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Abstract—Graph partitioning, or graph cut, has been studied
by several authors as a way of image segmenting. In the last
years, the Normalized Cut has been widely used in order to
implement graph partitioning, based on the graph spectra
analysis (eigenvalues and eigenvectors). This area is known
as Spectral Graph Theory. This work uses a hierarchical
structure in order to represent images, the Component Tree.
We provide image segmentation based on Normalized Cut, with
image representation based on the Component Tree and on its
scale-space analysis. Experimental results present a comparison
between other image representations, as pixel grids, including
multiscale graph decomposition formulation, and Watershed
Transform. As the results show, the proposed approach, applied
to different images, presents satisfying image segmentation.

Keywords-image segmentation; component tree; watershed
transform; graph partitioning; spectral graph.

I. INTRODUCTION

Image segmentation is a classical and basic issue in
computer vision and image processing domains. Its goal is to
identify regions of interest on images that have one specific
meaning to the problem application. Despite the effort made
in the academic community, there is no algorithm or ap-
proach able to present optimal or correct image segmentation
to all kinds of problems.

The relationship between some linear algebra concepts
and graph theory provides a promising way to segment
an image into meaningful regions and to extract usefull
information. This area, known as Spectral Graph Theory, has
evolved and encouraged numerous works on digital image
processing domain [1]–[7]. Some interesting applications
are pattern recognition, testing isomorphism and clustering,
besides image segmentation [8], [9]. Spectral Graph Theory
is the study of the eigenvalues and eigenvectors of matrices
associated with graphs [8] and provides a way to find a graph
cut. Graph cuts, or graph partitioning, may be explored to
analyze the degree of dissimilarity between parts of a graph
that represents an image.

Recently, a common formulation used in image segmenta-
tion is the Normalized Cut [1]. The authors propose a new
criterion for measuring the quality of an image partition.
This criterion computes the cut cost as an fraction of the

total edge connections to all nodes in the graph. Normalized
Cut (NCut) has been used by different works in the last years
[2]–[5].

In this paper, we propose an approach in order to imple-
ment image segmentation based on the NCut applied to a
hierarchical image representation, the Component Tree (CT).
The CT is a graph image representation computed from the
cross-section decomposition of the image gray levels [10],
[11]. The Component Tree has been proven effective in many
applications of image segmentation. Its implementation is
relatively simple and the number of nodes and edges is lower
than when using graphs. Additionally, the complete image
segmentation is achieved by the analysis of the Reverse
Component Tree (RCT) and from the scale space analysis
generated by CT and RCT. We would like to explore the
state of modeling images by trees and its application on
NCut segmentation, not previously done. We have compared
our approach with three other formulations that uses NCut
partitioning: (i) grid pixels affinity [1]; (ii) graphs based on
watershed transform [2], [3]; and (iii) a multiscale graph
decomposition [5]. As experiments, we have used different
kinds of images and the results are promising.

This paper is organized as follows. Section II presents
an overview of the NCut and other related works. Section
III describes graph representation used in order to model
images, including the Component Tree and the Reverse
Component Tree representations. Section IV presents the
NCut algorithm overview used by our work. We describe
the steps needed to segment an image by means of NCut,
as well as how we implement the CT and RCT analysis.
Finally, experimental results are presented in Section V and
comments and conclusions, as well as suggestions for future
works are give in Section VI.

II. RELATED WORKS

The NCut technique [1] is used to find a balanced cut
in a graph, in order to generate two or more subgraphs.
In order to apply this method to the image segmentation
issue, a graph that represents the image must be created and
its nodes or subgraphs will represent the pixels or image



regions, respectively. This balanced cut is calculated by (1),
as follows:

NCut(A,B) =
cut(A,B)

SumCon(A, V )
+

cut(A,B)

SumCon(B, V )
, (1)

where cut(A,B) is defined as the total weight of the edges
removed from the original graph V , in order to obtain two
subgraphs A and B; SumCon(A, V ) is the total weight of
the edges connecting nodes from a subgraph A to all nodes
in the original graph V ; and SumCon(B, V ) is similarly
defined to a subgraph B.

The optimal NCut is the one that minimizes (1), which is a
NP-Complete complexity problem. However, by expanding
(1), the authors noticed that it can be minimized using
spectral graph properties described by Fiedler [7].

There is a wide range of recent work in image segmen-
tation using the NCut technique. Some of them focus in
performance improving, while others in different approaches
to generate the input graph for this technique. In [1], the
weighted graph is built taking each pixel as a node and
connecting each pair of pixels by an edge.

Monteiro and Campilho [2] proposed the Watershed Nor-
malized Cut, which uses the Watershed image segmentation
to generate a region similarity graph. The weights for this
graph are given by a function of intensity and contours
from each micro region centroids. The region similarity
graph is then used as input for NCut, instead of using the
pixel similarity graph that demands a higher computational
processing. The Watershed region similarity graph is either
used in our previous work [3] in comparison to the primitive
input for NCut, and applied in the segmentation of yeast
cells images. The weight function used considers the area
and the average grayscale level of each region. Ma et al
[4] used the graph generated by the Watershed Transform to
segment texture images.

The primitive NCut enhancement was also studied and
applied by many researchers. Cour et al [5] proposes a
NCut adaptive technique that focus on the computational
problem created by long range graphs, which yields in
a better segmentation. The authors suggested the use of
multi-scale segmentations, decomposing a long range graph
into independent subgraphs. The main contribution of this
technique is that larger images can be better segmented with
linear complexity.

Tao et al [6] presented a novel thresholding algorithm that
uses the NCut measure. The graph weight matrix is now
based on the gray levels of the image, reducing in this way
the size of the affinity matrix and consequently requiring
a low computational cost. The threshold is done by first
building a pixel affinity matrix, followed by using this matrix
to build another matrix M , where M(i,j) = cut(Vi, Vj) and
i, j are gray levels. The NCut is then calculated to each
threshold value, with all the parameters of the NCut given
by the matrix M . If the NCut value belonging to a given

gray level t is lower than a fixed one, the optimal threshold
value used to separate the objects from the background is t.

III. GRAPH REPRESENTATION

A graph representation of the image is needed to perform
the NCut segmentation approach. Basically this represen-
tation is done by an undirected weighted graph G =
(V,E,W ), where: (i) V is the nodes set, where each node
corresponds to a region or a pixel of the image; (ii) E
is the edges set, where each edge links two nodes, and
consequently, make a relationship between two regions or
pixels of the image; (iii) and W is the weights set, where
each weight is related to an edge and corresponds to a
measure of similarity between the regions or pixels. This
structure is called a Similarity Graph.

There are several techniques to construct the similarity
graph of an image. Some of these techniques, used by us in
this work, are described in the following subsections.

A. Pixel Affinity Graph

In this technique, each pixel is taken as a graph node, and
two pixels in a r distance are connected by an edge. The
edges weights should reflect the similarity between the pixels
connected by them. The grouping cue used in the similarity
function will reflect the overall quality of the segmentation.
Some of them are the intensity, position, and contours [1],
[5], [12].

The intensity and position grouping cue assumes that
close-by pixels with similar intensity are most likely to be-
long to the same object. The measure of similarity regarding
this grouping cue is given by (2) [1], [5]:

WIP(i, j) =



 e

−
(α2

dp

)
−
(β2

di

)

, if α2 < r

0, Otherwise

, (2)

where α =
∣∣|Pi−Pj |

∣∣ and β =
∣∣|Ii−Ij |

∣∣ are respectively the
distance and the difference of intensity between pixels i and
j; r is a given distance (also called graph connection radius);
and dp and di could be set as the variance of the image pixels
positions and intensity. This grouping cue used separately
often gives bad segmentations because some natural images
are affected by the texture clutter.

The intervening contours grouping cue evaluate the affi-
nity between two pixels by measuring the image edges
between them. The measure of similarity regarding this
grouping cue is given by (3) [5]:

WC(i, j) =





e
−
(max(x ∈ line(i,j)) ε

2

dc

)
, if α2 < r

0, Otherwise

,

(3)
where line(i, j) is a straight line joining pixels i and j and
ε =

∣∣|Edge(x)|
∣∣ is the image edge strength at location x.



These two grouping cues can be combined as shown by
(4) [5]:

WIPC(i, j) =
√
WIP(i, j)WC(i, j) +WC(i, j). (4)

1) Multiscale Graph Decomposition: The graph decom-
position algorithm [5] works on multiple scale of the image
to capture coarse and fine level details. The construction of
the image segmentation graph is given according to their
spatial separation, as in (5):

W = W1 +W2 + . . .+Ws, (5)

where W represents the graph weights w(i, j) and s, the
scale, i.e., each Ws is an independent subgraph. Two pixels
i,j are connected only if the distance between them is lower
than Gr. The Gr value is a tradeoff between the computation
cost and the segmentation result. The decomposition graph
above can alleviate this situation. Ws can be compressed
using recursive sub-sampling of the image pixels. This
compression is not perfect, but he has the advantage of the
computational efficiency.

B. The Watershed Transform

Originated by mathematical morphology, the Watershed
Transform [13] treats the gradient image as a topographic
surface. The image is flooded from a set of selected sources
(also called regional minima) until the whole image has been
flooded, with dams buildup between different “lakes” before
them meet, generating, in this way, the watershed lines and
watershed regions.

Hierarchical Watershed creates a set of nested partitions,
i.e., a hierarchy. In this case, a partition at a fine level is
obtained by merging regions of the coarse partition [14].
The watershed problem can be modeled using graphs. The
flooded gradient image is represented by a full-connected
weighted neighborhood graph, where a node represents a
catchment basin of the topographic surface. We use Hi-
erarchical Watershed in order to reduce the number of
nodes (super segmentation problem) that is originated by
the primitive Watershed in the correspondent graph.

After the conversion, a weight function that takes into
account the area and average grayscale level of each region is
used in the similarity graph to set the edges weights between
them.

C. The Component Tree

The Component Tree is a representation of a grayscale
image based on the cross-section decomposition (thresh-
olding) between its minimum and maximum gray levels.
There exists a relation of inclusion between components
at sequential gray levels in the image. A cross-section or
threshold is defined as a binary image given by (6) [10],
[11]:

Fk = {x ∈ F/F(x) ≥ k}, (6)

where F is an image and Fk is a section k (level) of F .

The Connected Components (CC) of the different cross-
sections may be organized in order to form a tree structure.
We say that the two CCs Ck+1 and Ck are linked when
Ck+1 is a subset of Ck (the inclusion relation). The CC of
the first cross-section – Fmin – corresponds to the whole
image domain and it’s called root. Fig. 1b shows the CT of
the grayscale image depicted in Fig. 1a.

1) Reverse Component Tree: The traditional CT is
formed only by the 1’s CCs, once the cross-section used
for the root corresponds to the minimal graylevel. However,
there is still information on the cross-sections related to the
0’s CCs that are not included in the traditional CT. For some
particular cases these CCs hold more relevant information
than the 1’s CCs. Therefore, we build a Reverse Component
Tree where two CCs Ck and Ck−1 are linked when Ck−1

is a subset of Ck. In this case, the root of the tree is formed
by the CC of the last cross-section – Fmax. Fig. 1c shows
the RCT of the grayscale image depicted in Fig. 1a.

1 1 4 5 5 1 3 1

1 1 1 4 4 2 5 1

4 5 4 3 1 1 1 1

3 3 1 1 1 1 1 1

1 1 1 1 1 1 5 3

3 4 4 5 1 5 5 3

1 5 2 3 3 5 3 3

1 3 1 1 1 1 1 1

(a)

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
9

C
10

C
11

C
12

C
15

C
16

C
17

C
18

C
13

C
14

C
8

F
1

F
2

F
3

F
4

F
5

(b)

C
21

C
22

C
23

C
19

C
20

C
26

C
27

C
24

C
25

C
28

C
29

C
30

(c)

Figure 1. (a) A grayscale image (b) the Component Tree of Fig. 1a (c)
the Reverse Component Tree of Fig. 1a.

2) Modeling the Similarity Graph: The CT and the RCT
are used together to model the similarity graph. However,
not all cross-sections need to be used once there is much
redundant information across them. The choice of the cross-
sections that will be processed can be done by determining
the most relevant cross-section and then, selecting the ad-
jacent cross-sections until the sum of CCs of all selected
cross-sections is higher or equal than a l value, where l is
the maximum number of CCs that could be processed with
the available memory. Determining the most relevant cross-
section is not trivial. In our model it is given by being close
to the middle cross-section and having the higher number
of CCs.

A subgraph is created for each selected cross-section, with
the nodes set corresponding to its CCs and the edges set



obtained from mutual linking the nodes, in order to form a
complete graph. After that, the final similarity graph is build
by linking the subgraphs with the edges from both the CT
and the RCT. The weights for the edges are determined by a
combination of the attributes differences between the nodes
that it links.

The main goal of this modeling is to keep very similar
linked CCs in subsequent cross-sections in the same region.
To achieve this goal, the weights of the edges that links
the subgraphs needs to be adjusted to increase the similary
between them.

IV. ALGORITHM OVERVIEW

The segmentation based on NCut technique can be applied
by two distinct methods: recursive 2-way NCut and k-way
NCut. The first one uses the second smallest eigenvector
of the graph Laplacian’s matrix L, where L = D − W
with W being the weight matrix and D a diagonal degree
matrix, to recursively bipartite the similarity graph [1]. The
k-way NCut uses the K first eigenvectors of the graph
Laplacian’s matrix L to directly generate a number K of
desired partitions [1], [15].

The image segmentation process using k-way NCut is
described in the following steps:

1) Given an input image, compute the Similarity Graph
G = (V,E,W ) using one of the techniques described
briefly in section III.

2) Build the weight matrix W and the degree matrix D
from the Similarity Graph.

3) Solve (D −W )x = λDx
4) Discretize the K first eigenvectors into X , where X =

[X1, X2, .., XK ] and XN [i] = 1 iff node i belongs to
the partition N .

5) Use X for the distribution of the graph nodes into the
K partitions.

If using the CT / RCT modeling, you must indicate the
number of regions and select the partition that corresponds
to the best segmentation.

V. EXPERIMENTS

We use in our experiments a set of 15 randomly chosen
images from the Berkeley Image Database [16] and more
10 images from a particular database. The images from
Berkeley database needed to be cropped to 256 x 256
pixels. Fig. 2 shows 8 selected images from 25 used in the
experiments.

The original implementations of the Pixel Affinity and
Multiscale segmentation techniques were provided by the
authors [1], [5]. The Hierarchical Watershed Transform was
implemented by us on previous works [14].

The experiments were executed according to the steps
described in section IV. The connection radius for the Pixel
Affinity graph was r = 10 and the edges weights were given
by (3). In the Watershed Transform, we generated an over

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Original images selected from those used in our experiments:
(a-d) from particular database, respectively, bee, coreto, flower and yeast
cells; (e-h) from Berkeley database, respectively, 3096, 16077, 38092 and
42049 [16].

segmented image, and then applied the Hierarchical Wa-
tershed for limiting the number of regions to aproximately
1200 regions. Then a region adjacency graph was generated
from the Hierarchical Watershed regions. For the Multiscale
approach were used one radius for each scale, which were
r1 = 2, r2 = 3 and r3 = 7. The Component Tree was
generated as described in sections III-C and III-C1. Then, a
similarity graph was created from it as explained in section
III-C2, with l = 2500. The attributes used to build our CT
similarity graph were difference of area, distance, standard
deviation of the gray levels and density. For the edges that
links the subgraphs, the weights were multiplied by a factor
given by (7):

f =
NCFi +NCFj

2 + | d(i)− d(j)| , (7)

where NCFi and NCFj are the number of CCs of the cross-
sections that has the nodes i and j respectively; and d(i) and
d(j) are the degrees of nodes i and j respectively, related
to the CT.

The k-way NCut was configured to generate exactly 30
regions for each experiment. All experiments generated as
result one single image partition with 30 regions, except for
the experiments using the CT image-graph representation,
which generated multiple image partitions, with a variant
number of regions on each one. These results with multiple
partitions were due to each cross-section represent the entire
image area. Therefore, if n cross-sections are selected to
compose the similarity graph, then there will be n image
partitions as result.

The experimental results for the original images presented
in Fig. 2 are shown in Fig. 3, for the particular database
images, and Fig. 4, for the Berkeley database images. Note
that for the CT results, just one partition of each experiment
was chosen to be shown. In this case, the ones with a better
segmentation.
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Figure 3. Ncut image segmentation results obtained by different graph
representations for the imagens showed in Fig. 2a, Fig. 2b, Fig. 2c and Fig.
2d: (a-d) Pixel Affinity graph (e-h) Hierarquical Watershed region adjacency
graph (i-l) Multiscale Graph Decomposition (m-p) Component Tree.

The experiments showed that, in general, regarding a
given partition selected by the user, the CT segmentation
approach produces better or equivalent results than the
other approaches. Only on some cases one of the other
segmentation approaches produced a segmentation result
that could be considered better than the CT approach results.
However, the CT results stayed satisfactory. The results for
Fig. 2a and Fig. 2b, presented in Fig. 3, shows such cases.

The CT segmentation result obtained for Fig. 2c, pre-
sented in Fig. 3o, separate the entire flower from the
background, while the other approaches super segment the
subject. This super segmentation behavior presented by the
other techniques can also be clearly observed on the seg-
mentation results obtained for Fig. 2e and Fig. 2h. To make
these results more similar to the ground truth segmentations,
shown respectively in Fig. 4q and Fig. 4t, there will be
necessary to perform a region union operation; our approach
already presents segmentation results quite similar to the
ground truth segmentations, provided by Berkeley database.
We have also executed experiments by the other approaches
in order to segment the images in the same number of

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4. Ncut image segmentation results obtained by different graph
representations for the imagens showed in Fig. 2e, Fig. 2f, Fig. 2g and
Fig. 2h. (a-d) Results by Pixel Affinity graph (e-h) Results by Hierar-
quical Watershed region adjacency graph (i-l) Results by Multiscale Graph
Decomposition (m-p) Results by Component Tree. (q-t) Ground Truth
segmentations from Berkeley database.

regions obtained by the optimal CT segmentation partitions.
However, the results stayed unsatisfactory.

The results obtained for Fig. 2d, in particular, presents
good segmentations by the Pixel Affinity and the Multiscale
approaches. However, they failed on segmenting some yeast
cells, while the CT approach segmented all cells, as shown
in Fig.3p. In Fig. 3d, can be observed that the three cells at
the top of Fig. 2d do not was appropriately segmented by the
Pixel Affinity approach. The Multiscale segmentation result,
shown in Fig. 3l, presents bad segmentation for cells located
at left-bottom of Fig. 2d.

There were some segmentation results that were unsatis-
factory for all approaches, like the ones associated to Fig. 2f



and Fig. 2g. Nevertheless, the CT result for Fig. 2g, shown
in Fig. 4o, is better than the other results, according to the
ground truth segmentation, shown in Fig. 4s.

One particularity of our approach is that it results in
several different partitions, instead of only one final partition.
Therefore, this set of partitions can be analyzed, manually
or automatically, in order to achieve the best image segmen-
tation, according to a given application.

A problem in the use of CT is its high computational cost
of processing and memory. In this case, it is desirable to
use efficient algorithms for the CT construction, particularly
because it is also necessary to build up the RCT.

VI. CONCLUSION

This paper presented an image segmentation method
based on image-graph representation and graph cut. The
graph partitioning was obtained by means of spectral graph
analysis and Normalized Cut.

We proposed the use of Component Tree and Reverse
Component Tree as image representation as well as we
applied the Normalized Cut in these structures. Experimental
results showed that good segmentations are obtained using
different ways to represent images by graphs. We showed
that the approach that uses the CT and RCT gives the best
results. Experiments on real images (particular and Berkeley
databases) show that the CT/RCT representation had the
advantage of reducing the number of graph nodes.

Our ongoing works aims to explore the CT and RCT
image representation in some specific application. Other
measures of similarity between the CT/RCT nodes should
also be explored in future work, such as contour. Also, other
image-graph conversion methods can be used, such as k-
means region similarity graph and Quadtree Decomposition.
We are especially interested in comparing our results with
those obtained by other modeling techniques that use regions
as nodes in graphs. The performance of the segmentation
method using recursive 2-way or k-way NCut can also be
studied.
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