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Abstract—Biospeckle is a technique whose purpose is to
observe and study the underlying activity of some material.
The technique has its roots on optical physics, and its first
step is an image acquisition process that produces a video
sequence whose characteristics allow researchers to have an
interpretation of the activity of the observed material by an
analysis of the video content. The recent literature on this
subject presents several different measurements for analyzing
the video sequence. One of the most popular measurement
is the Generalized Difference (GD). The computation of the
GD has an asymptotic complexity of O(n2). In this paper we
propose: i) an alternative O(n) algorithm for the computation
of the GD, and ii) an alternative measurement, that we call
GD∗. We discuss the qualitative similarities between the GD
and the GD∗. We conclude that the GD∗ is an alternative
generalized difference measurement, and thus it can replace
the GD in many applications. We show that the GD∗ is a
function of the variance, and it can be computed in O(n).
Finally, if the GD itself is desired as measurement, it can now
be computed in O(n) by the novel algorithm presented in this
paper.

Keywords-image analysis; optical physics; biospeckle; statis-
tical image analysis;

I. INTRODUCTION

Biospeckle is a technique which has its roots on Physics,
mainly optical physics [1], [2], [3]. It does use the inter-
ference properties of monochromatic light (usually, laser
on a specific range of wavelength) reflected on the object
(sample) studied to access its activity. Although the light
is monochromatic, its reflection on the object (sample) pro-
duces noise due to the activity of the object (sample) itself.
This activity may be due to variations in its many possible
origins; for instance, variations due to biological reasons
(”healthy” or ”sick” tissues), increase or diminishing activity
due to bruising, presence of pathogenes, enhance or inhibited
blood flow [4], [5], [6], and many others. Therefore, the data
available to analysis contains noise embedded which major
part is due to the activity of sample itself (although, there
is a very tiny part due to a random noise of setup, among
others). The purpose of the Biospeckle is then to retrieve the

Figure 1. Schema of the experimental setup of an electronic speckle pattern
interferometer. BS1 (BS2) represent regular Beamsplitters used to split
(recombine) the laser beam before (after) the laser scattering on the sample.
Through comparison of two beams we obtain the interference phenomena
cause by the sample.

underlying activity of the sample through the interference of
light on it [7].

It is shown on Fig. 1 the experimental setup to acquire the
image frames. It can be seen that the laser (monochromatic
light) reflected on the mirror reaches the sample (object).
The light is scattered by the sample (object) and it is ac-
quired on CCD camera. The difference of laser optical path
reflect by the sample produces the interference phenomena
seen on the screen and showed on Fig. 2. This is the picture
(frame) acquired on CCD camera at one specific time t0. It
is shown on Fig. 3 the evolution through time of a subset
of the frame showed on Fig. 2. This subset is a given frame
column of pixels whose activity is followed on time. In other
words, the vertical axis corresponds to the pixel intensities of
a given frame column of pixels at time t0 and the following
columns, along the horizontal axis, the pixel intensities of
the same frame column of pixels along time.

It is visible on Fig. 3 the effect on time of the sample ac-



Figure 2. One frame of the video sequence.

tivity of the material. In the case of high activity (Fig. 3(a)),
the speckle pattern is twinkling while in the case of low
activity (Fig. 3(b)) the speckle pattern is more uniform and
steady.

It is not the purpose of this work to introduce the
Biospeckle technique, which has been studied and applied
for at least a decade [8]. We focus on the statistical mea-
surements for the Biospeckle analysis.

The activity of the sample (i.e., the Biospeckle) is techni-
cally achieved through a measure of the whole image along
time called Generalized Difference (GD) [9], [10].

The Generalized Difference (GD) of a sequence of n
integer values s = [x0, x1, . . . , xn−1] is defined by Eq. 1.

GD(s) =

n−1∑
i=0

n−1∑
j=i+1

|xi − xj | (1)

When applied to the biospeckle, the sequence s is the
sequence of values of one pixel along n frames of a video,
as illustrated in Fig. 4. So we have one sequece sp for each
pixel p of the video.

The difference between the pixel intensities among all
frames in the sequence is performed. The first summation
regards the frame chosen as reference in the video sequence,
while the second summation takes into account all the frames
picked out after the chosen one. The cumulative value of
differences evaluate above among all the reference frames
chosen is the value of GD(s) for the sequence (s) presented.

GD is presented on Fig. 5. Each pixel p of the image is
the value GD(sp), where sp is the sequence of the values
sp = [x0, x1, · · · , xn−1] of the pixel intensities (xi) of
pixel p along time.

II. FAST COMPUTATION OF GD

In this section we introduce the steps to perform the
evaluation of GD(s) (Eq. 1) faster than usually it is done.
Firstly, we observe the module difference is evaluated only
once for each pair of points in the sequence, as the second

(a)

(b)

Figure 3. Temporal history of a speckle pattern of a material in high (a)
and low (b) activity. Vertical line represents the activity of a specific vertical
line in the frame, while the subsequent vertical lines show the evolution
along time of this activity.

summation of the Eq. 1 begins at j = i + 1. Considering
that

|xi − xj | = |xj − xi|

the GD(s) can also be defined as

GD(s) =
1

2

n−1∑
i=0

n−1∑
j=0

|xi − xj | (2)

which can also be written as

GD(s) =
1

2

n−1∑
j=0

|x0 − xj |+
n−1∑
j=0

|x1 − xj |+ . . .

. . .+

n−1∑
j=0

|xn−1 − xj |

 (3)

Let us consider now that xi ∈ s be always a integer value
belonging to the interval [0 . . .m− 1]. This set of values is



Figure 4. One pixel activity evolution. The activity of pixel p at frame
i(i = 0, 1, · · · , n−1) is represented by xi. The activity evolution of pixel
p is thus represented by the sequence sp = [x0, x1, . . . , xn−1].

Figure 5. Generalized difference (GD). Each pixel p of the im-
age is the value GD(sp), where sp is the sequence of the values
sp = [x0, x1, · · · , xn−1] of the pixel intensities (xi) of pixel p along
time.

typical in images analysis. In the case of Biospeckle, m =
256; i.e., gray levels.

Considering the integer values of the sequence sp as the
frame pixel intensities for a given pixel p in a video sequence
of images, GD provides then a measure of the activity (on
time) of the sample studied.

We propose a fast computation of GD(s), defined on Eq. 1
and expanded on Eq. 3, as follows.

The histogram of the sequence s on Eq. 3 is a sequence
of h(s) = [g0, g1, . . . , gm−1], where gi is the number of
occurrences of integer values of i in the sequence s [11].

Let us take the first summation of Eq. 3, which correspond
to the term i = 0 of Eq. 2. This term can be rewritten as

m−1∑
j=0

|x0 − j|gj

and therefore, we can rewrite Eq. 1 (expressed on the form
of Eq. 2) as the form of Eq. 4 below

GD(s) =
1

2

n−1∑
i=0

m−1∑
j=0

|xi − j|gj (4)

Now, we can also transform the first (outer) summation
of Eq. 4 on the perspective of the histogram.

GD(s) =
1

2

m−1∑
i=0

m−1∑
j=0

|i− j|gj

 gi

or

GD(s) =

m−1∑
i=0

 m−1∑
j=i+1

|i− j|gj

 gi

Let us consider

Pi =

m−1∑
j=i+1

|i− j|gj

We then have

GD(s) =

m−1∑
i=0

Pigi (5)

Note that

P0 = g1 + 2g2 + 3g3 + . . .+ (m− 1)gm−1

P1 = g2 + 2g3 + 3g4 + . . .+ (m− 2)gm−1

P2 = g3 + 2g4 + 3g5 + . . .+ (m− 3)gm−1

Therefore,

P1 = P0 − [g1 + g2 + . . .+ gm−1]

P2 = P1 − [g2 + g3 + . . .+ gm−1]

In other words,

P1 = P0 −
m−1∑
j=1

gj

P2 = P1 −
m−1∑
j=2

gj

If we consider

Si =

m−1∑
j=i

gj



We can observe that

Pi+1 = Pi − Si+1

Note that

S0 =

m−1∑
j=0

gj = n

where n is the total number of elements in the sequence
(Eq. 1), which in Biospeckle analysis corresponds to the
number of frames in the video sequence.

Note also that

Si+1 =

m−1∑
j=i+1

gj = Si − gi

If we consider that GD has been already evaluate for the
first k values of i on Eq. 5, we have

GDk(s) =

k∑
i=0

Pigi

In order to evaluate GD for the first k + 1 values of i,
we have

GDk+1(s) = GDk(s) + Pk+1gk+1

Therefore, we have a mathematical induction described
as:

(i) initial condition:

S0 = n

P0 =

m−1∑
j=1

jgj

GD0(s) = P0g0

(ii) inductive step:

Sk+1 = Sk − gk
Pk+1 = Pk − Sk+1

GDk+1(s) = GDk(s) + Pk+1gk+1

(iii) stop condition:

k = m− 1

The stop condition (step (iii)) comes from the fact that
GDm−1(s) = GD(s).

Finally, we can rewrite an algorithm to evaluate GD in
time O(n), for n > m, or O(m), for m > n. The time
O(n) is the time to evaluate the histogram. The time O(m)
is the evaluation time of P0 on inicialization and also is the
execution time of m inductive steps.

III. ALTERNATIVE GENERALIZED DIFFERENCE GD∗

In this section we present an alternative measurement that
we call GD∗.

The absolute value in Eq. 1 has been used to guarantee
that all the terms of the sum are positive. It is usual the use
of the squared value in place of the absolute value, since
the function f(x) = |x| has the same order as the function
g(x) = x2. Say,

f(x′) > f(x)⇔ g(x′) > g(x) (6)

So we propose to replace the absolute values in Eq.
1 by squared values. Due the similarity between squares
and absolute values, the resultant equation is an alternative
generalized difference measurement. Denote by GD∗, it is
defined by

GD∗(s) =

n−1∑
i=0

n−1∑
j=i+1

(xi − xj)2 (7)

The GD∗ is presented in Fig. 6. As well as in Fig. 5, each
pixel p of Fig. 6 is the value GD(sp), in (a), or GD∗(sp),
in (b), where sp is the sequence of the values of the pixel
p along time.

Notice that the main difference between Fig. 6(a) and
Fig. 6(b) is the contrast. There is a more visible contrast
in Fig. 6(b), due to the higher values obtained by the
application of squares in place of absolute values. However,
in both images it is possible to observe the contour of the
character in the coin, and also the high activity over the coin,
where ink has been applied.

It is important to emphasize that the GD∗ is an alternative
measurement. There is no direct relationship between GD
and GD∗. As stated before, there is a similarity between
squares and absolute values in terms of Eq. 6, which as an
order relationship. The order relationship, however, does not
hold for sums of squares and sums of absolute values, so it
does not hold for GD∗ and GD. A counter-example is easy
to be found. Let s = [1, 1, 10] and s′ = [1, 3, 11], we have

GD(s) = |1− 1|+ |1− 10|+ |1− 10| = 18

GD(s′) = |1− 3|+ |1− 11|+ |3− 11| = 20

GD∗(s) = (1− 1)2 + (1− 10)2 + (1− 10)2 = 192

GD∗(s′) = (1− 3)2 + (1− 11)2 + (3− 10)2 = 168

Observe that GD(s′) > GD(s) does not imply
GD∗(s′) > GD∗(s).

Having shown the above remarks, we show in the next
section that GD∗ has a straight relationship with the vari-
ance.



(a)

(b)

Figure 6. Comparison between GD and GD∗. The GD is in (a), and
GD∗ is in (b). Each pixel p is the value GD(sp), in (a), or GD∗(sp), in
(b), where sp is the sequence of the values of the pixel p along time.

IV. THE GD∗ AS A FUNCTION OF THE VARIANCE

The direct implementation of the GD∗ would be the brute
force double sum, which is clearly O(n2). In this section we
develop Eq. 7 and we show that GD∗ is a function of the
variance, so it can be computed in O(n).

Since

(xi − xj)2 = (xj − xi)2

We can rewrite Eq. 7 to obtain

GD∗(s) =
1

2

n−1∑
i=0

n−1∑
j=0

(xi − xj)2 (8)

And so expand it to

GD∗(s) =
1

2

n−1∑
i=0

n−1∑
j=0

x2i − 2xixj + x2j

compute the sum on j

GD∗(s) =
1

2

n−1∑
i=0

nx2i − 2xi(nx) + nx2

=
1

2

n−1∑
i=0

nx2i − 2nxix+ nx2

compute the sum on i

GD∗(s) =
1

2

(
n(nx2)− 2n(nx)x+ n(nx2)

)
=

1

2

(
n2x2 − 2n2x2 + n2x2

)
=

1

2

(
2n2x2 − 2n2x2

)
and finally obtain

GD∗(s) = n2(x2 − x2) (9)

Equation 9 shows that the GD∗ is a function of the
variance. Remember that the variance, defined by

σ2(s) =
1

n

n−1∑
i=0

(xi − x)2

can also be rewritten. We first expand it to

σ2(s) =
1

n

n−1∑
i=0

(x2i − 2xix+ x2)

compute the sum on i

σ2(s) =
1

n

(
nx2 − 2nx2 + nx2

)
and finally obtain

σ2(s) = x2 − x2 (10)

By joining Eqs. 9 and 10, we see that

GD∗(s) = n2σ2(s) (11)

Since the variance (Eq. 10) can be computed in O(n), the
GD∗ can also be computed in O(n).

It is useless to show a visual comparison (such as Fig.
6) between the variance and the GD∗, because both images
are equal if the gray scale is normalized.

Indeed, by the results of this section we can observe that
the GD∗ is equivalent to the variance.



V. DISCUSSION

In this paper we have shown different viewpoints for
generalized differences. We have analyzed the most popular
measurement: the GD.

First, we have pointed that the GD computation is im-
plemented by the direct brute force algorithm, which is
O(n2), and then we have provided and proved an alternative
algorithm for it. The alternative algorithm has an asymptotic
complexity O(n) due to a change on the computation
paradigm. The proposed algorithm is computed on the
histogram of the sequence, and not on the sequence itself.

Second, we have questioned the use of absolute values
in the equation of the GD (Eq. 1), and we have proposed
the GD∗, that uses squared values in place of absolute
values. We have pointed that the GD and the GD∗ are not
equivalent, but they have qualitative similarities that allows
us to replace one by the other in many applications.

Third, we have shown that the GD∗ is a function of the
variance. The introduction of the GD∗ equation has been
necessary only to help us conclude that there are qualitative
similarities between the GD and the variance.

The GD and the variance are global measurements. Both
measurements consider each pixel as a random variable, and
the values of the pixel along time as a non ordered set of
observations. This procedure generates thus a loss of the
temporal information.

Since the Biospeckle technique is used to study the activ-
ity of a material, and the study is performed by observing
temporal variations on fixed points, the loss of temporal
order produced by the GD means that this measure cannot
be used by itself. In addition of temporal order loss, there
is a issue regarding normality. The analysis of variances
is usually applied to a sample of observations that have
been drawn from a normal distribution. When applied to
a non-normal distribution, the variance analysis can only
show how much the data is spread around the average, but
it cannot show how it is spread. It means that one cannot
conclude anything about the behavior of the pixel intensity
activity along time. Since we cannot assume that the material
activity follows a normal distribution, the variance analysis,
by itself, has limitations. As a consequence, the GD has
limitations too. Although useful, it is recommended to use
complementary measures.

To sustain the above statement, we compare the GD with
a measurement that takes on account temporal variation.
Such measurement has been recently defined by our research
team, and it has not yet been widely adopted by the
Biospeckle community due to its recent proposal. Let us
call it WD, which is defined by

WD(w, s) =

n−1∑
i=0

i+w∑
j=i+1

|xi − xj | (12)

where w is the size of the time window. Notice that
the internal sum is performed only on the w observations
subsequent to observation i. This means that the WD is a
sum of variations along local time windows.

We show a comparison between GD and WD in Fig. 7.

(a)

(b)

Figure 7. Comparison between GD and WD for w = 5. The GD is
in (a), and WD is in (b). Each pixel p is the value GD(sp), in (a), or
WD(w, sp), in (b), where sp is the sequence of the values of the pixel p
along time.

The results in this case are visually very different. The
WD allows us to better observe the silhouette printed on
the coin. One can suppose that the ink over the silhouette’s
border has dried faster than the ink over other regions, since
the dry ink does not present activity.

Finally, we alert that although the GD is the most popular
measurement used for Biospeckle analysis, this measure-
ment has limitations, and it should not be the only measure-
ment applied in any application. It is recommended to apply
also some measurements that are able to observe variations



in local time windows like the WD. In an extended version
of this paper we will provide a detailed analysis of the WD.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented qualitative similarities
between the GD and the variance. We have stated that the
data obtained by the image acquisition step of the Biospeckle
technique is an observation of the activity of the material in
study, and we cannot expect that the activity on a fixed point
of the material should be drawn from a normal distribution.
Since the analysis of variances is usually applied to normal
distributions, and the GD is qualitatively similar to the
variance, we conclude that the GD has limitations, and
it cannot be the only measurement used in analysis of
Biospeckle.

Finally, we have stated that other measurements applied
to Biospeckle data, in addition to the GD, should be
measurements of variations on local time windows, such as
the WD presented in Section V.

In an extended version of this paper we will exploit qual-
itatively and quantitatively the measurements of variations
on local time windows. We will show the relationship of
the WD with known signal processing filters, and we will
present variations of the WD based on such relationship. We
will also analyze a third measurement method presented in
[3], [12], the Fujii’s method which has yet another physical
meaning [13], [14].
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