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Abstract—A new background estimation method is proposed
to improve iterative restoration of microscope images. The
method is based on a sequence of subtractions performed in
the beginning of an iterative restoration procedure. A series
of experiments using background intensity detection methods
were carried out in order to analyse the influence of a correct
estimation of the background. The restoration results as a
function of the detected background value is discussed. The
results indicates a strong influence of the estimate on the
restoration of images. When compared to an optimal error-
based method, the proposed method was faster and obtained
a good approximation to the correct value.

Keywords-image restoration, background estimation, mi-
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I. INTRODUCTION

The acquisition of digital images through devices that
detect some physical measure such as light or other radi-
ation, temperature, sound, etc., has limitations that generate
an output image that is not equal to the “real” image. Each
step of the imaging chain, the lenses, film, detector, digitizer,
etc. contributes to the degradation of the image. Therefore
every imaging system degrades the image in some way.
Image restoration methods are designed to remove or reduce
these degradations including: blurring that can be introduced
by optical systems, image motion, electronic, thermal or
photonic noise, and others [1]. It is possible to characterize
the sources of degradation so that the undesired effects can
be reduced. When a prior knowledge about the image is
available, a model can be developed in order to fit the
observed image to a restoration model.

The restoration of images based on additional a priori
information about the image and the system is an interesting
approach. The use of good prior information makes possible
to estimate frequency components of the image that are not
passed thought the imaging system [2], and also to recon-
struct signals with missing samples or irregularly-sampled
spaces [3]. The prior knowledge can be used to impose
constraints that the restored image must satisfy. Constrained
restoration methods widely used are the constrained least
squares method [4], and Richardson-Lucy iterative algorithm
[5], [6], that uses the point-spread function of the imaging
equipment and the image statistics to obtain restoration

through a probabilistic approach [7]. Project onto convex
sets (POCS) is another method that can be used to perform
constrained restoration [8].

Some common prior information used by algorithms are
the: i) image levels are non-negative, ii) image levels are
limited, iii) object has finite size, and iv) image is band-
limited. These information are general and can be used in
several applications. In addition, another strong constraints
can be found by extracting information directly from the
image. It can be done for specific images, for example,
by defining geometric constraints [9], or also for a set
of images, using edge information for the reconstruction
of magnetic ressonance spectroscopic data as in [10]. The
background information was shown to have an important
role in biomedical image restoration and other applications
[11]. In this paper the influence of background estimation
will be analysed in the context of iterative restoration of
microscopy images. A novel method is proposed to obtain
an approximation of the optimal value for the background.
Existing background estimation methods are studied and the
performance is analysed as a function of the background
information.

The next section defines the image formation model and
an iterative restoration method used in this paper. Section
III describes the characteristics of background in microscopy
images. Experiments and results are described and discussed
in section V and the concluding remarks in section VII.

II. IMAGE FORMATION MODEL AND ITERATIVE
RESTORATION

Biomedical images are acquired using some imaging
system such as microscopes, ultrasound, tomographs and
nuclear magnectic ressonance equipments. The image for-
mation is often modeled using the impulse response function
of the system. This is an interesting model because the
restoration procedure can be posed as an inverse problem. In
optical microscopy, the images generally have two sources
of noise: an additive and signal-independent noise caused
by the effect of the electronic recording system; due to the
photon counting nature of light based sensors, there is an
another more important source of noise, specially in low-
level light situations. It is a signal-dependent noise and can



be well modeled by a Poisson distribution. Considering each
value of the observed image g(x, y, z) to be a realization of
a random variable described by a Poisson process, the model
can be written as:

g(x, y, z) = N {f(x, y, z) ∗ h(x, y, z)} , (1)

whereN {} represents a random process, more specifically a
Poisson process, g is the observed image, h the point spread
function (PSF) that models the blurring due to the optical
system, f is the original image, ∗ is a convolution operator.
This kind of process produces noise that is correlated with
the image given by f(x, y, z) ∗ h(x, y, z).

The image formation for many biomedical acquisition
systems can be modeled using Eq. 1.

The Richardson-Lucy (R-L) algorithm [5], [6] uses a
probabilistic approach to restore images: given a degraded
image g, what is the image f̂ that maximizes the probability
of observing the image g? Considering the image as an
observation of a Poisson process, the likelihood function
would be:

p(g|f̂) =
∏
x

h(x) ∗ f̂(x)g(x)e−h(x)∗f̂(x)

g(x)!
, (2)

where x represents (x, y, z) for a 3D signal.
The R-L algorithm minimizes the functional L(f̂) =

− log p(g|f̂), giving the maximum likelihood estimation:

L(f̂) =
∑
x

−g(x) log
[
(h ∗ f̂)(x)

]
+ (h ∗ f̂)(x). (3)

The R-L iteration is given by:

f̂n+1(x) =

[(
g(x)

f̂(x) ∗ h(x)

)
∗ h(x)

]
× f̂n(x). (4)

The R-L method is suited to restore images that can
be modeled by a Poisson distribution, for example, images
acquired under low-light conditions from telescopes and
optical microscopes. It is still considered in the literature
one of the best solutions to such cases, and that is why the
R-L method is used in this study to restore the images. An
important observation is that R-L has a non-negativity prop-
erty that was shown to improve restoration of frequencies
beyond the microscope resolution.

The use of background information in iterative restoration
can be used as a constraint prior to the restoration and
possibly improves the quality of the results of iterative
restoration methods. The improvement is, however, sensitive
to the method used to obtain the background region.

III. BIOMEDICAL IMAGES AND THE BACKGROUND
CHARACTERISTICS

In fluorescence microscopy, signals not originating from
the specimens of interest are also acquired, mainly in the
region of background where the fluorophore is also present

and emmits light. Images obtained in other biomedical
applications, such as: nuclear magnetic ressonance imaging,
computerized tomography, ultrasound imaging, microscopy,
etc., specially in three-dimensional images, also have a
very dense background region. The information that lies on
this background region is not useful and it is sometimes
removed in some methods before processing the image
[11]. The background region in a biomedical image usually
corresponds to the majority of pixels (or voxels, in the 3D
case).

To observe this characteristic, the histograms of several
images were analysed. As demonstrated in previous studies
for confocal images [12], the wide-field image histograms
are unimodal and the background is concentrated between
zero and the mean intensity of the observed intensities —
result obtained experimentally by van Kempen et. al [11].

IV. BACKGROUND ESTIMATION METHODS

The biomedical image formation is often modeled using
the impulse response function of the system. This is an
interesting model since the restoration procedures can be
seen as an inverse problem. However, depending on the
condition of the sample that is been imaged. it is important to
consider the background information present in such images.
The models used in most methods attempt to restore objects
but often do not consider visual information (light) not
originated from the object itself. However, the background
knowlegde can be used to improve restoration since it can be
extracted before the processing and used as an information
for a constrained restoration approach.

A. Maximum of the histogram

In general, the background can be characterized as being
of low intensity and of a low spatial frequency. In images
of sparse objects, the majority of the voxels are background
voxels, and a histogram-based algorithm can be used to
estimate the background.

The maximum of the histogram can be used when the
distribution of the main source of noise in the image is
unimodal (this assumption holds for Poisson noise). This
method uses the maximum value of the histogram to subtract
the whole image from this value. Negative voxels are clipped
to zero. Figure 1 shows an example of a typical fluorescence
microscopic image histogram (a), and the histogram after
background removal by the maximum value.

B. Mathematical morphology

In images of dense objects or in images with a non-
constant background, the histogram-based approach will not
be very accurate (still the maximum of the lowest intensity
peak might give a reasonable estimate). In these cases an
approach based on mathematical morphology might work
[11]. An opening operation can be used to estimate the
shape of the background. An approach is to use an histogram



Figure 1. Example of maximum of histogram subtraction — (a) observed
image histogram, (b) background subtracted image histogram

to find the first peak value, p, between zero and the mean
intensity. The values inside the interval [0, p] are set to zero.
Let gb be the background region found by this procedure.
An opening morphological operation is carried out over gb,
resulting in:

gm(x) = (gb 	 d) (x)⊕ d(x), (5)

where gm is the background region after a closing morpho-
logical operation using a disk d of an arbitrary size. The
operators 	 and ⊕ represent, respectively, an erosion and a
dilation procedures. The region where gm = 0 is considered
to be the new background region. This method prevents the
existence of isolated values in background regions to be
treated as the object to be processed.

C. Pre-segmentation

The accuracy and the bias of the fit will be improved if it
is done over background voxels only. Therefore the image
needs to be coarsely segmented in object and background
voxels. A way of doing this is to use the noise variance
as a criterion. Given a first histogram-based estimate of the
background intensity, a voxel can be labeled as an object
voxel if its intensity is more that n (2 or 3) times the standard
deviation of the noise. This method requires the estimate of
noise statistics.

D. Mean-squared error method

This approach, proposed by [11], also uses the maximum
histogram-based estimate of a value as a first estimation.

After that, the algorithm uses an error based on the differ-
ence between the observed image and the restoration result
blurred by the microscope’s OTF with the added background
to measure the performance as a function of the background:∑[

g(x)−
(
h(x)f̂(x) + b(x)

)]2
, (6)

where f̂ is the restored image, b is the estimated background.
By optimizing this measure as function of background, the
optimal background can be determined. It uses the mean-
square-error between the acquired image and the restoration
result blurred by the microscope’s OTF with the added
background.

This method obtains the optimal value for the background
(to be subtracted) by running a restoration method and
computing the error for several values of background. After
finding the value that minimizes the error, it is used to
subtract the background and, finally, process the image.
A disadvantage of this method is that it requires a few
restoration results with some restoration method. This could
lead to a high computational complexity and, consequently,
an unacceptably long processing time [11].

E. Sequence of subtractions method

In this paper we propose a new method to restore images
using a background mean-squared error and a POCS-based
iterative restoration. It computes the error in Eq. 6 as
iterations are performed. The advantage is that it does not
need several restoration tests before performing the definitive
restoration. The method can be described as follows:

1) Let b0 be the first non-zero value in the image his-
togram.

2) Perform the subtraction s0 = g − b0, where g is the
observed image.

3) Perform one restoration iteration (in this study we used
a R-L iteration) with image s0.

4) Obtain the first non-zero value, bi, in the current
restored image, f̂i.

5) Perform an iteration using the the image si = f̂i − bi
and compute the error.

6) If the error increases: rollback to the previous estimate
and proceed with the iterative restoration without
further subtractions.

7) Else, if the error decreases: use the resulting image as
the current estimation and repeat steps 4–6.

8) Otherwise: use the resulting image as the current
estimation and proceed with the iterative restoration
without further subtractions.

V. EXPERIMENT DESIGN

A series of experiments were carried out using the
methods described in the previous sections. The restoration
method used to test each background detection method was
the Richardson-Lucy (R-L) iterative restoration. The images



used to run the experiments are: a bead synthetic image, with
resolution of 128 × 128 × 128, and a real image obtained
with a wide-field fluorescence microscope with resolution of
256× 256× 32 pixels, both images with 256 gray levels.

The synthetic image was convolved with a theoretical
microscope PSF, following the model of Gibson and Lanni
[13]. Poisson noise was applied to the image and the
background intensity value was set to 7 (seven). Note that the
parameter for Poisson noise, λ, represents the mean number
of occurrences and its variance [14]. Therefore, one cannot
set multiple noise leves for one image because the noise is
related to the intensity pixel value observed. Sections of the
synthetic image (original and degraded) are shown in Figure
2 and sections of the real image are shown in Figure 3.

Figure 2. Synthetic bead image (a) original, (b) degraded, sections: 32, y, z
(top) and 128, y, z (bottom)

Both phantom and real images were restored using the
R-L algorithm. Before restoration, the following methods
described in section IV were applied to detect the back-
ground value: maximum of the histogram (MAXH), mathe-
matical morphology (MM), background mean-squared error
(BMSE), and sequence of subtractions (SOS). A restoration
was also carried out without using the background detection.
The stop criterion used is ε ≤ 0.001, where ε is the residual,
that can be defined as:

ε =

∥∥∥f̂n − f̂n−1

∥∥∥∥∥∥f̂n∥∥∥ (7)

To obtain the optimal value using the BMSE, we compute
50 iterations for each value between zero and the mean
intensity value of the image, since it was experimentally
found that the correct value lie in this interval [15].

Figure 3. Real image sections: x, y, 16 (top) and 100, y, z (bottom)

A. Performance Evaluation
Three measures are used to evaluate the restoration per-

formance: the improvement on signal-to-noise ratio (ISNR),
the universal image quality index (UIQI), and the practical
image bandpass to observe the presence of new higher
frequencies on the restored image.

The ISNR is computed using the following equation:

ISNR = 10 log10

∑i ‖g(xi)− f(xi)‖∑
i

∥∥∥f̂(xi)− f(xi)
∥∥∥
 , (8)

where g(x) is the degraded image, f(x) the original image
and f̂(x) the restored image. The ISNR compares the
degraded and restored images with the original, and yields
a number that measures the relative improvement.

The UIQI represents an attempt to measure the structural
distortion, instead of an error, and is defined as:

UIQI =
4σxy · x̄ȳ(

σ2
x + σ2

y

)
· (x̄2 + ȳ2)

, (9)

where x and y are the original and processed images. The
letters with bars are averages, σ2 the variance of the images,
and σxy the correlation between x and y. The dynamic range
of UIQI is [−1, 1]. The value, 1, is achieved only if x = y.

To assess the restoration beyond the theoretical micro-
scope resolution, we use a method described by Conchello
[7], the practical bandpass of the image, as the region of the
frequency domain where the absolute value is larger than
1% of its peak value. That is, the coefficients where:∣∣∣F̂ (u, v, w)/F̂ (0)

∣∣∣ > 0.01, (10)



VI. RESULTS

In this section we present results from a simulation
experiment in which the performance of image restoration
algorithms is measured as a function of the estimated back-
ground. The improvement in signal-to-noise ratio (ISNR)
is computed. The universal image quality index (UIQI)
to measure structural and illumination distortions is also
evaluated. The practical bandpass is used to gives an insight
on what extent the algorithms restore information beyond
the microscope resolution.

The results showed, as expected, a strong influence of the
correct background estimation on the restoration of images.
As shown in Table I, incorrect estimates obtained by MAXH
and MM methods caused a decrease in the performance even
when compared with results achieved without background
estimation. The visual inspection of bead image (Fig. 4 c and
d) shows artifacts inside the bead, while the BMSE and SOS
methods preserved better the object shape. Although the
MAXH and MM methods can be suited to some problems,
one must be use them carefully in order to not deteriorate
the results.

The BMSE method found the correct value (7) for the
synthetic image and the expected value for the real image (4)
(Table II), while the MAXH and MM methods overestimated
the background in both cases. The proposed method was
not able to find exactly the optimal value but a good
approximation of it, yielding a relatively good result for the
restoration. It must be observed that, for the synthetic image,
the BMSE method used 600 iterations to obtain the optimal
value, and for the real image, 450 iterations.

The restoration results for real images can only be as-
sessed visually, showing in this experiment better restoration
specially through the z axis (Fig.5 e and f), presenting less
spreadness in this direction.

A good estimation of the background value can help
the restoration algoritm to restore images faster and to be
more stable. Figure 6 shows the ISNR increasing faster for
methods that uses better approximations of the background
value. It also shows that, for a high-level noise — as in the
images used in this paper —, a correct knowledge about
background can help the algorithm not to rapidly diverge.

The overestimation of the background, which removes ob-
ject information, can severely affect performance as shown
in Figure 7. The UIQI quickly drops from 0.71 to 0.53 with a
difference of just two intensity values. The underestimation
of background value was not so critical, as can also be seen
in Figure 7. This influence on non-linear image restoration
was demonstrated before by van Kempen et al. [11]. How-
ever, the method proposed by these authors needed several
additional iterations to obtain the optimal value, while the
proposed method finds an approximation as the iterations
are performed, reducing the computational complexity.

All background detection methods enhanced better the
high frequencies, when compared with the non-linear

restoration method alone (R-L). This improvement on the
restoration of frequencies beyond the microscope resolu-
tion occurs because the background subtraction works as a
finite-support constraint on the space domain of image. As
demonstrated before [16], [8], this constraint can improve
restoration of components in frequency domain.

Table I
SYNTHETIC BEAD IMAGE RESULTS: ISNR, UIQI, PRACTICAL

BANDPASS (PB), TOTAL NUMBER OF ITERATIONS (IT), AND
BACKGROUND VALUE (BVAL)– ESTIMATED (EST) AND ACTUAL (ACT).

Methods / Results ISNR UIQI PB It BVal Est(Act)
R-L 4.29 0.59 2647 148 0(7)
MAXH + R-L 3.56 0.47 13007 120 10(7)
MM + R-L 3.89 0.53 11351 126 9(7)
BMSE + R-L 5.28 0.70 10729 161* 7(7)
SOS + R-L 5.17 0.71 8075 183 6(7)
* - plus 600 iterations to compute optimal background value

Table II
REAL IMAGE RESULTS: PRACTICAL BANDPASS (PB), TOTAL NUMBER
OF ITERATIONS (IT) AND ESTIMATED BACKGROUND VALUE (BVAL).

Methods / Results PB It BVal
R-L 711 98 0
MAXH + R-L 1317 140 8
MM + R-L 1179 115 8
BMSE + R-L 893 103* 4
SOS + R-L 897 105 5
* - plus 450 iterations to compute optimal background value

VII. CONCLUSION

A new method to obtain background estimation with
the use of an iterative restoration method was proposed
showing good approximations of the optimal value and good
numerical results for ISNR and UIQI. A strong influence
of a correct background intensity detection was observed;
the overestimation of this value can easily deteriorate the
restoration of images, causing the algorithm to diverge
faster, specially in presence of noise. The competing method,
although optimal, require several additional iterations to
converge. The proposed method was able to find a good
approximation for the optimal value while the first iter-
ations were performed in the restoration process, without
hampering the restoration itself. New efforts can be directed
in order to prevent the overestimation of intensity values.
In nuclear magnetic ressonance and computerized tomog-
raphy, the background issue is not as complex as it is in
optical microscopy. However, methods developed to improve
microscope image condition can be very useful with other
biomedical image acquisition systems.



Figure 4. Results for the synthetic bead image: (a) observed, and restored using: (b) R-L, (c) MAXH + R-L, (d) MM + RL, (e) BMSE + RL, (f) SOS +
R-L

Figure 5. Results for the real image: (a) observed, and restored using: (b) R-L, (c) MAXH + R-L, (d) MM + RL, (e) BMSE + RL, (f) SOS + R-L



Figure 6. ISNR measure as a function of the restoration iteration

Figure 7. Restoration performance (UIQI) as a function of the background
estimation with 7 (seven) as the actual background value

ACKNOWLEDGMENT

The authors would like to thank Fundação Hemocentro
de Ribeirão Preto for providing the microscope images. This
study was also partially supported by a CAPES scolarship.

REFERENCES

[1] K. R. Castleman, Digital Image Processing. New York, USA:
Prentice-Hall, 1996.

[2] J.-A. Conchello and J. W. Lichtman, “Optical sectioning
microscopy,” Nature Methods, vol. 2, no. 12, pp. 920–931,
2005.

[3] R. Stasiski and J. Konrad, “POCS-based image reconstruction
from irregularly-spaced samples,” in Proc. IEEE Int. Conf.
Image Processing (ICIP’00), vol. 2, Vancouver, BC, Canada,
2000, pp. 315–318.

[4] W. Carrington, R. Lynch, E. Moore, G. Isenberg, K. Fogarty,
and F. Fay, “Superresolution three-dimensional images of
fluorescence in cells with minimal light exposure,” Science,
vol. 268, pp. 1483–1487, 1995.

[5] W. Richardson, “Bayesian-based iterative method of image
restoration,” J. Opt. Soc. Am., vol. 62, no. 1, pp. 55–59, 1972.

[6] L. Lucy, “An iterative technique for the rectification of
observed distributions,” The Astronomical Journal, vol. 79,
no. 6, pp. 745–765, 1974.

[7] J.-A. Conchello, “Superresolution and convergence properties
of the expectation-maximization algorithm for maximum-
likelihood deconvolution of incoherent images,” J. Opt. Soc.
Am. A, vol. 15, no. 10, pp. 2609–2619, 1998.

[8] H. Stark and Y. Yang, Space Vector Projections. Wiley, 1998.

[9] G. Danuser, “Super-resolution microscopy using normal flow
decoding and geometric constraints,” J. Microscopy, vol. 204,
no. 2, pp. 136–149, 2001.

[10] T. Denney-Jr. and S. J. Reeves, “Bayesian image reconstruc-
tion from fourier-domain samples using prior edge informa-
tion,” J. Elec. Imaging, vol. 14, no. 4, p. 043009, 2005.

[11] G. van Kempen and L. van Vliet, “Background estimation
in nonlinear image restoration,” J. Opt. Soc. Am. A, vol. 17,
no. 3, pp. 425–433, 2000.

[12] N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-
C. Olivo-Marin, and J. Zerubia, “Richardson-Lucy algorithm
with Total Variation regularization for 3D confocal micro-
scope deconvolution,” Microscopy Research and Technique,
vol. 69, no. 4, pp. 260–266, 2006.

[13] F. Gibson and F. Lanni, “Experimental test of an analytical
model of aberration in an oil-immersion objective lens used
in three-dimensional light microscopy,” J. Opt. Soc. Am. A,
vol. 8, no. 11, pp. 1601–1613, 1991.

[14] D. Snyder and M. Miller, Random Point Processes in Time
and Space. Springer Verlag, 1991.

[15] N. Dey, L. Blanc-F’eraud, C. Zimmer, P. Roux, Z. Kam, J.-C.
Olivo-Marin, and J. Zerubia, “3D microscopy deconvolution
using Richardson-Lucy algorithm with Total Variation regu-
larization,” Institut National de Recherche en Informatique et
en Automatique, Paris, France, Tech.Report. n.5272, 2004.

[16] B. Hunt, “Super-resolution of imagery: understanding the
basis for recovery of spatial frequencies beyond the diffraction
limit,” in Information, Decision and Control, 1999. IDC 99.
Proceedings. IEEE, 1999, pp. 243–248.


