hubball et al. [13] focused on the hypothesis that the
patterns of age progression are related to the face concerned,
as it implicitly embraces gender, age group and ethnic origin
features, as well as the person-specific development patterns
of the individual. They used a data-driven framework for
automatic image-based facial transformation crossed up with
a database of facial images. Also, they built a parameterized
model for encoding age transformation in addition to the
traditional model for face description, and used evolution-
ary computing to learn the relationships between the two
models.

Lanitis [14] focused on an experimental evaluation of
the face-aging algorithms, and aimed at assessing the ap-
plicability of human-based against typical machine-based
performance evaluation methods. In his later work [15],
he compared the performance of a method based on age
prototypes, a method based on aging functions defined in a
low-dimensional parametric model space, and two methods
based on the distributions of samples belonging to different
individuals and different age groups.

Gibson et al [16] proposed a computer-assisted method
for altering the perceived age of a human face. The tech-
nique is based on calculating a trajectory or axis within a
multidimensional space that captures the changes in large-
scale facial structure, shading and complexion associated
with aging.

Giraldi and Thomaz [17] have reviewed some approaches
for age progression, in special statistical learning techniques.
The active appearance model is based on the Principal
Component Analysis theory. The method works in the PCA
space by defining a set of model parameters that control



modes of shape and gray-level variation learned from a
training set.

Recently, Ramanathan and Chellappa [18] presented a
survey on computational methods for modeling facial aging.
They group the contributions from two areas of research:
human perception and psychophysics, and computer vision.
The first group deals with the ability of humans to perceive
age-related changes in facial appearances and their readiness
in judging the relative age differences. The second group
concentrates on the problems of age estimation and age
progression.

III. VIRTUAL CHARACTERS CREATION FOR SIMULATED
REPRODUCTION

Simulated reproduction is an algorithmic process that
includes the biological process responsible for the produc-
tion of gametes (male or female germinative cells) and
the process of fertilization. In this section, a summary of
the biological processes required for the creation of virtual
characters is presented (for details, see [1]).

A. Identification of genetic characteristics

Every genetic characteristic of an individual is encoded
as a molecular sequence known as gene. A set of genes is
stored into a more complex structure called chromosome.
In diploid beings, every chromosome is matched with its
homologous chromosome (a chromosome with the same
set of genes). Human body cells have 23 chromosome
pairs. Corresponding genes in the homologous chromosomes
(genes that fill the same chromosome position) are called
alleles.

Figure 1. Facial Landmarks.

The first step in the process of virtual characters creation
by simulated reproduction is to select the genetic features
that are used for building those characters. These features
limbs length, skull size, eye shape, nose type, mouth size,
ears shapes, etc. can be seen as high-level control parame-
ters that, together, define the models final appearance. Thus,
they will play the role of genes in the simulation (figures 1
and 2) and need to be stored in a genomic structure of the
model (Section III-B).

Figure 2. Landmark-based measures.

B. Storage of the genetic information

Assuming that the number of features, as described in
Section III-A, is n, the genetic model has n genes. So, the
next decision is to define the number, m, of chromosome
pairs (homologous chromosomes) that will define the ge-
nomic structure of the model. Thus, the n allele genes will
be distributed among those m chromosome pairs.

Let
C = {c1, c2, ..., cm} (1)

represent the set of m homologous chromosome pairs, ci,
which are defined as

ci =
(
cMi , cFi

)
(2)

with cMi being the i-th chromosome coming from the father’s
gamete, and cFi , its homologous chromosome, coming from
the mother’s gamete cell. Note that a chromosome pair ci
needs not to have the same number of allele genes as a
chromosome pair cj . Therefore, if ni represents the number
alleles within chromosome i, the data structures for the
homologous chromosomes in ci are

cMi =
{
gMi1 , g

M
i2 , ...., g

M
ini

,
}

(3)

cFi =
{
gFi1 , g

F
i2 , ...., g

F
ini

,
}

and the total number of alle genes, n, is

n =

m∑
i=1

ni (4)

The choice of m influences the variability of the offspring
that can be generated, since it affects the number of possible
combinations during meiosis – the biological process of cell
division for the generation of gametes– (Section III-C).

C. Generation of gametes

Specialized cells called germinative cells undergo a pro-
cess of cell division (meiosis) that results in four gametes.
In humans, for example, meiosis of a male germinative cell



results in four spermatozoids. Similarly, meiosis of a female
germinative cell results in four ovules. Simulating meiosis
of male and female germinative cells several times generates
two pools of gametes: one with spermatozoids, and the other
with ovules.

For simulation purposes, meiosis is assumed to comprise
only four biological processes: Chromosome duplication,
Segment exchanging (crossover), Chromosome alignment
for the first cellular division (Metaphase I), Chromosome
alignment for the second cellular division (Metaphase II).
The last three processes are random processes, which are
responsible for the large variety of gametes that can be gen-
erated from the same genomic structure of the germinative
cell.

Figure 3. Recombination of homologous chromosomes.

Chromosome duplication prepares the genomic structure
for the exchanging of segments between homologous chro-
mosomes (see Figure 3). After those first two processes,
the genomic structure of the germinative cell comprises m
sets of four distinct chromosomes. The i-th set consists
of chromosomes

(
1c

M
i , 2c

M
i

)
and chromosomes

(
1c

F
i , 2c

F
i

)
.

Notice that, before the exchange of segments, the two chro-
mosomes in

(
1c

M
i , 2c

M
i

)
were identical copies (called sister

chromatides) of cMi . Similarly,
(
1c

F
i , 2c

F
i

)
were identical

copies of cFi .
Next, during Metaphase I, those m sets of four chromo-

somes are randomly aligned on the cells equator plane, in
such a way that, in the i-th set, the pair

(
1c

M
i , 2c

M
i

)
stays

in one side of the plane and the pair
(
1c

F
i , 2c

F
i

)
stays in

the other side. After that alignment, the cell is split into two
diploid cells, whose genome is distinct from the genome of
the original germinative cell.

Finally, during Metaphase II, a new random alignment of
chromosome pairs occurs in the equator planes of each of the
two cells generated after Metaphase I. The i-th pair in one
cell is

(
1c

M
i , 2c

M
i

)
and the corresponding pair in the other

cell is
(
1c

F
i , 2c

F
i

)
. Each of those two cells is, then, split into

two, resulting in four new haploid cells (gametes). Thus,
the i-th chromosome pair,

(
cMi , cFi

)
, of the germinative cell,

contributes to the i-th chromosomes, 1c
M
i , 2c

M
i , 1c

F
i , 2c

F
i , in

each of the four gametes. The gametes are haploid cells
because they have only m chromosomes, instead of m
chromosome pairs. The data structures associated with each
one of the meiosis processes are shown on Table I.

D. Fertilization

As mentioned in Section III-C, running the meiosis sim-
ulation several times for the male and female germinative
cells, results in two pools of gametes (one pool of sper-
matozoids and one of ovules). The offspring of a couple of
virtual characters can be obtained by fertilization the fusion
of a spermatozoid with an ovule, resulting in a diploid cell
with the data structure described by equations 1 to 4. The

Figure 4. Four children of a virtual couple.

larger the pools of gametes are the larger the size of the
offspring can be. However, there is a theoretical upper bound
on the number of distinct children that depends on the total
number of genes and on the number of chromosome pairs.
For the human genome, that limit is about 10600 [19]. Figure
4 illustrates the generation of the offspring, showing just the
faces of four descendants of a couple of virtual characters.

IV. MODELING THE MISSING PERSON AT THE TARGET
AGE

In this section, the proposed technique assumes that the
genetic factors are determinant of the missing individuals
appearance at the target age. In other words, age progression
is assumed to depend upon genetic factors for simulation
purposes. The epigenetic factors (diet, lifestyle, environment,
etc) can be considered in the construction of plausible
models around a base model obtained at the target age by
taking into account only genetic factors. Furthermore, the
base models characteristics are determined only from the
chromosomal structure of the missing individual and those of
his parents. The missing individuals model at the target age
is obtained through the 9 steps described briefly in Section
1 and detailed next:

Step 1. Selection of photographs at disappearance age
(reference age).

Identify the reference age of the missing person, and
select three sets of frontal photographs: 1) photographs
of the missing individual at an age as close as possible
to the reference age; and 2) photographs of both parents
also at an age as close as possible to the reference age.



Table I
DATA STRUCTURES IN THE MEIOSIS PROCESSES

Step Input Output

Duplication ci =
(
cMi , cFi

)
cdi =

(
cMi , cMi , cFi , cFi

)
Crossover cdi =

(
cMi , cMi , cFi , cFi

)
cdi =

(
1cMi , 2cMi , 1cFi , 2cFi

)
Metaphase I cdi =

(
1cMi , 2cMi , 1cFi , 2cFi

) ci =
(
1cMi , 2cMi

)
ci =

(
1cFi , 2cFi

)
Metaphase II ci =

(
1cMi , 2cMi

)
1cMi 2cMi

ci =
(
1cFi , 2cFi

)
1cFi 2cFi

The photographs are pre-processed in order to eliminate the
background of the image and the hair or the person hair
is a characteristic that strongly affects the perception on the
model.

Step 2. Construction of virtual models at the reference
age.

Use the three sets of photographs selected at Step 1
and construct three 3D virtual models: one for the missing
individual; one for the mother and another for the father (
Figure5).

Figure 5. Mothers 3D virtual model at reference.

Step 3. Definition of the genomic data structures.
Using the 3D virtual models constructed in Step 2, take

the anthropometric measures that will play the role of genes
and build the genomic data structures (equations 1 to 4) for
both parents at reference age.

Step 4. Generation of the pools of gametes.
Use the genomic data structures of Step 3 and run as

many meiosis simulations as desired, in order to generate
two pools of gametes: one to store the fathers spermatozoids;
and one to store the mothers ovules (see Section III-C).

Step 5. Generation of the genomic structures of the
offspring.

Use the pools of gametes generated in Step 4 and simulate
the fertilization process, doing all the possible fecundations
(see Section III-D), in order to generate the offspring.

Step 6. Selection of reference model.
Compare the models of the offspring generated in Step 5

with the model of the missing individual constructed in Step
2. From the offspring models, select the one, which is the

Figure 6. a) Selected model in step 7. b) Generated model in step 9.

closest to the missing individual at reference age (Step 2).
Save the model and its genomic data structure as reference
model (see Figure 6 a)).

Step 7. Parents virtual models at target age.
Similarly to what was done in steps 1 and 2, construct 3D

virtual models for both parents, using selected photographs
at the target age.

Step 8. Updating the genomic structures of parents.
This step is identical to Step 3. Thus, using the 3D

virtual models constructed in Step 7, take the anthropometric
measures and update the genomic data structures (equations
1 to 4) for both parents at target age.

Step 9. Construction of the missing persons model at
target age.

From the genomic data structures of both parents, updated
in Step 8, update the genomic data structure of the reference
model of Step 6 to reflect the genomic information of the
missing individual at the target age. Then, using that updated
data structure, construct the missing persons model at target
age. Based on this model, new plausible models can be
constructed to take into account the epigenetic factors (see
Figure 6 b)).

V. TESTS AND RESULTS

The tests were based on two family groups (com-
posed of father, mother and daughter) of which it was
possible to gather the necessary photographic sequences.



The models were constructed with FaceGen Modeler 3.1
(http://www.facegen.com), which generates good 3D facial
models from 2D images and guarantees a point-to-point
association between every two models. This association is
necessary because all models have a common topological
base. All the generated meshes for this study possess 6,215
vertices.

A. Missing woman: Family group 1

In this case, the problem to be solved is to find a woman
that disappeared at the age of 20 (the reference age), after
20 years (target age of 40). The proposed methodology,
consisting of the 9 steps described in Section 4, was applied
to this problem. The sets of selected photographs at reference
and target ages are shown in Figure 7 a).

Figure 7. a) Selected photographs of family group 1. b) Parental models
at the reference age.

The virtual 3D models constructed in Step 2 are depicted
in Figure 7 b), and represent the individuals at the age
of 20 (missing woman, her father and mother). For this
particular case, the textures were adjusted manually since
the images used for generating the models were black and
white. The parental genomic data structures for the reference
age are determined, as described in Step 3 (see reference
[1] for details on how to map the anthropometric measures
to genes). 30 meiosis simulation runs (Section III-C) for
each parent generated the two pools of gametes (Step 4):
one with 120 spermatozoids and the other with 120 ovules).
The total number of children generated in Step 5 would
be 14,400, but, since the missing person is a female, only
the female offspring were generated. Due to the lack of
space, only the offspring models, which are the closest
to the missing womans model shown in Figure 8, were
displayed in Figure 9. Notice that the changes in each of
the children are correlated to the models geometry. Figure 9
shows which model was selected as the reference model

Figure 8. a) Daughters models generated from the paternal models in the
initial age.

Figure 9. a) Selected model in the age of disappearance.

(Step 6). The parents virtual models at target age (Step
7) are shown if Figure 10. Based on those new models,
the parents genomic structures are updated (Step 8). Since
the missing womans reference model and genomic data
structure were saved in Step 6, it is possible to update
the genomic data structure of the missing woman at target
age, by traversing its genomic structure and updating each
pair of genes (alleles) copying the corresponding genes
from the updated genomic structures of the parents at target
age (done in Step 8). When the missing womans genomic
structue at targe age is updated, its 3D virtual model can be
generated, as shown in Figure 11. For comparison purposes
and to demonstrate the efficacy of the proposed method, a
photograph of the missing woman at target age is also shown
in Figure 11.

B. Missing woman: Family group 2

Similarly, in the second test, parental models were gen-
erated at the ages of 20 (reference age) and 30 (target age).
The process executed for the second group family can be
seen in its totality in Figure 12.



Figure 10. Parental models at target age (age of 40).

Figure 11. Virtual model of the missing woman at target age and her real
photograph at age 40.

VI. CONCLUSIONS AND CONSIDERATIONS

This paper presented a methodology to aid the search of
missing persons. The proposed methodology was presented
in 9 steps and uses the technique of virtual characters gener-
ation by simulated reproductions to build an updated model
of the missing person. The quality of the resulting model
depends directly upon the parents facial models at reference
and target ages. The variability of the offspring is related
to the genomic date structure (number of chromosomes and
number of genes in each chromosome). It is expected that
even better results can be obtained if the number of control
parameters (the number of genes in the model) increases
a more sophisticated facial model. The results are also
influenced by the quality of the 3D virtual model of the
missing person at reference age. In the current stage of the
research development, the parental models and the initial
missing persons model are constructed from photos, with
the software FaceGen. This process works properly only if
the selected photographs are perfectly frontal photographs.
This is a very undesirable restriction for the selection of
appropriated pictures. Techniques of images processing to
correct small angulations need to be implemented to make
this restriction less severe.

It is known that the growing and aging processes are
not influenced by genetic factors only. However, researchers
agree that including epigenetic factors in age progression
models is not a realistic goal. Therefore, modifications
around a plausible model generated by the proposed pro-
gression model are recommended. For example, different
hairstyles give a better perception of the result to the user.
Other modifications such as the inclusion of accessories have
not been discussed in this paper.

Despite the mentioned restrictions, the obtained results
with the proposed technique were very promising. At this
time the inclusion of more facial characteristics in the
chromosomal structure of the model; the use of image
processing to correct for angular deviations from frontal pho-
tographs; improvement of texture combination processing to
be applied to the offspring and to the final model are objects
of further studies.
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