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Abstract—Graph matching is a fundamental problem with
many applications in computer vision. Patterns are represented
by graphs and pattern recognition corresponds to finding a cor-
respondence between vertices from different graphs. In many
cases, the problem can be formulated as a quadratic assignment
problem, where the cost function consists of two components:
a linear term representing the vertex compatibility and a
quadratic term encoding the edge compatibility. The quadratic
assignment problem is NP-hard and the present paper extends
the approximation technique based on graph matching and
efficient belief propagation, described in [1], by using sparse
representations for efficient shape matching. Successful results
of recognition of 3D objects and handwritten digits are illus-
trated, using COIL and MNIST datasets, respectively.
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I. INTRODUCTION

Graphs are extensively used to represent complex struc-

tures. Many problems can be formulated as an attributed

graph matching problem: vertices correspond to local fea-

tures of the image and edges correspond to relations between

features. Both vertices and edges can be attributed, encoding

feature vectors. Graph matching consists of finding a cor-

respondence between vertices from two given graphs, here

denoted as model and input. The model graphs represent

the classes and the input graphs represent the patterns to be

classified. The key idea is to compute a mapping between

input and model vertices, minimizing a global dissimilarity

measure between the attributes from the two graphs.

In many cases, the problem can be formulated as a

quadratic assignment problem and we want to find a cor-

respondence which minimizes an energy consisting of a

linear term to evaluate vertex attributes, and a quadratic term

to evaluate edge attributes. Here, the linear term evaluates

features representing the ‘appearance’ (e.g. shape contexts),

while the quadratic term evaluates the ‘structure’ (e.g. spatial

relations).

Recently, learning schemes (e.g. [2], [3]) have been

proposed to improve the classification, requiring efficient

approaches for shape matching (SM). In the present paper,

based on efficient belief propagation (BP) [4], we explore the

spatial relations between points sampled from the contours

of an object (e.g. computed using the Canny edge detector)

to obtain compact representations for efficient SM.

For graphs with loops, there has been little theoretical

understanding of the max-product BP algorithm, as observed

in [5], [6]. In the colorization experiments of [1], the graph

edges were created between adjacent regions, producing

a considerable number of loops, in which messages may

circulate indefinitely and the BP algorithm may not converge

to a stable equilibrium [7]. As a result, the colorizations

computed in [1] depended on fine tunings of the param-

eter λ1 in the energy function. Although we follow the

same framework described in [1], the compact representa-

tions proposed in this work correspond to trees or single

loop graphs, for which the max-product BP is known to

converge to a stable fixed point or a periodic oscillation,

respectively, in which the BP algorithm is known to have

good performance [5], [6].

Closely related to our work are those due to Belongie

et al. [8] and Torresani et al. [9]. As in [8], we use

shape contexts for the appearance. For the structure, our

compact representations explore the spatial relations through

adjacency, distance and orientation between vertices. The

authors of [9] also used these three aspects of spatial

relations, but in a complex energy formulation, optimized

by a dual decomposition technique based on exhaustive

search for local subproblems. As in [1], the present paper

explores spatial relations using a simple (yet very useful)

quadratic assignment formulation based on Markov random

fields (MRFs).

The main contributions of this work are: a new MRF-

based quadratic assignment approach for SM, proposing

new sparse representations for shapes through a Markov

component, together with a new metric for shape distance,

based on the computed beliefs. The core of the proposed

method relies on the efficient graph matching based on BP,

described in [1], producing successful results. Experiments

are illustrated using two well-known datasets, COIL [10] and

MNIST [11], for recognition of 3D objects and handwritten

digits, respectively. Differently from [1], for all experiments,

we used the same value for the parameter λ1 (= 0.6).
This paper is organized as follows. In Section II, we



Figure 1. Overview of our shape matching approach.

formulate the generic graph matching problem as MRFs.

Section III describes the optimization based on BP. Sec-

tion IV is dedicated to the sparse representation for shapes,

the proposed shape distance and the specification of the en-

ergy terms. Experimental results are illustrated in Section V.

Finally, some conclusions are drawn in Section VI.

II. GRAPH MATCHING AS MRFS

Let G = (V,E, µ, ν) be an attributed graph. V is the set

of vertices. E ⊆ V × V is the set of edges. µ assigns an

attribute vector to each vertex of V . Similarly, ν assigns an

attribute vector to each edge of E. We focus on matching

two graphs, an input graph Gi representing a pattern to be

classified, and a model graph Gm representing a prototype

associated to a class. Given Gi = (Vi, Ei, µi, νi) and Gm =
(Vm, Em, µm, νm), we define a MRF on Gi. For each input

vertex p ∈ Vi, we want to associate a model vertex α ∈ Vm.

The quality of a labeling f : Vi → Vm is given by:

E(f) =
∑

p∈Vi

Dp(fp) + λ1

∑

(p,q)∈Ei

M(fp, fq) , (1)

where λ1 weighs the influence of the quadratic term. Each

vertex has an attribute vector µi(p) in Gi and µm(α) in Gm.

Let fp ∈ Vm be the label of p ∈ Vi. The linear term Dp(fp)
compares µi(p) with µm(fp), assigning a cost proportional

to the vertices dissimilarity. Each (directed) edge in each

graph has an attribute vector νi(p, q) in Gi and νm(α, β) in

Gm, where (p, q) ∈ Ei and (α, β) ∈ Em. The Markov

component M(fp, fq) compares νi(p, q) and νm(fp, fq),
assigning a cost proportional to the edges dissimilarity.

An important work involving MRF and graph matching

is due to Caelli and Caetano [12], in which the MRF is

defined on the model graph Gm, assuming that there is one

‘signal’ (model) embedded in the ‘scene’ (input, consisting

of the signal plus a set of noisy vertices). The method

was applied to the subgraph isomorphism of straight line

segments. In [1], the authors propose an important extension

to generalize the method capabilities, defining the MRF

on the input graph Gi: each input vertex is labeled and

the solution can be generalized for both homomorphism

(many-to-one) and maximum common subgraph (one-to-

one). Anguelov et al. [13] also formulate the correspondence

problem as a ‘mapping from the scene to the model’, in

which case, they inverted the roles assuming that the scene

is a ‘partial or a complete view’ of the model. In contrast,

as in [1], we assume that the model is a partial or full view

of the scene.

III. OPTIMIZATION BASED ON BP

Finding a labeling that minimizes Equation 1 corresponds

to the maximum a posteriori (MAP) estimation problem.

We use the max-product BP for optimization, which is

formulated via probability distributions. An equivalent com-

putation is performed using negative log probabilities, where

the max-product becomes a min-sum, which is less sensitive

to numerical artifacts and directly corresponds to the energy

in Equation 1.

The method works by passing messages around the graph

according to the connectivity given by the edges. Each

message is a vector with dimension given by the number of

possible labels |Vm|. Let mt
pq be the message that vertex p

sends to a neighbor q at iteration t. Initially, all entries

in m0
pq are zero and at each iteration new messages are

computed by:

mt
pq(fq) = minfp

(

M(fp, fq) + Dp(fp)

+
∑

s∈Ei(p)\{q} mt−1
sp (fp)

)

(2)



where Ei(p) \ {q} denotes the neighbors of p except q.

After T iterations, for each input vertex, a belief vector is

computed representing the costs for each possible label:

bq(fq) = Dq(fq) +
∑

p∈Ei(q)

mT
pq(fq) . (3)

For each input vertex, by choosing a label with minimum

cost we obtain a homomorphism. In order to satisfy the two-

way constraints, a simple post-processing was applied: for

each model vertex, only the cheapest input vertex was kept

in the solution, associating to a NULL label the remainder

to indicate they are not classified.

A. Efficient computation via min-convolution

Felzenszwalb and Huttenlocher [4] proposed several tech-

niques to improve the running time of BP. They noticed that

each message update can be expressed as a min-convolution,

which was applied on quadratic terms representing smooth-

ness constraints for low level vision problems. In [1], the

authors extended this technique to explore spatial relations in

terms of adjacency, distance and orientation between points

for point matching.

Firstly, Equation 2 can be rewritten as a min-convolution:

mt
pq(fq) = min

fp

(

M(fp, fq) + h(fp)

)

, (4)

where h(fp) = Dp(fp) +
∑

mt−1
sp (fp). This is analogous

to the standard discrete convolution operation, replacing the

sum by a product and the min operator by a sum. As

observed in [4], while standard discrete convolutions can be

efficiently computed using the FFT, no such general result is

known for min-convolutions. However, for commonly used

smoothness constraints, the authors showed how to compute

the BP messages updates in linear time. Following this idea,

in [1], the authors efficiently computed the messages by

assuming:

mt
pq(fq) = min

(

H(fq),min
fp

h(fp) + d

)

. (5)

which was based on the Potts model described in [4].

However, there is a fundamental difference relied on H(fq):

H(fq) = min
fp∈Em(fq)∪{fq}

(

h(fp) + M(fp, fq)

)

, (6)

where the Markov component M(fp, fq) was used to com-

pare input and model edges in terms of lengths and orienta-

tions, and to penalize the non-preserving adjacencies (in our

case, the adjacencies between points in a sparse represen-

tation of the shape). Note that the amortized computational

complexity for each message vector update can be upper

bounded by the number of edges in a sparse model graph,

leading to an efficient computation for the message updates.

IV. SHAPE MATCHING (SM)

Shape is a significant cue for queries into pictorial

databases and a great deal of research on shape similarity

has been done using silhouettes (e.g. [14]). More general

strategies represent shapes as sets of points which also

consider the ‘internal’ contours of the object. We followed

the second approach, where an object is a set of points

and its shape is represented by a discrete set of points

sampled from the contours of the object computed by an

edge detector (e.g. Canny). The goal of SM is to find a

correspondence between points from two given shapes, using

compact representations.

A. Sparse representation for shapes

For each graph, we roughly sampled uniform spaced

points from the contours of an object, representing each

point by a vertex. Similar to [15], polygonal contours are

used to approximate the actual contours of an object, as

shown in Figure 2(c). However, the author of [15] used

a triangulation of the points, sampled from the silhouette

of the object, to provide a sophisticated decomposition of

the object into parts. Here, we use a simpler representation,

although not restricted to simple closed curves.

B. Shape distance

In order to operationalize the notion of shape similarity,

we propose the following metric:

dist(Gi, Gm) =
∑

p∈Vi:fp 6=NULL

bp(fp) +
∑

p∈Vi:fp=NULL

Λp(fp) ,

(7)

where the first term is the sum of the computed beliefs

(given by Equation 3) considering only the labeled input

vertices, and the second term penalizes the vertices without

correspondence, assigning the maximum cost Λp(fp) =
maxp∈Vi:fp 6=NULL{bp(fp)}.

Before proceeding to the experiments, we must define

each term of Equation 1 for the SM problem.

C. Linear term

Belongie et al. [8] proposed the shape contexts (SCs) as

rich descriptors for the appearance information to reduce the

ambiguity in the classification. Basically, the SC provides a

semi-global description of the spatial distribution of neigh-

boring points by counting the number of points in radial

regions yielding histograms, in which each bin represents a

different region. For each vertex v, µ(v) = SC(v), where

SC(v) is the SC computed on the point represented by v.

As in [8], our linear term evaluates the SCs using the χ2

distance:

dχ2(SC(u), SC(v)) =
1

2

∑

k

[hu(k) − hv(k)]2

hu(k) + hv(k)
, (8)

where u and v are vertices representing points, and hu(k)
and hv(k) correspond to the probability of the k-th bin in

each histogram associated to SC(u) and SC(v).



Figure 2. (a) Input object. (b) Computed contours using Canny edge detector. (c) Sparse graphical representation for (b).

D. Quadratic term

For each (directed) edge e ∈ E, a single edge at-

tribute ν(e) is defined as the (normalized) vector corre-

sponding to the edge. Using the same geometric penalty

functions defined in [1], the Markov component compares

edges attributes, evaluating pairs of vectors in terms of angle

and lengths in order to characterize the spatial relations:

cE(~v1, ~v2) = λ2
|cosθ − 1|

2
+ (1 − λ2)

∣

∣|~v1| − |~v2|
∣

∣ , (9)

where θ is the angle between the two vectors ~v1 and ~v2,

|.| denotes the absolute value, |~v| denotes the length of ~v
(assuming all lengths |~v| are normalized between 0 and 1),

and λ2 is a parameter to weight the importance between the

two terms. The Markov component M(fp, fq) is defined as:

M(fp, fq) =

{

cE

(

νi(p, q), νm(fp, fq)
)

, if (fp, fq) ∈ Em

d, if (fp, fq) /∈ Em and fp 6= fq

(10)

where the first case compares the respective vectors using

Equation 9, and the second penalizes the energy with a

positive constant d, encouraging adjacent vertices to have

the same label. For the experiments, we used d = 1,

corresponding to the maximum geometric penalty given by

Equation 9.

V. EXPERIMENTS

Similar to [8], our method falls into the category of

prototype-based recognition, where classes are represented

by ideal examples rather than a set of formal logical rules.

The prototype-based recognition can be readily translated

into the computational framework of nearest-neighbor meth-

ods using multiple stored views. In this case, for 1-NN

classifiers, it is important to study their performance for

different values of n (specially for small n) where n is the

number of prototypes (examples in the training set). For the

K-NN classifiers with a fixed training set, it is interesting to

analyze their robustness according to different values of K.

These two issues are addressed in the present paper. Our

experiments were divided into two parts. Firstly, using the

COIL dataset for 3D object recognition, we tested our 1-NN
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Figure 3. 3D object recognition error rates using 1-NN with different
training set sizes.

classifier using sets of different sizes with equally spaced

views as prototypes. Then, using the MNIST dataset for

handwritten digits recognition, we tested the proposed K-

NN approach using different values for K.

A. COIL

This database [10] involves 20 common household ob-

jects. Each object was placed on a turnable and pho-

tographed every 5◦. This dataset includes 70 different views

per object. We tested our 1-NN classifier using training sets

with equally spaced views. Figure 3 shows our results: as

the number of prototypes increases, the error rate decreases.

For instance, using 8 equally spaced views per object,

the error rate was 0.058. In a prototype-based approach,

different classes/categories need different numbers of views,

which depends on the complexity of the given object. Using

a K-medoids clustering strategy, we followed a similar

approach to the one described in [8] to choose more suitable

prototypes. In this case, we improved the error rate to 0.0161
(20 errors from a total of 1242 classifications), using an

average of 8 prototypes per object, which is smaller than

the error rate in [8] (0.024 using an average of 4 prototypes
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Figure 4. Handwritten recognition error rates using K-NN with different
values of K.

per object). Figure 5 illustrates some incorrect classifications

produced by our approach, where the models have too

many points, in which our shape metric (Equation 7) is not

appropriate because it does not penalize the unused labels,

assuming that the model is a partial or full view of the scene.

B. MNIST

This dataset [11] consists of 60,000 training and 10,000

test handwritten digits. In http://yann.lecun.com/exdb/mnist/,

there is a comparison between more than 60 algorithms,

with error rates ranging from 0.0039 to 0.12. Our error

rate using 5-NN with all the 60,000 training examples is

0.0211 (211 errors from a total of 10,000 classifications,

performing 600,000,000 graph matchings), which is smaller

than K-NN with L2 distance (0.0309), demonstrating the

importance of the structural information. Figure 4 illustrates

the behaviour of our K-NN classifier for different values

of K, where we achieved reasonable error rates even for high

values of K, which suggests that our matching process was

very robust. Figure 6 illustrates some of the errors produced

by our approach. Some of them are very ambiguous, e.g.

digit ‘6’ similar to ‘0’, in the first row. Others, like ‘2’ and

‘8’, ‘3’ and ‘8’, ‘9 and ‘8’, suffer from the same restriction

pointed out in the COIL experiment, where Equation 7 does

not penalize the unused labels.

VI. CONCLUSIONS

We have presented a new shape representation, which is

sparser than the representation based on inner-distances [16]

used in [2]. A key characteristic of our method is the

fact that it explores the spatial relations between points

sampled from the contours of an object in order to represent

a polygonal approximation of the shape. This approach

leads to an efficient, simple and useful quadratic assignment

formulation, where the spatial relations are represented as

a Markov component in a MAP-MRF framework. The

proposed method obtained successful results in recognizing

3D objects and handwritten digits. In order to improve the

classification, it would be interesting to investigate the pos-

siblity of combining the proposed approach with a learning

scheme (e.g. [2], [3]).
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