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Abstract—This paper proposes a method for motion tracking
of objects without a pre-defined shape, the main aspect of this
method is the use of a probabilistic volumetric reconstruction
that incorporates motion information. First, a volumetric
reconstruction of the objects of interest is obtained by the
3D Probabilistic Occupancy Grid method, which was recently
proposed for to be applied in environments sensed by multiple
cameras. Then, we originally propose to add Optical Flow
information to this reconstruction. Next, a method similar
to the Expectation-Maximization (EM) algorithm is used to
identify and track the body parts of objects of interest. It was
noted that the proposed information of velocity vector fields
are a good option to improve the perception of motion in 3D
reconstruction, providing the best results in the tracking.

Keywords-probabilistic volumetric reconstruction; optical
flow; motion tracking.

I. INTRODUCTION

Several investigations have been undertaken to develop
tracking systems capable to provide robust information about
the motion of people and objects through methods based
on visual, mechanical, acoustic or magnetic equipment [1].
This interest stems from the numerous applications that
are made possible by such a task, for example: human-
machine interface, teleoperation, anthropological studies,
virtual reality, entertainment and surveillance.

In this scope, the scientific community has given special
attention to methods of motion tracking from computer
vision [2], [3], [4]. More specifically, the visual motion
tracking methods that do not employ optical marks have a
number of advantages over other methods, such as: a) they
are not intrusive (do not require extra equipment attached
to the objects of interest); b) there is no need of redundant
equipment to tracking multiple objects; c) these methods
allow the observation of physical characteristics of objects
(such as color and texture); d) they have lower costs than
other methods.

However, the tracking of objects using only 2D images is a
difficult problem to be addressed given the complex nature of
3D motion and loss of information in the images due to the
restriction of two-dimensional space. A further complication
is added when there are multiple moving objects in the

same scene, because they may appear superimposed on the
images. Moreover, changes in the observed colors may occur
due to lighting variations and sensory uncertainties.

Thus, to minimize such problems, we can use multiple
cameras placed around the environment in which the objects
of interest moves. Then, from the images captured by
different cameras, we can obtain a volumetric reconstruction
[5], [3], [4], which consists in the locating and determining
of the volume of the objects of interest. The volumetric
reconstruction is used to overcome the limitations of the
analysis of 3D motion in 2D space, such as ambiguities and
self-occlusions.

In this paper, the volumetric reconstruction is obtained
using the Probabilistic Occupancy Grid technique, which
was recently applied by [6] in the environment monitoring
using multiple cameras. This technique allows to obtain
a volumetric reconstruction more robust than traditional
Shape-from-Silhuette methods, which analyze each image
individually. This is due to the fact that the Probabilistic
Occupancy Grid method employs Bayesian inference [7]
to allow simultaneous evaluation of information from all
cameras.

Considering the benefits brought by this 3D reconstruction
technique, we decided to study its use in motion tracking.
Knowing that the aggregation of more information to the
3D probabilistic grid (besides color) is possible and that
this can assist in obtaining further information in the 3D
reconstruction [6]; we propose a method to aggregate in-
formation from optical flow to the grid in order to improve
the perception we have about the motion of objects in the
volumetric reconstruction.

Next, a method similar to the Expectation-Maximization
(EM) algorithm in order to, using the volumetric reconstruc-
tion, identify the 3D positioning of the objects of interest and
then track it over time. We employ a simple representation
model of this object, which together with the velocity fields
proposed, allows the motion tracking method to be applied to
objects of different shapes (people or other objects composed
of rigid parts).

Therefore, this paper proposes a method for markerless



motion tracking based on multiple cameras, whose main
differentials are:
• The volumetric reconstruction used in this paper is

obtained by the Probabilistic Occupancy Grid method
[6]. This technique was minimally explored in recon-
struction of environments monitored by multiple cam-
eras and provides more robust results than traditional
methods, especially when the background color of the
scene is similar to the color found in the objects of
interest. Additionally, information about the movement
of objects, obtained through the technique of optical
flow, is added to the volumetric reconstruction;

• The motion tracking method proposed is applicable
to objects of different shapes (people or other objects
composed of rigid parts), this feature was made possible
by employing a simple representation model of these
objects and by the velocity fields aggregated to the
reconstruction.

This paper is organized as follows. Section II gives
a summary of the proposed architecture. The subsequent
sections III, IV, and V are dedicated to system components.
Finally, Section VI shows a set of tests associated with the
human motion experiments and Section VII concludes the
paper.

II. ARCHITECTURE OF THE PROPOSED METHOD

In a broader context, we can say that a visual tracking
system consists basically of three components: I) obser-
vation model - the model that defines how the objects of
interest are observed; II) representation model - way in
which the objects are represented in the tracking system;
III) tracking algorithm - an algorithm that updates the
representation model state over time, using the observation
model information.

In this paper, the observation model used (Section III) is
composed of: optical flow obtained by the Lucas Kanade
method [8], and volumetric reconstruction obtained by the
Probabilistic Occupancy Grid technique. The representa-
tion model (Section IV) uses Gaussian blobs to represent
the body parts of the objects of interest. Then, the ob-
jects are tracked by a method similar to the Expectation-
Maximization (EM) algorithm [5] (Section V).

Figure 1 presents the architecture of the proposed
method. The system receives as input a sequence of 2D
images captured by multiple synchronized cameras arranged
around the environment in which the objects of interest is
moving.

1) Observation Model: First, before the system starts to
track the movement of objects, a set of background images
captured by different cameras is used to construct a model
of the background scene. This background model serves as
input to the Probabilistic Occupancy Grid method.

Figure 1. The architecture of the 3D visual tracking approach.

Then, at each new time instant, the Probabilistic
Occupancy Grid method receives an image for each camera
and build an occupancy grid. Through this grid, we can
verify which volume elements (voxels) are more likely
to be occupied by an object of interest. We also added
information from optical flow to the grid: for each voxel is
assigned a 3D velocity vector.

2) Representation Model: Early in the system, the user
initializes the representation model using the ocuppancy
grid corresponding to the first time instant: the blobs are
positioned correctly according to the body parts which they
represent. In the following time instants, this representation
model is updated according to the tracking algorithm.

3) Tracking Algorithm: The tracking loop is defined
by a method similar to the Expectation-Maximization
(EM) algorithm [5], composed of two steps. In the first
step (Expectation), each voxel of the grid is associated
with a blob of the representation model. Following in the
Maximization step, each of the blobs is updated according
to the associations made in Expectation step. This updated
representation model serves as input to the Expectation step
of the next iteration of the tracking loop.

In the following sections, we detail the three components
of the proposed system: the observation model, representa-
tion model and tracking algorithm.

III. OBSERVATION MODEL

The problem addressed in this section is the probabilistic
volumetric reconstruction obtained from multiple cameras



and the optical flow calculated in two ways: I) directly in 3D
space, using as input the actual reconstruction volume; and
II) first in 2D space, using as input the images from different
cameras, and after doing the fusion of this information in
3D space.

A. Volumetric Reconstruction

The reconstructing volumetric of environments monitored
by multiple cameras is often done through the use of binary
subtraction of background, analyzing each image individ-
ually, as it is done in traditional methods of Shape-from-
Silhuette. However, this treatment can dramatically change
the 3D perception that we would have if we observed all
the images together, intuitively, the knowledge of all the
images simultaneously conveys more information than the
knowledge of just one picture [6].

In this context, Franco [6] proposed to calculate the fusion
of the all information of the images in 3D space before to
perform evaluations on each image individually. For this,
Franco used the Probabilistic Occupancy Grid method. This
technique has been widely used in the robotics community
to represent the robot navigation environment monitored by
depth sensors and by orientation measures [9]. Franco [6]
then proposed to extend the concept of Grid Occupancy
sensors based on images.

This technique, then, emerges as a way to get a recon-
struction more robust, overcoming problems of variations
in brightness and color similarity between the background
and the objects of interest. Thus, it avoids the occurrence
of noise and incomplete reconstructions, which occur more
frequently in traditional methods of Shape-from-Silhuette.

In the 3D Probabilistic Occupancy Grid method, the
images obtained by multiple synchronized cameras are uni-
fied into a occupancy grid. Each pixel of the camera is
treated as a sensor susceptible to statistical uncertainties. The
problem is then treated as a Bayesian estimation [7]. The 3D
space is discretized into volume elements, named voxels, as
illustrated in Figure 2, and for each voxel is calculated the
probability of being occupied by an object of interest.

Figure 2. 3D space discretized into voxels.

1) Model background: First, it is necessary to build a
model of a background scene free of moving objects. So we
bought a set of images of the scene free of objects. From
these images, we build a statistical model of background. We
can find different models in the literature. In this paper, we
employ the model presented by [10]. Typically, each pixel

p is modeled by a Gaussian distribution represented by a
vector of average color µp and a covariance matrix Σp. Since
D = 3 a dimension of the Gaussian, each pixel will have
the following probability of belonging to the background:

N(µ, Σ) ∼= 1

(2π)
D
2
√
|Σ|

exp

{
−1

2
(x− µ)Σ−1(x− µ)T

}
. (1)

2) Bayesian inference: Inference calculations were per-
formed according to the method proposed by [6]. Below,
we present the central idea of the method, details can be
found in [6], [11].

This method takes as input: i. the background statistical
model of the scene, ii. a sequence of images from multiple
cameras with the objects of interest, and iii. the calibration
matrix of each camera. First, from the Gaussian formula 1,
we can calculate the probability of each pixel p of each
camera i belongs to the background scene or to the objects
of interest: how much greater N(µp, Σp), greater will be the
probability of this pixel belongs to the background.

Next, the whole grid is covered, and each voxel V is
analyzed separately. The calibration matrix MCi of each
camera i is used to map the 3D coordinates of each voxel
V for the 2D image plane of this camera. That is, we
multiply MCi (calibration matrix 3 × 4 of camera i) by
~Ph
G = {x, y, z, 1}T (3D position in homogeneous coordi-

nates of the voxel V ) and we obtain ~Ph
Ii = {xi, yi, wi}T

(2D homogeneous coordinates of the voxel projection in the
camera image i):

~P h
Ii = MCi ∗ ~P h

G. (2)

If the projection ~Ph
Ii, calculated above, is within the

boundaries of the image of this camera, the probability
value of the pixel corresponding to the position ~Ph

Ii is used
to compute the probability of the voxel V belongs to the
background scene.

Note that, for reasons of computational efficiency, this
mapping of the 3D coordinates of each voxel V for the
2D space of each camera i can be done only once at the
beginning of processing, being stored for use in the next
instants of time. This mapping information also will be
required on obtaining optical flow by the method of fusion
of 2D optical flow in 3D space (Section III-B).

At this point, we have for each voxel V a set of proba-
bilities of the pixels related to their projections in different
cameras. This information is then unified through Bayesian
inference [7], in order to get, at the end of the process,
a probability value for each voxel corresponding to the
probability of it be occupied. Next, we can then define a
threshold probability: all voxels whose probability is above
this threshold are considered as belonging to the volume of
the objects of interest.



B. Optical Flow

The optical flow is the 2D distribution of the apparent
speed of patterns in motion in the image plane [12]. That
is, the optical flow field consists of a dense velocity field,
where each pixel in the image plane is associated with a
single velocity vector [13].

Methods based on optical flow have been frequently used
in literature for the motion analysis in both 2D [13] and 3D
spaces [14]. However, at this moment, no paper was found
using optical flow in conjunction with the 3D Probabilistic
Occupancy Grid technique.

We consider the optical flow may be an important
source of information about the movement to be analyzed.
Therefore, we propose to aggregate information from
optical flow to the 3D Occupancy Grid, analyzing two
different ways of accomplishing this task: I) directly in
3D space, and II) first obtaining the flow to 2D images
from all cameras and then unify this information into a 3D
vector for each voxel. These two methods are described
below. In both of them we employ a post-processing stage
to reduce noise. A comparison between these methods will
be presented later in the Section VI.

1) Optical Flow 3D - Extension of the Lucas-Kanade
method: The 3D optical flow is an extension of 2D optical
flow: instead of dealing with a image sequence (all pixels)
and get an answer as 2D velocity field, a sequence of voxel
sets are used, and a 3D velocity field is obtained.

Let (x, y, z, t) be the location of a voxel, I(x, y, z, t) its
intensity, and δx, δy and δz the voxel moving in a δt, we
can write:

I(x, y, z, t) = I(x + δx, y + δy, z + δz, t + δt). (3)

Through the assumption that the voxel intensity is con-
served over time, dI(x, y, z, t)/dt = 0, and using Taylor
series, we obtain:

I(x + δx, y + δy, z + δz, t + δt) =

I(x, y, z, t) + ∂I
∂x

δx + ∂I
∂y

δy + ∂I
∂z

δz + HOT,
(4)

where HOT represents higher order terms (High Order
Terms) ignored. By this equation, we can see that:

∂I
∂x

δx + ∂I
∂y

δy + ∂I
∂z

δz = ∂I
∂x

δx
δt

+ ∂I
∂y

δy
δt

+ ∂I
∂z

δz
δt

= 0
∂I
∂x

Vx + ∂I
∂y

Vy + ∂I
∂z

Vz = 0,
(5)

where Vx, Vy , and Vz represent the velocity at x, y and z
of the voxel intensity I(x, y, z, t). Considering ∂I

∂x , ∂I
∂y , ∂I

∂z ,
and ∂I

∂t respectively as Ix, Iy , Iz , and It we can write a
more generally and succinctly:

IxVx + IyVy + IzVz = −Tt. (6)

Assuming that the velocity of a particular voxel is approx-
imately the same of its close neighbors, we can analyze a

window n = m×m×m around this voxel, to obtain a set
of equations:




Ix1 Iy1 Iz1

Ix2 Iy2 Iz2

...
...

...
Ixn Iyn Izn




[
Vx

Vy

Vz

]
=




−It1

−It2

...
−Itn


 . (7)

Then, using the Least Squares method [15], it is possible
to calculate for each voxel of the grid, a 3D vector velocity
{Vx, Vy, Vz}, where

∑
represents

∑n
i=1:

[
Vx
Vy
Vz

]
=

[ ∑
I2
xi

∑
IxiIyi∑

IxiIyi

∑
I2
yi∑

IxiIzi

∑
IxiIzi

∑
IxiIzi∑
IyiIzi∑

I2
zi

]−1 [ ∑
It∑
It∑
It

]
.

(8)

2) Fusion of 2D Optical Flow in 3D Space: This method
can be divided into two stages: obtaining the optical flow in
2D space and fuse it in the 3D space.

First, the 2D optical flow is obtained in 2D images,
through the Lucas-Kanade algorithm [8].

Following, we use the mapping of the 3D coordinate of
each voxel V for the 2D space image from each camera i

( ~Ph
Ii = MCi ∗ ~Ph

G) (see Section III-A). Since each pixel has
a flow vector, at the end of the process, each voxel V will be
referenced with NCV 2D flow vectors ~fIi with i = 1..NCV ,
where NCV

is the number of cameras in which this voxel
can be projected.

Next, we do the opposite, we project the NCV
2D vector

flow, relative to the voxel V , for the 3D space:

~fh
Gi = pseudo inverse(MP i) ∗ ~fh

Ii, (9)

where ~fh
Gi is the flow vector in 3D homogeneous

coordinates in space of the grid, obtained from ~fh
Ii;

pseudo inverse(MCi) is the pseudo-inverse of the calibra-
tion matrix of camera i (MCi is not a square matrix); and ~fh

Ii

is the 2D optical flow vector of the camera i in homogeneous
coordinates.

Then, we calculated an average vector of ~fGi vectors of
3D flow (i = 1..NCV ):

~fR =

∑NCV
i=1

~fGi

NCV

. (10)

The result ~fR of this average will be the value of the 3D
velocity of the voxel in question. Other methods could be
used to calculate the resulting velocity, such as a weighted
average with weights according to the influence of each
camera. We could also use some metric to evaluate which
cameras should have greater importance in the formation
of 3D optical flow, but such treatment could produce
inadequate results if not encourage similarly at least three
cameras linearly independent.



3) Post-processing: Having a flow vector for each voxel,
we use post-processing to decrease noise errors. For each
voxel, we analyze the flow vectors of a window around the
same voxels. The x, y, and z coordinates of the vector flow
of voxels contained in this window are sorted separately and
the coordinates medians xM , yM , and zM are used as the
coordinates of the final flow vector of this voxel.

IV. MODEL REPRESENTATION

The tracking of an object involves finding its global
position as well as the relative position between each part of
the object in each frame of video sequence. In order that our
method could be applicable to objects of different shapes,
we do not adopt specific models of body of a certain type of
object. Moreover, we do not impose kinematic constraints
between body parts of an object, because performing this is
very difficult when we do not know the type of object to be
tracked: the body structure of the objects should be learned
during the tracking, and this has a number of complications
concerning the compromise between flexibility and robust-
ness of the method (for example, when we should allow a
motion that not yet was observed / learned?)

Therefore, we adopt a simple model representation based
on Gaussians. Articulated objects, like the human body,
are mostly composed of rigid parts, which individually
do not show significant changes in their shapes. On
this assumption, in this paper, each part of the object is
represented by a Gaussian model, named Blob, in which
we associate color, position and movement information.

1) Position and Color: With reference to spatial
information, a blob is often represented by an ellipsoidal
shape, and its surface is defined by the standard deviation
around the mean value of position. Similarly, the color
information is modeled by a mean and a variance. Therefore,
a blob is a Gaussian distribution with six dimensions (the
D-dimensional Gaussians are represented by the equation 1
presented in Section III-A).

2) Model Initialization: An initialization procedure is
necessary in order to provide an initial estimate of the
parameters of the blobs for the tracking algorithm. In this
study, we used a manual initialization, in which a user
informs for each blob B: a) two extreme points of its main
axis of variation, through these points, we can estimate the
average value of position and direction of main axis of
variation of this blob; b) three values σx, σy, σz , that inform
the standard deviations on each of the three axes of variation
of blob B.

Let R be the matrix of rotation of the blob B in relation
to the axes X,Y, Z of the scene, the covariance matrix of
position ΣX of this blob can be calculated by:

ΣX = R ·
(

σ2
x 0 0
0 σ2

y 0
0 0 σ2

z

)
·RT . (11)

To obtain the matrix R, we calculate the angles ω, ϕ, and
κ between the main axis variation of the blob and the axes
X,Y, Z of scene (Euler angles), as shown in Figure 3.

Figure 3. Euler angles - for determination of rotation matrix R.

From these angles and considering that the initial rotation
is given by RX(ω), a secondary by RY (ϕ) and a final given
by RZ(κ), the resulting rotation matrix R can be calculated
as follows [16], where s represents the sine and c, the cosine:

ω = arctg
(

zb−za
yb−ya

)
ϕ = arctg

(
xb−xa
zb−za

)
κ = arctg

(
yb−ya
xb−xa

)
,

R =

(
cϕcκ sωsϕcκ + cωsκ −cωsϕcκ + sωsκ
−cϕsκ −sωsϕsκ + cωsκ cωsϕsκ + sωcκ

sϕ −sωcϕ cωcϕ

)
.

(12)

3) Adding motion information to the representation model
- Optical Flow: So far, we have associated with each voxel
V at time t, a position in 3D space ~X(t) = {x, y, z}T and
its optical flow vector ~f(t−1,t) = {dx, dy, dz}T (calculated
from the frames relating to the times t− 1 and t).

Then, using the optical flow vector ~f(t−1,t), which repre-
sents the velocity of the voxel at time t, we can estimate
the next position ~Xe(t+1) = {xe, ye, ze}, that this voxel
should occupy at time t + 1 (whereas the motion of the
voxel remains constant between t to t + 1):

~Xe(t+1) = ~X(t) + ~f(t−1,t). (13)

Moreover, knowing that all voxels of a certain rigid
body part of an object of interest (of a specific blob)
should be submitted to the same motion, we estimate a
transformation matrix H [17] for each blob, which map a
linear transformation of rotation and translation of the set of
voxel from a blob at time t for the next instant t + 1.

Let A be the matrix (4 × NV ) with positions ~Xh
(t) in

homogeneous coordinates of all NV voxels of a given blob
and let Ae be the matrix (4×NV ) with positions ~Xeh

(t+1)

estimates for the next instant of time, the matrix H (4× 4)
can be calculated as follows:

H ·A = Ae → H = Ae · pseudo inverse(A). (14)



V. MOTION TRACKING

The motion tracking is performed by a similar method
to the Expectation-Maximization (EM) algorithm [5]: the
traditional EM algorithm was modified to treat motion
information and incorporate Euclidean Distance. The
method is composed of the following two steps (executed
repeatedly):

1) Expectation: In this step, we determine which volume
elements (voxels) belong to each blob. For this task, we use
the blob parameters estimated in the previous iterations of
EM or initialized by the user (in the first iteration of EM).

Thus, for each voxel V , we compute the distance from
each blob B, then we assign this voxel to the nearest blob.
The distance value used is a balance of three parameters:

D(V, B) = k1 ·DEuc + k2 ·DProb + k3 ·DMov, (15)

where k1, k2, and k3 are constant weighting of the
different parameters:

I - Euclidean Distance DEuc is the Euclidean distance
between the position of voxel V and the center (mean of
position) of the blob B.

II - Probabilistic Distance DProb is a distance parameter
that considers the probability of voxel V belongs to the
Gaussian blob B. As reported in Section IV, the blob B
is represented by a Gaussian with mean vector µB and co-
variance matrix ΣB . The voxel V , in turn, is associated with
a position vector ~X and colors

{
~C1, · · · , ~Cmc, · · · , ~CNCV

}

related to NCV
cameras in which the voxel V can be

projected. To calculate the distance DProb, we use only the
color Cmc that maximizes the probability of the voxel V
belongs to blob B:

mc = argi=1···NC
min(Ci

V − µC)Σ−1
C (Ci

V − µC)T . (16)

Then, saying that the voxel V is represented by the vector
~xv =

{
~XV , ~Cmc

V

}
, we have:

P (V |B) = 1

(2π)3
√
|ΣB |

· e− 1
2 (xV −µB)Σ−1(xV −µB)T

P (V |B) = 1

(2π)3
√
|ΣB |

· e− 1
2 DM (V,B),

(17)

where DM (V, B) is the Mahalanobis distance between the
voxel V and blob B. Assuming that there is no dependence
between the color and position informations, we can simplify
DM (V,B), where µX , ΣX refer to the position and µC , ΣC

refer to the color:

DM (V, B) = (XV − µX)Σ−1
X (VX − µX)T +

(Cmc
V − µC)Σ−1

C (Cmc
V − µC)T .

(18)

A standard optimization is to compare the logarithms of
probabilities rather than the actual probability. The maxi-
mum likelihood is also the maximum log-likelihood func-
tion:

logP (V |B) = −3log(2π)− 1

2
log|Σj | − 1

2
DM (V, B). (19)

Neglecting constant terms and multiplicative factors, we
obtain the value that we call DProb, whose minimization is
equivalent to maximizing the original likelihood function:

DP = log|Σj |+ DM (V, B). (20)

Minimize DProb depends mainly on the Mahalanobis
distance DM (). The term log|Σj | is constant for each blob
and uses the encoded variance matrix ΣB to favor the
smaller blobs, providing to these blobs a more likely chance
to be chosen by voxels. This term is useful when two blobs
are very similar (in position and color), because if only
DM () was used, the blob with the largest variance would
always have greater advantage in being chosen.

III - Movement Distance DMov is a measure of distance
between the movements expected for the voxel V and for
the blob B, that is, this parameter compares the optical flow
vector ~f(t−1,t) of the voxel V with the transformation matrix
H of the blob B.

First, let ~X(t) be the position of voxel V at time t, we
estimate the next position ~Xe(t+1) that voxel V should
occupy in t+1, by analysis of the optical flow vector ~f(t−1,t)

(as described in Section IV): ~Xe(t+1) = ~X(t) + ~f(t−1,t).
Next, we use the transformation matrix H of blob B to

estimate the next position ~XeB(t+1) that the voxel V should
occupy in t + 1, if it belongs to blob B:

~Xeh
B(t+1) = H · ~Xh

(t), (21)

where ~Xeh
B(t+1) and ~Xh

(t) are respectively the positions
~XeB(t+1) and ~X(t) in homogeneous coordinates.

Then we can calculate the distance parameter DMov

between the movements expected for the blob B and for the
voxel V given by the Euclidean distance between ~XeB(t+1)

e ~Xe(t+1).

2) Maximization: In this step, we calculate new values
for the mean vector µB and for the covariance matrix ΣB

of each blob B, using the information from all voxels
assigned to the blob B (during the Expectation step). Next,
the updated parameters are then used as initial estimate for
the Expectation step of the next instant of time of the image
sequence.

VI. RESULTS

A software program was implemented to allow the use
of the presented methods in the analysis of video sequences
acquired in the public repository [18]. An example of the
images of the sequence analyzed is shown in Figure 4.

Tests were realized to allow the comparison between
the volumetric reconstructions obtained by the traditional
method of Shape-from-Silhouette and by the Probabilistic
Occupancy Grid method. Examples of these results are
shown in Figure 5.



Figure 4. Sample images from two different cameras.

Figure 5. Volumetric reconstruction. L: traditional method Shape-from-
Silhouette (failures into green circles). R: Probabilistic Occupancy Grid
method.

Figure 6 shows a comparison between the two methods
used for obtain 3D optical flow: the Lucas-Kanade method
extended to the 3D space, and the proposed method for
merging the 2D optical flow in 3D space.

Figure 6. Comparison of the methods used to determine the 3D velocities.
Top: Lucas-Kanade algorithm extended to 3D space. Bottom: Proposed
method to perform the fusion of the 2D optical flow vectors in 3D space.

Through this figure, we can see that the Lucas-Kanade 3D
algorithm has very low precision compared to the solution
proposed merging the 2D optical flow in 3D space. This
is due to the fact that the 3D optical flow algorithms are
very susceptible to noise and require images with a high
level of detailing. On the other hand, in the method that
performs the fusion of 2D optical flow vectors, the resulting
3D velocities are obtained from images whose resolution is
far greater than the grid of voxels. Another important factor
is that, for each voxel, the results of 2D optical flow of NC

available cameras are used, so any noise that may result from
the 2D optical flow in some camera is attenuated.

Figure 7 shows the initialized colors for the different body
parts of the tracked person. Each voxel set of a single color
belongs to a single blob of the representation model.

Figure 7. Initialization - The different colors indicate different body parts.

Figure 8 - Column 1 shows the reconstruction and optical
flow at different times.

Figure 8 - Column 2 shows the tracking results ob-
tained without the use of optical flow aggregated to the
reconstruction, that is, without the use of motion distance
parameter DMov in the Expectation-Maximization method.
In this figure, we note that the colors of body parts are
different of the identified colors in the initialization, the
blobs have switched places, not following the movement of
the person (check the blobs on the head and trunk). We can
also see, in these frames, that the orange and purple blobs
switched places (legs), this occurs more often in body parts
with similar color and very close to each other.

The tracking results using optical flow information ag-
gregated to the reconstruction are shown in Figure 8 -
Column 3. As can be seen, in the method using optical flow,
the blobs followed the movement of their respective body
parts. We note that this task was possible even without the
determination of joint positions or any definitions of relative
positions between the blobs.

VII. CONCLUSIONS

This paper presented an approach to markerless motion
tracking based on multiple cameras that can be applied to
objects of different shapes. The proposed method uses, as
observation, optical flow in conjunction with a volumetric
reconstruction obtained by the 3D Probabilistic Occupancy
Grid method. This technique was recently introduced for
use in environments monitored by multiple cameras and still
there are few studies that employ it in motion tracking.

A volumetric reconstruction performed with the Prob-
abilistic Occupancy Grid method presented considerable
advantages over the traditional methods of Shape-from-
Silhuette, as showed in the results section. This fact is due
to the advantage of probabilistic reconstruction method to
consider information from all images together through fusion
obtained by Bayesian inference: the Probabilistic Grid does
not perform premature evaluations of the analysis of each
camera separately, as traditional methods.

A differential of the reconstruction method employed in
this paper is the ability to overcome problems of noise and



Figure 8. Tracking results. Column 1: reconstruction and optical flow;
Column 2: Tracking without optical flow; Column 3: Tracking with optical
flow.

incomplete reconstructions (common in the traditional meth-
ods). In the showed results, the traditional reconstruction
methods failed in the analysis of body parts of objects of
interest whose color resembled the color of the background.
In addition, traditional methods were more susceptible to
variations in light intensity (shadows).

The optical flow has proved to be an important source
of information about the movement, allowing the correct
execution of the motion tracking, even without consideration
of joint positions or any definitions of relative positions
between the blobs and, therefore, the method can be applied
to objects of different shapes.

Finally, we can conclude that this study showed promising
results, establishing a basis for the investigation of more
robust methods. As future work, we intend evaluate more
accurate tracking algorithms.
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