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Abstract—A photonic crystal fiber is a new type of optical
fiber that presents an array of air holes running along its
whole length and whose properties can be predicted upon
precise knowledge of its cross section. Up to now, the cross
section of these fibers has been estimated through manual
segmentation of the contours in scanning electron microscopy
(SEM) images. In this work, an image processing tool, called
PyFibers, was developed, based on mathematical morphology
(MM) operations. The tool extracts the contours from the
images with minimal user intervention, and outputs a text file
containing the contours coordinates and a DXF file with the
contours. Either of these files can, subsequently, be used as
input to softwares that evaluate the optical properties of the
fibers.
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I. INTRODUCTION

Microstructured optical fibers, or photonic crystal fibers
(PCFs) [1], [2], are optical fibers that present an array of air
holes in their cross section running axially along the whole
extent of the structure. The background material where the
holes are inserted is usually a low loss dielectric, mainly
glass (e.g. silica) or polymer. The diameter of the holes of the
microstructure, as well as the mean distance between them,
can vary typically between 80nm to 30µm. Due to the high
index contrast between glass (or polymer) and air, and to the
fact that the structure typical dimension is within the order of
magnitude of the light wavelength, the arrangement of these
holes has a strong influence in the optical characteristics
of the structure. Differently from traditional optical fibers,
photonic crystal fibers overcome fundamental limitations
imposed by the material, allowing new applications in areas
such as fiber-optic communications, fiber lasers, nonlinear
optics, sensors and high-power transmission.

In order to precisely predict the optical properties of
such fibers, their cross section must be known with sub-
micrometric, or even nanometric, precision. The contour
map containing the position and shape of the microstruc-
ture can then be used in programs that numerically solve
Maxwell’s equations with the appropriate boundary condi-
tions [3]. The cross section of a PCF is usually estimated
through manual segmentation of the contours in scanning

electron microscopy (SEM) images, which is a slow, tedious
and, mainly, subjective procedure. The automation or semi-
automation of the segmentation would speed up this proce-
dure, as well as make it more objective. However, this can be
difficult since the size and disposition of the holes, as well
as the gray intensity and contrast of the images, may vary
substantially from fiber to fiber or even from hole to hole in
a single fiber image. To attempt to avoid these problems and
given that the background material is dielectric, a conductive
layer should be laid up over the fiber to avoid charging
effects due to the incidence of an electron beam of the
SEM. In several cases, however, some image degradation
still occurs as, e.g., brightness gradients, particularly at the
edge of the holes.

To perform the segmentation of the PCF images, a semi-
automated tool, called PyFibers, was developed, based on
mathematical morphology (MM) operations [4]. For this
purpose the MM toolbox [5] was used, developed for
the high-level, open source, programming language Python
(www.python.org) [6]. Given an image of the cross section
of a photonic crystal fiber, PyFibers performs the segmenta-
tion of the contours, and outputs a text file containing a
list of coordinates of the contours of every hole present
in the structure [7], as well as an image vector file in the
DXF format. These outputs can, then, be the input of any
program that evaluates the fiber optical properties. Although
the image processing operations used in PyFibers are mostly
well-known (most come from the field of MM), the applica-
tion and implementation here proposed is original. Every
step of the processing was solved in order to minimize
user intervention, aiming at end users without knowledge of
image processing. The tool has an easy-to-use GUI and its
source code is free (can be supplied by emailing the contact
author).

In short, the program goes through four main steps to
achieve its goal: 1) thresholding; 2) smoothing of holes’
contours; 3) contours extraction; and 4) computation of
coordinates list and DXF file generation. The following
sections give a detailed description of these steps.
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Figure 1. (a) Original Image. (c) Result of applying the operation close
holes to the image in 1(a). (e) Result of subtracting the image in (c) from
the original image. (b), (d) and (f) Brightness profiles along the indicated
line of images in (a), (c) and (e).

II. THRESHOLDING

From the gray level histogram of the fiber images, it can
be observed that the holes always form a clear peak in it
(Figure 2(a)). To chose the threshold value directly from
the histogram without user intervention the well-known Otsu
algorithm [8] was used, which is completely automatic. This
algorithm separates the image pixels in two groups such
that the covariance between them is maximal. However, the
results achieved were not satisfactory, due to the presence
of a smooth brightness gradient in the background region
of some fibers (e.g. Figure 1(a)), and to the fact that
most images also have brightness gradients at the edges
of the holes. It should be stressed here that the aim is to
obtain precise coordinates of the contours, and not only to
separate holes, which implies on a limitation on the choice of
threshold. Thus a manipulation of the gray level image was
performed to improve the result of the thresholding step. The
adopted strategy was to strengthen the image edges, in an
attempt to make the holes flatter (i.e. make their brightness
as uniform as possible), and to eliminate background clutter.

To strengthen the image edges it was sought to eliminate
all background details from the image, increasing the con-
trast between background and holes. The algorithm that gave
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Figure 2. (a) and (b) Histograms of images in Figures 1(a) and 1(e),
respectively.

the best results was based on the application of the operation
close holes to the original image. This is a morphological
operator based on the opening by reconstruction operator [9],
which fills the holes in every connected component of an
image. Its main characteristic is to close holes without
changing the background of the image. In this case the aim
was to eliminate background details leaving only the holes
in the image, and to achieve this, four steps were performed.

1) The operation close holes was applied to the original
image, resulting in an image where all the holes were
closed. Figures 1(a) and 1(c) show examples of original
and processed images, and Figures 1(b) and 1(d) are their
respective brightness profiles for the drawn red line.

2) The image with the closed holes was subtracted from
the original image, in order to obtain just the holes. Figure
1(e) (and respective brightness profile 1(f)) shows this result,
where most of the structure belonging to the image back-
ground was eliminated and a contrast gain was achieved,
which drastically simplifies the choice of threshold value.
This contrast gain can be easily seen in Figures 2(a) and
2(b), which show respectively the gray level histograms of
the original and final images. Also, the peak associated with
the image background has become much narrower, meaning
that the background is more uniform.

While the described procedure gave good results for
several images, other images still presented room for im-
provement due to the presence of edge gradients. To extra
strengthen the holes’ edges avoiding a critical increase in
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Figure 3. (a) Image obtained in the previous step. (c) Result of edge
strengthening. (e) Result of applying the operation close holes to the image
in (b). (b), (d) and (f) Brightness profiles of (a), (c) and (e) respectively.

noise level new steps were taken.
3) The edge image was multiplied by a weighting factor

(typically 4) and then it was added to the previously treated
imaged, resulting in an image where the edges had a signif-
icantly larger brightness value than the rest of the hole. This
makes the interior of the hole to be surrounded by bright
rims. Figures 3(a) (3(b)) and 3(c) (3(d)) show examples of
treated image with Steps 1 and 2, and resulting image from
Step 3.

4) The operation close holes was applied once more. Since
the holes of the image from Step 3 have brighter edges
than the rest of the image pixels, this operation acts to
close the interior of the holes, which will then have constant
brightness. Thinking of the image as a surface, this can be
interpreted as the holes becoming flat, as can be observed
in Figure 3(e) (3(f)).

III. CONTOURS’ SMOOTHING

The next required step is to smooth the contours of
the holes. The simplest approach would be to apply the
morphological operations opening and closing to the binary
image resulting from thresholding. Using large structuring
elements, small irregularities of the contour would be re-
duced, along with small holes and branches. While this

procedure worked satisfactorily for some images, it did not
work for images with holes very close together, separated by
few pixels. In those images the closing operation connected
the holes. Processing the holes individually, by labeling and
separating them into individual images, would solve the
problem, but with high computational cost. A general and
cost effective solution must take into account the physical as-
pects of the microstructured fibers. Due to the manufacturing
process [2], that is based in heating a macroscopic version
of the fiber (the preform) and pulling it through a fiber
drawing tower, the contour of the holes should be smooth
by definition. Contours with grooves or ramifications do not
have any physical meaning. The goal is then to smooth
the contour while also correcting segmentation defects,
preferably only acting in contour regions where these defects
appear. Figure 4(a) shows an example of a specific hole and
in Figure 4(b) the segmentation of this hole was added.
The small defects coming from the segmentation can be
better visualized in Figure 4(c) where the red circles indicate
regions with pixels that should be part of the contour, but
were poorly segmented. To improve this result and attempt
to obtain a smoother profile the gaps in some parts of the
periphery of the holes must be filled - therefore an expansive
operation should be performed, but only in specific regions.

Basic MM operations (such as erosion and dilation)
rely, however, on whether the structuring element (SE) fits
perfectly within or outside the image. In these operations
there is no tolerance with respect to this fit, and therefore
they act the same way throughout the whole image. An
adaptable operation, which acts differently on specific parts
of the contour, was developed based on a modified version
of the erosion operation, which consists on introducing a
degree of tolerance in the fit criterion of the SE [10], [11].

A. Erosion with tolerance

To introduce a degree of tolerance to erosion, first recall
that the erosion operation of an image A by a structuring
element B may be defined as “the set of points of A reached
by the origin of B when B is moved inside A, such that all
the points of B coincide with points of A” [9]. Therefore
the erosion with tolerance x of an image A by a structuring
element B may be defined as

“the set of points of A reached by the origin of
B when B is moved inside A, such that at least
N − x points of B coincide with points of A”,

where N is the total number of pixels of B. To understand
the result of this operation and its dependence on x, see the
contour of the hole shown in Figure 4(b). In the examples
that follow a circular structuring element (SE) of radius 3,
which can be seen in red in the figures, was used. This
element has 37 pixels and therefore x can, in principle, range
from 0 to 37.

Figure 5(a) shows the result of the erosion with tolerance
operation for a value x = 0, i.e. without tolerance, and the
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Figure 4. (a) Part of a PCF image showing one hole. (b) Result of the
segmentation of this hole. (c) Illustration of the hole. The red circles indicate
regions with pixels that should be part of the contour, but were poorly
segmented.

result is what would be obtained from a conventional erosion
operation. In this figure, as well as in the subsequent ones,
the original image is represented by green squares, the image
resulting from the operation is represented by black dots,
and the SE, when present, is shown in red. In Figure 5(c)
it can be seen the result of the operation with a value of
x = 1 (tolerance of 1 pixel). The SE has thus to fit at least
36 of its pixels within the image in order for the erosion
to be performed. It is worth noting that this does not imply
an increase of 1 pixel in the whole contour of the hole, as
would be obtained for example through dilation. Only in
a few points the SE does not entirely fit the image (hole).
Following the same reasoning, if x = 2 (2 pixels tolerance),
the result seen in Figure 5(e) is obtained. The images in
Figures 5(b), 5(d) and 5(f) correspond to the dilation of the
images in Figures 5(a), 5(c) and 5(e) respectively, using the
same SE. With respect to the original images, this is an
analogue operation to the morphological opening, but with
tolerance in the erosion. The result of this operation is, as
desired, a rounder contour, where the grooves in the original
contour have been successively filled up. It should be noted
that the final result depends, obviously, on the SE used.

The implementation of the erosion with tolerance oper-
ation was achieved through convolution of the thresholded
image with an image version of the SE (convolution matrix),
followed by another thresholding. This is possible since the
image resulting from the convolution will have brightness
values ranging from zero up to the sum of all the SE pixels
(case of perfect fit). Pixels with value equal to N −x in the
final image represent points where the SE coincides with
the image in N − x pixels. Application of a thresholding
operation to this image, using N −x as the threshold value,
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Figure 5. (a), (c), (e) Examples of applying the erosion with tolerance
operation, with 0 pixels tolerance in (a), 1 pixel tolerance in (c), and 2
pixels tolerance in (e). In all figures green squares represent the original
image, black dots represent the image resulting from the operation, and red
squares (when present) represent the structuring element (SE). (b), (d), (f)
Result of the dilation operation applied to the images in (a), (c), and (e)
respectively, using the same SE.

will result in a condition equivalent to the definition of the
erosion with tolerance operation stated above.

B. Choosing the structuring element

In order to modify only the contour parts that present
segmentation errors, while modifying as least as possible the
remaining parts, different weights were given to the pixels
in the SE (convolution matrix). Figure 6 (middle) illustrates
the use of this artifice to correct errors with a specific pattern
using a square SE with weight 5 in the corners (Fig. 6, left),
chosen to allow a tolerance of up to 4 pixels. The top image
shows a situation where the fit is accepted, since there are 3
pixels of the SE outside of the image. On the other hand, the
bottom image shows a situation where the fit is not accepted,
because even though only 1 pixel is outside the image, it has
weight 5 and the tolerance is not respected.

Combining a set of non-flat SEs and tolerance values most
of the segmentation defects found in our set of test images
were corrected. The SEs used in the final algorithm are
illustrated in Figure 6 (left). The result of applying this set
of SEs to the contour of a hole is shown in Figure 6 (right),
where it can be observed that the errors in the contours were
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(f) x=6 (g) Fit situation (h) Non fit situation

(i) Result

Figure 6. (a)-(f) Set of non-flat SEs used in the final algorithm with
the tolerance value used for each element. (g) Fit situation: 3 pixels are
outside of the image, which is allowed by a 4 pixels tolerance. (h) Non-fit
situation: although only 1 pixel falls outside of the image, it has weight 5
and therefore does not respect the tolerance condition of 4 pixels. (i) Result
of applying this SEs set to the contour of a hole. Observe that the errors
in the contours were eliminated.

IV. CONTOURS’ EXTRACTION

As stated earlier, the output from PyFibers will be used in
other programs that use the fiber contours to calculate the
optical characteristics of the waveguide. To be as general
as possible two output formats were developed: a text file
containing the holes contours coordinates and a DXF file
with the contours.

In the first case it is necessary to ensure that the contour
line is only one pixel thick. For this, we adapted an Image
Foresting Transform (IFT) [12] algorithm previously devel-
oped in [13], in order to eliminate the extra pixels. The IFT
treats the image as a graph, having as input parameters the
binary image with the contours, an image with seeds (in this
case, a pixel from each contour), an adjacency relation (an
8-neighborhood was used) and a cost function (the geodesic
distance in this case). This information is used to calculate
the minimum-cost paths for each pixel in the image, starting
from the seeds. The seeds that manage to “raise” pixels
(lowest cost value) become roots of the image trees and
each tree is labeled, defining an image region. The IFT
output parameters are thus the labeled image, a cost image
and a graph indicating the predecessor of each pixel in its
minimum-cost path.

(a) (b)

Figure 7. Illustration of the IFT algorithm: The squares represent a contour
obtained by segmentation. The circles represent the resulting contour after
the IFT algorithm.

The predecessors graph generated by the transform was
used to obtain the minimum-cost path to close a given
contour, starting from its root and returning to it. The
result is that unnecessary pixels are excluded, as it may
be seen in Figure 7. The use of the geodesic distance as
cost function enforces that only the pixels from the original
contour (which has thickness greater than one pixel) enter
the calculation. The predecessors’ graph generated by the
IFT results on a one pixel thick path along the contour,
which is exactly what is needed. The algorithm in [13] was
implemented in Python in an optimized way, so as to return
only the predecessors’ graph, and assuming that the input
would be a binary image with only one seed per contour.

V. COMPUTATION OF COORDINATES’ LIST

A. Scale bar segmentation

To obtain the coordinates of the contours in micrometers
the scale bar needs to be segmented. This was done by first
applying a threshold to the image aiming at segmenting the
bar and the white letters at the bottom of the image. The
Otsu algorithm [8] was again used to find the threshold
value, but taking into account only the lower right corner of
the image instead of the entire image. In this way the area
occupied by the legend becomes significant with respect to
the total area, and the threshold value that maximizes the
covariance between the classes will segment the bar and
the white letters, which have brightness very different from
the rest of the image. Figure 8(b) shows the result of the
threshold applied to 8(a).

After thresholding it is necessary to eliminate the letters
and other structures that might have been segmented. For this
it was used the fact that the bars have a long, rectangular
and horizontal shape. Therefore an erosion by a horizontal
SE was used, actually, a line with length based on the
mean size of the holes. This was in turn obtained from
the holes’ area, that was measured previously. The result
of this step is shown in Figure 8(c). To obtain the whole bar
again, the eroded image was used as marker for the inferior
reconstruction of the thresholded image. Figure 8(d) shows
the result of the reconstruction. With the bar segmented,
the corners’ coordinates are obtained and this information is
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Figure 8. Example of scale bar segmentation. (a) Original image. (b) Result
of thresholding (a) using Otsu algorithm in the inferior right corner of the
image. (c) Erosion of (b) with a horizontal line. (d) Inferior reconstruction
of (c).

used to measure its length, in pixels. This parameter is used
to convert the holes’ contours’ coordinates from pixels to
micrometers - but here the user has to enter the scale value.

B. Output files

Once the holes’ coordinates have been transformed to
micrometers, they are saved into two formats, a text file and
a DXF (AutoDesk Drawing Interchange format) file. The
text file has 4 columns, containing a reference number for
the hole, a sequential number for the pixel in the contour,
and the coordinate values (x,y) of the pixel, in micrometers.
The origin is selected by the user with the mouse. The
DXF file was created using the open source SDXF package
(http://pypi.python.org/pypi/SDXF/1.1).

VI. USER INTERFACE

The aim of Pyfibers is to be routinely used to segment
SEM images, as they are acquired. These images may be
very different from each other - the program was tested in
a small database and even so a few images showed holes
with segmentation defects. Images that present regions with
higher or lower brightness values end up with some holes
being poorly segmented, as in these cases it is hard to find
a threshold value that will suit the whole image. Another
problem is presented by holes superposed to the scale bar,
leading invariably to a faulty segmentation. In order to be
practically useful the program must correct the segmentation
errors, or in the worst case scenario, it must be able to
exclude the holes poorly or not segmented.

To correct these defects requires user intervention. There-
fore a graphical user interface (GUI) was developed, us-
ing the TkInter module for Python (http://docs.python.org/
library/tkinter.html). The GUI was based on examples found
in [14]. Details of the interface may be seen on Figure
9. The program allows definition of a default directory to
search for the images, or otherwise it opens a window for
directory selection. The program then searches for images in
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Figure 10. (a) and (b) Result of automatic segmentation of 2 PCFs. (c)
Details of automatic segmentation (left) corrected with user intervention
(right) for 2 PCFs.

the directory, creates thumbnails and uses them to generate
buttons with links to the images (Figure 9(a)). By clicking
on the icon the program calls another window, with image
processing options. The program also allows mouse input,
and includes semi-automatic (interactive) correction methods
for the holes and the scale bar in cases of poor segmentation.
For this, the user just clicks on the defective hole or bar,
and the segmentation is repeated, but locally, isolating the
hole (bar) from the rest of the image, which allows better
performance of the thresholding algorithm.

VII. CONCLUSION

Here was presented the PyFibers semi-automatic tool for
the extraction of contours of the cross section of pho-
tonic fibers in SEM images. The tool is mainly based on
mathematical morphology operations. A first segmentation
attempt is carried on automatically, and then the results
can be corrected through user intervention when necessary.
PyFibers was tested on a set of 9 different PCFs that sum
a total of 985 holes, showing good results in 925 holes
(∼ 94%) without user intervention. Figures 10(a) and 10(b)
show some results. User intervention allowed to repeat the
segmentation locally in a small region around the defective
holes, and it was able to increase the number of holes
properly segmented to 945 (∼ 96%). Figure 10(c) shows
results of local correction. Figures 11(a) to (r) show the
results for all the PCFs tested: in each pair of PCFs images
shown, the first one is the result obtained with the automatic
method, while the second one is the result of the semi-
automatic method.

The main developments achieved in this work were:
1) A method for eliminating brightness gradients from

the image background image based on the close holes
operation. This method increases the contrast between holes
and background, simplifying the choice of threshold value.
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Figure 9. User interface. (a) Navigation window, with buttons for every image in the directory, with links to the processing window. (b) Processing
window - it has visualization area with scrolling bars, a status bar to give instructions to the user, and several buttons linking to processing routines.

Parallel operations to strengthen the edges, seeking to reduce
segmentation errors, were also developed.

2) A method to eliminate small segmentation errors and
smooth hole edges based on a modified erosion operation.
This method can be applied in any situation where smoothed
image contours are needed, which occurs frequently in many
applications involving image processing.

3)An algorithm to segment the scale bar and convert
coordinates from pixel units to micrometers.

4) A GUI to simplify access to various correction routines,
to be used in case of failure of the automatic segmentation
algorithm. This interface allows the user to input information
through the mouse.

Although the image processing operations used in Py-
Fibers are well-known, their application to this problem
is original, since the whole field of photonic fibers is an
emergent field of research.
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Figure 11. Comparison between the results of the automatic and semi-automatic segmentation methods. In each pair of PCFs shown, the first one is the
result obtained with the automatic method, while the second one is the result of the semi-automatic method.


