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Abstract—This paper presents an efficient IrisCode classifier,
built from phase features which uses AdaBoost for the selection
of Gabor wavelets bandwidths. The final iris classifier consists
of a weighted contribution of weak classifiers. As weak clas-
sifiers we use 3-split decision trees that identify a candidate
based on the Levenshtein distance between phase vectors of
the respective iris images. Our experiments show that the
Levenshtein distance has better discrimination in comparing
IrisCodes than the Hamming distance. Our process also differs
from existing methods because the wavelengths of the Gabor
filters used, and their final weights in the decision function, are
chosen from the robust final classifier, instead of being fixed
and/or limited by the programmer, thus yielding higher iris
recognition rates. A pyramidal strategy for cascading filters
with increasing complexity makes the system suitable for real-
time operation.
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shtein distance; string matching.

I. INTRODUCTION

Biometric systems are becoming popular methods for
personal identification. Each biometric technology has its
set of advantages – and disadvantages – based on their
usability and security. The human iris, located between the
pupil and the sclera, has a complex pattern determined
by the chaotic morphogenetic processes during embryonic
development. The iris pattern is unique to each person and to
each eye, and is essentially stable during an entire lifespan.
Furthermore, an iris image is typically captured using a
non-contact imaging device, of great importance in practical
applications. These reasons make iris recognition a robust
technique for personal identification [1].

The first automatic iris recognition system was developed
by Daugman [2]. He applied Gabor filters to the iris image
for extracting phase features, known as the IrisCode. While
Daugman continued refining his algorithm [3], several re-
searchers also worked on iris recognition. Wildes et al. [4]
use a Laplacian pyramid to represent the iris texture, and
classify the iris images by means of normalized correlation.
Boles et al. [5] use an 1D wavelet transform at various
resolution levels of concentric circles on the iris image.
They characterize the texture of the iris with a zero-crossing

representation. Tan et al. [6] employ a bank of spatial
filters, with kernels that are suitable for iris recognition
to represent the local texture features of the iris. Ma et
al. [7] use as features a position sequence of local shape
variation points. Sun et al. [8] use the histogram of local
binary pattern for global iris texture representation and graph
matching for structural classification; this method achieves
high discriminability only in rich textured iris images. Lim
et al. [9] decompose the iris image into four levels using
2D Haar wavelet transform, and use a modified competitive
learning neural network (LVQ) as a classifier. In [10], a
support vector machine is used for classification. Bae et
al. [11] project the iris signals onto a bank of basis vectors
derived by independent component analysis and quantize
the resulting projection coefficients as features. Correlation
has also been used to recognize iris patterns. Kumar et
al., in [12], describe a correlation filter for each class that
employs 2D Fourier transforms of training images. Proença
et al. [13] propose an iris classification method that divides
the segmented and normalized iris image into six regions; an
independent feature extraction and comparison is used for
each region, and each of the dissimilarity values is combined
through a classification rule.

The only work in literature that makes use of boosting for
iris recognition is that by He et al. [14]. Instead of Gabor
phasors, ordinal measures are used for iris representation.
There are however too many parameters that need tuning
when using ordinal measures, and to construct and optimal
classifier is a difficult problem. The authors suggest the use
of similarity oriented boosting instead of AdaBoost. Ordinal
measures are difficult to boost, thus oriented boosting must
be driven by a similarity rule because of the large amount of
features. It should be noted that all these algorithms work
with grey-level images, and color information is not used
since the most important information for recognition is the
texture variation of the iris, which is the same in both grey
and color images.

In general, the iris recognition process consists of five
stages: (i) image acquisition, (ii) iris localization, (iii) iris
normalization, (iv) IrisCode extraction, and (v) iris pattern
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Figure 1. Four initial stages of iris recognition: (a) acquired eye image;
(b) segmented iris; (c) normalized iris; (d) IrisCode.

identification. Existing methods for iris identification are
based on the comparison of the IrisCodes. There are sev-
eral approaches to measure the angular distances between
IrisCode vectors, but the most widely used is the normalized
Hamming distance. We use Levenshtein distance to measure
the differences between IrisCodes. We show that this is a
more accurate metric for deciding if two IrisCodes belong
to the same person. Also, whatever the metric used, some
parameters must be fixed by the programmer, such as the
minimum distance needed to consider that two IrisCodes
belong to the same person, the number of wavelengths
being used, and their values. In this paper we deal with
the fifth stage, iris pattern identification. We present an iris
identification process based on AdaBoost classification. The
boosting process selects the most significant wavelengths
for the identification, and also determines the threshold
distances between phase vectors to decide if they belong
to the same iris.

Section II briefly presents the iris recognition technique
using the five steps mentioned above. Section III explains
our choice of the Levenshtein distance over the Hamming
distance. Section IV describes the AdaBoost algorithm we
implemented. In Section V we show that the proposed
approach improves accuracy in the iris identification stage.
Our conclusions are stated in Section VI.

II. IRIS IMAGE ENCODING

In general, iris recognition systems are composed of five
stages: acquisition, localization, normalization, encoding,
and identification. Figure 1 shows the results obtained after
the four initial stages.

Prior to obtaining the IrisCode, the pupil must be located
and the iris segmented. We employ a standard technique
to segment the iris [4]. The iris can be located at the

region between two concentric circles, one for the iris-
sclera boundary and another for the iris-pupil boundary, as
shown in Figure 2.b. The pupil is detected with the integro-
differential operator shown in Equation 1, as proposed by
Daugman [2].
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Figure 2. Iris localization and normalization: (a) original image; (b) iris
localization; (c) iris normalization.

The iris region is then transformed into a rectangle. This
Cartesian to polar transform, known as normalization, is
based on the Daugman’s rubber sheet model [2]. As shown
in Figure 2.c, each point of the iris image is mapped to
a pair of polar coordinates (r, θ), where radius r ∈ [0, 1]
and angle θ ∈ [0, 2π]. Regions with high occlusions are not
considered, and the amount of occlusion free areas can be
used as quality measure [15].

Iris encoding is implemented using Gabor filters, which
are a combination of Gaussian and sinusoidal functions.
Since they are bandpass filters, the effects of high-frequency
noise and low-frequency illumination non-uniformity can be
minimized. Equation 2 describes a Gabor filter, where λ is
the wavelength, σ the Standard Deviation, γ the aspect ratio,
and θ the filter orientation.

Ψ(x, y) = e−
x′2+(γy′)2

2σ2 · cos
2πx′

λ
(2)

+ i · e− x′2+(γy′)2
2σ2 · sin 2πx′

λ
x′ = x cos θ + y sin θ

y′ = −x sin θ + x cos θ



Because phase information is robust to illumination changes,
only this is used from Equation 2. The real component of
Equation 2 corresponds to the symmetric part of the filter,
while the imaginary corresponds to the asymmetric. Figure 3
shows an example of the iris encoding process.

Once the iris image has been encoded, it must be com-
pared to others to verify identity. The usual metric to com-
pare angular distances between IrisCodes is the normalized
Hamming distance, with the phase angle encoded into 2 or
3 bits. If the distance between two IrisCodes is smaller than
a fixed threshold, the two images are taken as belonging to
the same iris. We investigate this comparison next.

III. THE EDIT DISTANCE

A novel approach for comparing IrisCodes, which uses
Levenshtein distance, is presented in this paper. The Leven-
shtein distance [16], also called edit distance, is employed
for measuring the difference between two strings. The dis-
tance is given as the minimum number of operations needed
to transform one string into the other, where an ‘operation’
is an insertion, deletion, or substitution of a single character.
This metric is useful in a wide range of applications, and
there is a large body of work concerning string comparison
using Levenshtein distance in recent literature – see, for
example, [17]. The usual way to compute the Levenshtein
distance is with an (m + 1)× (n + 1) cost matrix L, where
m and n are the lengths of the two strings.

Let L be the cost matrix for strings SA and SB . The value
L(i, j) represents the distance between substrings SA[1, i]
and SB [1, j]. The cost matrix values are computed using a
dynamic programming algorithm, where the cost L(i, j) is
determined from previously computed costs, according to
Equation 3, where Ci(SB(j)), Cd(SA(i)) are the insertion
and deletion costs, and CS(SA(i), SB(j)) is the cost of
substitution of the i-th character of string A by the j-th
character of string B. The final edit distance between strings
A and B is determined by the last value in the cost matrix:
d(A,B) = L(m, n) .

L(0, 0) = 0 (3)
L(0, j) = L(0, j − 1) + Ci(SB(j)), 1 ≤ j ≤ n

L(i, 0) = L(i− 1, 0) + Cd(SA(i)), 1 ≤ i ≤ m

L(i, j) = min





for all 1 ≤ i ≤ m, 1 ≤ j ≤ n

L(i− 1, j) + Cd(SA(i))
L(i, j − 1) + Ci(SB(j))
L(i− 1, j − 1) + CS(SA(i), SB(j))

We set the insertion and deletion costs both to 1, and
the substitution cost to half the Hamming distance between
characters. The characters are the 2-bit coded phasors, and
the strings are IrisCode segments corresponding to a given
wavelength.

For a given pair of strings, the Hamming distance is
equivalent to the Levenshtein distance if the only operation

considered is substitution, and insertions and deletions are
ignored. Thus, the Levenshtein distance can be a more accu-
rate metric than Hamming distance for comparing IrisCode
segments. In fact, the Hamming distance is an upper bound
of the Levenshtein distance, as proved in [18]. The insertion
and deletion operations account for the elastic rotations
found in iris patterns. This means that the pixel shifts are
not homogenous around the iris pattern, because of the
excentricity of the pupil, the segmentation results, and the
acquisition process. With the use of the deletion/insertion
we can handle such rotations, which is not possible with
the standard Hamming distance algorithm. In the standard
approach, IrisCodes are compared multiple times, shifting
the patterns, in order to compensate the effect of iris rotation.
Just shifting the patterns is equivalent to pure geometric
rotations of the input image, however, the rotations found
in iris patterns are not geometric but elastic rotations.

We compared the performance of the two meth-
ods, namely Levenshtein distance and Hamming distance,
by measuring the intra-class, and inter-class, distances.
IrisCodes from CASIA database from 100 different eyes,
taken in 7 different illuminations, were used. Over 10,000
comparisons between IrisCodes were made, of the same iris
under different conditions, using Levenshtein and Hamming
distances. The intra-class means and standard deviations
were thus obtained. Another set of 10,000 comparisons were
made between IrisCodes from different persons to obtain the
inter-class means and standard deviations.

With this experiment we attempted to determine which
metric is more suitable for iris identification. Hence, the
distances were computed using the raw IrisCode, prior to
the boosting stage. For two-choice decision tasks, such as in
biometric decision making, the decidability index δ is one
measure of how well separated the two distributions are,
since recognition errors would be caused by their overlap
[19]. If the two means are µ1 and µ2, and their two standard
deviations are σ1 and σ2, then δ is defined by Equation 4.

δ =
µ1 − µ2√

(σ2
1+σ2

2)

2

(4)

This measure of decidability is independent of how con-
servative is the acceptance threshold. Rather, by measuring
separation, it reflects the degree to which any improve-
ment in (say) the false-matching error-rate must be paid
for by a worsening of the failure-to-match error-rate. The
performance of any biometric technology can be calibrated
by its δ score. The decidabilities measured are δ = 3.64
using Levenshtein distance, and δ = 1.61 for the Hamming
distance. Thus, Levenshtein distance is a more discriminative
measure to compare IrisCodes.

A direct application of the dynamic algorithm for Lev-
enshtein distance computation has a computational cost of
O(mn). Ukkonen [20] presents an algorithm that can check



Figure 3. Iris encoding process.

whether the edit distance is below a given threshold Θ in
O(Θ2). This is called a “diagonal transition algorithm”,
because the diagonals of the dynamic programming matrix
(from the upper-left to the lower-right cells) are mono-
tonically increasing. The algorithm computes, in constant
time, the positions where the values along the diagonals are
incremented. Only Θ2 such positions need be computed to
reach the lower right decisive cell. The classifier described in
Section IV does not use the distance value, but it makes a de-
cision based on the fact that distance is smaller than a given
threshold Θ. Thus, the Ukkonen approach is an efficient
solution for our application. Even though the computation
of the Hamming distance has a lower computational cost,
the computation of Levenshtein distance with Ukkonen cost
reduction, and a cascading strategy shown in next section,
can give a solution in a few miliseconds using a database
such as CASIA. Times are detailed in the results section.
For a really large database, perhaps a specific hardware
architecture would have to be used, if so needed. There are
some such architectures proposed in literature, as [21], and
their respective low cost hardware implementation, as the
FPGA specific processor in [22].

Instead of using the edit distance for comparing full
IrisCodes, we propose an algorithm that compares IrisCode
segments of different wavelengths. Thus, we use AdaBoost
to obtain a classifier based on a weighted function of simple
decisions taken from the edit distances obtained comparing
the segments. This process is described in the next section.

IV. IRIS CLASSIFICATION USING ADABOOST

Boosting is a meta-algorithm for automatic learning that
builds a robust classifier by a combination of a set of weak
classifiers. A classifier is considered weak if it has a correct
classification ratio slightly above 50%. Consider a set of
weak classifiers ht(x), then the strong classifier sign(f(x))

is defined by Equation 5.

f(x) =
T∑

t=1

αtht(x) (5)

Boosting meta-algorithms obtain the strong classifier iter-
atively. In each iteration, a weak classifier is added in,
weighted by its predictive capacity αt. After all weak
classifiers are considered, the sample set distribution is
recalculated to attribute a higher weight to misclassified data.
The AdaBoost algorithm [23] is detailed next.

1) Given
a) a set of labeled observations
{ (x1, y1), · · · , (xm, ym) };
with samples xi ∈ X and labels yi ∈ [−1, 1] ;

b) a set of weak classifiers hj() ;
2) Initialize a distribution D1(i) = 1/m for i = 1 · · ·m
3) For t ← 1 · · ·T :

a) find the weak classifier with minimum error:
ht = arg minhj εj ,
where εj =

∑
i=1...m Dt(i) and yi 6= hj(xi) ;

b) compute the coefficient αt

αt = 0.5 ln(1− εt)/εt ;
c) update, for normalization factor Zt,

Dt+1(i) =
Dt(i)e−αtyiht(xi)

Zt

4) Return the strong classifier

H(x) = sign
T∑

t=1

αtht(x) (6)

As weak classifiers h(i, j) we use size-parameterizable
decision trees. For a threshold Θλ , that minimizes the error
of the weak classifier for a given wavelength λ , every split
is a simple decision:



if dλ(i, j) < Θλ then hλ(i, j) = +1 else hλ(i, j) = −1 ,
where dλ(i, j) is the edit distance between two IrisCode
lines i, j , computed for a wavelength λ.

In the training stage, the distances are pre-computed for
all possible wavelengths. N distance matrices dλ are built
corresponding to N different wavelengths, where dλ(i, j)
is the Levenshtein distance, obtained with the algorithm
defined by Equation 3. The wavelength range is limited at
24. Labels are assigned to each distance value:
if (i and j are samples from the same iris) then yλ(i, j) = +1
else yλ(i, j) = −1.

Thus, a robust classifier H(x) is produced by the linear
combination of the results obtained from the decision trees,
as defined in Equation 6, where x are the values of the
N matrices dλ of Levenshtein distances between IrisCodes
lines, αt can be understood as the weight of the classifier
ht in the global decision, and

∑T
t=1 αtht(x) is a measure

of the confidence for the iris identification.
Figure 4 shows a plot of error × number of iterations

of the AdaBoost algorithm. The error tends to stabilize
beyond 100 iterations, so we chose 150 iterations to train
the classifier. The decision-tree size S – the number of
splits – must be fixed, and S was fixed at 3, which is a good
trade-off between accuracy and processing time, as shown
in Section V.

Figure 4. Error evolution vs. AdaBoost iterations.

In the recognition stage, we applied a technique of cas-
cading the classifiers to reduce the computation time, as
widely used in face detection applications [24]. The key
idea is that smaller, therefore faster, boosted classifiers can
be constructed, which reject many of the false candidates,
while accepting all positive ones. The simpler classifiers
are used to reject the majority of false candidates, before
the complex classifiers are called upon to achieve a low
rate of false-acceptation. Figure 5 contains a diagram of the
identification process, known as cascade [25]. A positive

identification from the first classifier triggers the evaluation
of a second classifier, which in case of positive identification
triggers a third one, and so on. A negative identification on
any level causes the immediate rejection of the candidate.

The complete system consists of an 8-level cascade of
classifiers. The first classifier is a single decision tree, while
the last classifier consists of the weighted combination of
150 decision trees. Each matching attempt is processed at
the various levels, and if any classifier rejects the attempt,
the processing terminates with a rejection. This cascading
strategy allows a majority of non-matching attempts to be
quickly rejected – with fewer comparisons, while spending
more computation time on potential true-matchings. The
process is thus considerably accelerated, without losing
accuracy in identification.

Using this cascading strategy there is no need to compute
all distances for all possible wavelengths, since they are
computed at the corresponding level if needed. In fact, not
even single distances have to be totally computed because
the weak classifiers need only to ascertain if a given distance
is below the desired threshold Θλ. Once the Levenshtein dis-
tance being computed is above the threshold, the candidate is
rejected and there is no need to complete that computation.

V. RESULTS

The system was tested with images from CASIA [26] and
UPOL [27], [28] databases: 756 monochrome images from
108 eyes from CASIA database; and 384 color images from
64 persons from UPOL database. As described in Section II,
iris images were normalized to 256x32 pixels. Each iris
image is coded using a 256x32 phasor array, and each
phasor was encoded in Gray code with 2 bits. Wavelengths
considered range from 2 to 24 pixels.

Error rates of 0% were easily achieved with images from
the UPOL database. Images from this database are free of
eyelids, eyelashes and other interferences. Figure 6 shows
that the distance between the intra-class and the inter-class
distributions is very large for the UPOL database, indicating
a complete decidability. Hence, when using images from this
database results are not realistic.

The CASIA database is the most commonly used iris
image database for evaluation purposes, and several papers
report their experimental results on this database. Thus, we
use CASIA for comparing our results to other published
methods. The number of iris images from CASIA database
is sufficiently large for an adequate performance comparison.
Three images from each person were randomly chosen
as a training set, whereas the remainder are the control
set, without overlap. This yields 432 images for a single
test. The test results should be independent on the training
images randomly chosen. Thus, a new test is done with
3 new training images, and tested again with the other 4,
which were not previously used for learning. This process



Figure 5. Cascade of classifiers.

is repeated 1,000 times. Error ratios are computed using the
set of results obtained from the whole process.

To evaluate the performance of the identification system,
we use the receiving operating characteristic (ROC), the
equal error rate (EER) and the false-rejection rate (FRR)
for false-acceptation rate (FAR) equal to zero. The ROC
curve displays the FRR as a function of the FAR, that is,
“the probability that an authorized person is falsely rejected”
against “the probability that an unauthorized person is falsely
accepted” [29]. The EER indicates the identification error
rate for which the FAR and the FRR are equal. FRR for
FAR=0 is a useful metric for access/entry validation since
it guarantees that no unauthorized person can gain access
to the protected environment. Table I shows the error rates
obtained using four different decision tree sizes. A decision
tree with 4 splits gives a slightly lower ERR than one with 3
splits, but the latter is the best trade-off between speed and
correct identification rate, and for this reason the number
of splits of the decision trees has been fixed at 3. Our
identification system achieves an FRRFAR=0=1.03%.

Table I
RESULTS AS A FUNCTION OF TREE SPLITS

tree splits EER [%] FRRFAR=0 [%]
1 0,045 3,51
2 0,017 2,18
3 0,004 1,03
4 0,003 1,03

Figure 7 shows the FRR×FAR ROC curve using 3-split
trees as weak classifiers and the CASIA database. The
results obtained with our system were compared to published
methods. Table II shows the results reported in the literature
that use CASIA database for test images. Results from
the combination of two methods are reported in [8]. The
Mizayawa method [30] has de best performance, followed
by He’s method [14].

Table II
COMPARISON WITH EXISTING METHODS

Method EER [%]
Boles [5] 8.13
Wildes [4] 1.76
Proença [13] 1.01
Sun [8] 0.86
Tan [6] 0.51
Daugman + Tan [8] 0.49
Daugman + Sun [8] 0.37
Tan + Sun [8] 0.32
Daugman [2] 0.08
Ma [7] 0.07
He [14] 0.01
Mizayawa [30] 0.0099
ours 0.004

In the training process, IrisCodes are computed from im-
ages, and the wavelengths and their respective thresholds for
the classifier are automatically determined by the boosting
process. In the recognition process, an iris image is encoded
and compared to all other pre-computed IrisCodes in the
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Figure 6. Distribution of intra-class and inter-class distances: (a) CASIA
database; (b) UPOL database.

database. The input IrisCode is computed in 405µs on a
2.13GHz Intel Core 2 Duo 6400. The Levenshtein distance
between two IrisCode rows is computed in 240µs. The time
needed to decide if two iris images belong to the same
eye, in a worst case situation, is 72.5ms, which is just an
upper bound. Actual times are (much) shorter because the
complete Levenshtein distance array is seldom computed:
most candidates are refused once the partial distance is above
a given threshold. Furthermore, with the cascading strategy,
not all the 150 weak classifiers must be used. In fact, 42%
of candidates are refused in the first cascading stage, 23%
in the second, 19% in the third, 13% in the forth, and less
than 3% go beyond the fifth stage. To determine the average
computing time to decide if two iris images belong to the
same eye, we selected 200 random images and compared
them with the whole database. The average time for the
verification is 1.6ms.

Figure 7. ROC curve with the EER line superimposed.

VI. CONCLUSION

We present a novel iris recognition technique that mini-
mizes false identification rates. The two main contributions
of our work are (i) the introduction of the AdaBoost al-
gorithm in the iris pattern classification stage, and (ii) the
use of Levenshtein distance instead of Hamming distance.
This approach leads to an effective identification system and
the error ratios obtained are considerably lower than those
obtained using the existing techniques.

The computation of the Levenshtein distance has a higher
cost than the computation of of the Hamming distance.
However, this cost is significantly reduced by the use of the
diagonal transition algorithm. Efficiency is further increased
by the cascade of classifiers, structured as a pyramid. The
resulting classifier is computationally efficient since only a
small number of decision trees need to be evaluated during
run time.
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