
Tuning Manifold Harmonics Filters
Thomas Lewiner∗, Thales Vieira†, Alex Bordignon∗, Allyson Cabral∗, Clarissa Marques∗, João Paixão∗,

Lis Custódio∗, Marcos Lage∗, Maria Andrade∗, Renata Nascimento∗, Scarlett de Botton∗,
Sinésio Pesco∗, Hélio Lopes∗, Vinı́cius Mello‡, Adelailson Peixoto† and Dimas Martinez†.

∗ Matmidia Lab, Department of Mathematics, PUC-Rio, Rio de Janeiro, Brazil.
† Institute of Mathematics, UFAL, Maceió, Brazil.
‡ Institute of Mathematics, UFBA, Salvador, Brazil.

Fig. 1. Music visualization by deforming a 3d model according to the music amplitudes.

Abstract—There are several techniques for automatic music
visualization, which are included with virtually any media player.
The basic ingredient of those techniques is spectral analysis of the
sound, used to automatically generate parameters for procedural
image generation. However, only a few music visualizations
rely on 3d models. This paper proposes to use spectral mesh
processing techniques, namely manifold harmonics, to produce
3d music visualization. The images are generated from 3d models
by deforming an initial shape, mapping the sound frequencies to
the mesh harmonics. A concise representation of such frequency
mapping is proposed to permit for an animated gallery interface
with genetic reproduction. Such galleries allow the user to
quickly navigate between visual effects. Rendering such animated
galleries in real-time is a challenging task, since it requires
computing and rendering the deformed shapes at a very high rate.
This paper introduces a direct GPU implementation of manifold
harmonics filters, which allows to display animated gallery.

Keywords-Manifold Harmonics; Sound Visualization; Geome-
try Processing; GPU; Design Galleries;

I. INTRODUCTION

The illustration of music became a necessary part of the
audio industry. While video clip is now a complete part
of a song production, almost any computer program that
renders sound content offers several visualizations. Most audio
visualization techniques rely on Fast Fourier transforms that
extract the harmonic amplitudes of the sound samples. These
amplitudes serve as parameters to algorithms that generate
beautiful or exciting images in real time, using procedural
techniques from simple digital peak meters to psychedelic

dynamical systems. We propose to generate images obtained
by deforming an initial discrete 3d model (see Fig. 1).

Since the sound analysis relies on sound harmonics, a
natural approach is to use geometric harmonics to deform the
3d model. A definition of such geometric harmonics, called
manifold harmonics has been recently proposed by Vallet
and Lévy [1]. Amplifying some harmonics of a given mesh
leads to coherent deformations, in the sense that filtering low
frequencies actually deforms the global shape of the mesh,
while altering high frequencies changes its details.

However, using manifold harmonics for sound visualization
is a two-fold challenge: First, manipulating the amplitudes
of each harmonic is a delicate task, since nearby frequen-
cies have very different and dramatic impacts on the shape.
Second, the deformation must be rendered in real-time to
keep synchronized with the music. In this paper, we propose
to model the mapping of sound harmonics amplitudes to
manifold harmonics amplitude using a design gallery with
genetic reproduction, in a way similar to what is commonly
done in volume visualization [2].

The use of gallery turns the second challenge even more
difficult, since an animated gallery requires to compute and
render several deformations of the initial mesh for each frame.
We propose here a direct GPU implementation of the manifold
harmonics filter that copes with such requirements. For models
containing around 50,000 vertices, we can render a gallery of
12 animated deformations in real-time.

II. RELATED WORK

There are several techniques for automatic music visualiza-
tion, as one can see on virtually any media player. However,
only a few of them use 3d models. To the best of our
knowledge, the closest work relating sound and 3d objects
come from granular mechanics simulation [3], starting back to
the studies of vibration modes [4], Modal Analysis [5] became
a very important tool in the understanding of mechanical
structure responses. Modal Analysis was first introduced to
Computer Graphics by Pentland and Williams [6], where they
used it to simulate deformations in non-rigid objects from
a sound signal. A reduced version of such simulations has
recently been brought to real-time through a GPU implemen-
tation, but only using the first few vibration modes [7]. In this
paper, we propose a music visualization scheme instead of a
mechanical simulation, and achieve real-time performance in
a complete spectral processing system. Note that a process
inverse to this objective, i.e. creating audio content from a 3d
animation, has ben proposed by O’Brien et al. [8]

Since the seminal work of Taubin [9], several approaches
have been proposed to adapt signal processing techniques to
discrete surfaces. Among those, spectral processing has gained
a lot of attention [10]. Those methods rely on defining an
equivalent for Fourier harmonics (basically sine and cosine) as
eigenvectors of Laplace-like operators. Among those works,
Vallet and Lévy proposed a manifold harmonics adapted to
mesh edition [1]. This work motivated several applications
in connected fields: spectral mesh deformation [11], mesh
watermarking [12], [13] and shape analysis [14], [15]. In this
paper, we use manifold harmonics filters, and propose a fast
GPU implementation of spectral filtering to obtain real-time
deformations.

III. MANIFOLD HARMONICS

In this section, we will recall the basics of manifold har-
monics following the original work of Vallet and Lévy [1].

The idea behind manifold harmonics is to transpose usual
Fourier edition to 3d meshes. In Fourier analysis, a functional
basis hω(t) = e−2π·i·ω·t of so-called harmonics is used to
decompose an input signal f(t) into a combination of those
harmonics:

f(t) =

∫
R
f̃(−ω)·hω(t)dω with f̃(ω) =

∫
R
f(t)·hω(t)dt .

A. Laplace harmonics

The main observation is that those harmonics hω are the
eigenvectors of the differential Laplace operator ∆∂ :

∆∂ (hω) ≡ ∂2hω
∂t2

= λω · hω with λω = −4π2 ω2 .

To transpose such decomposition on a mesh, a natural option
is to look for the eigenvectors of a discrete Laplace operator.
Vallet and Lévy derive a Laplace-De Rham operator from
Discrete Exterior Calculus [1]. On the vertices of a mesh, this
operator turns out to be linear, and can thus be expressed as
an n× n matrix ∆, where n is the number of vertices of the

vi

vjβ’
β vi areai

Fig. 2. Geometric elements for the coefficients of the discrete Laplace
operator.

mesh. Its coefficients ∆ij are zero if vertices i and j are not
adjacent, and otherwise:

∆ij = −
cot (βij) + cot

(
β′ij
)

√
areai · areaj

, ∆ii = −
∑
j

∆ij ,

where areai is the area of the restricted Voronoi region of
vertex i, and the angles βij and β′ij are opposite to the edge
between i and j (see Fig. 2).

B. Manifold harmonics transform

With a slight rescaling of the areas areai [1], the matrix of
this discrete Laplace operator ∆ is symmetric, and can thus
be diagonalized, obtaining an orthonormal basis eigenvectors
of Hk ∈ Rn associated to eigenvalues Λk ∈ R. Since this is a
basis in Rn, any function F : i ∈ {0, . . . , n−1} 7→ R defined
on the vertices of the mesh can be decomposed on this basis:

F (i) =

n−1∑
k=0

F̃ (k) ·Hk with F̃ (k) =

n−1∑
i=0

Fi ·Hk .

Using the analogy with Fourier analysis, the frequency as-
sociated with Λk is

√
Λk, and we consider that the frequencies

are ordered: Λ0 ≤ Λ1 ≤ . . . ≤ Λn−1.

C. Filtering

The signal F (i) above is thus expressed as a combination
of harmonics Hk, with respective amplitudes F̃ (k). A linear
filter can then be expressed by amplifying each harmonic Hk

by a factor ϕ(k). The filtered signal Fϕ(i) is then given by:

Fϕ(i) =
∑
k

ϕ(k) · F̃ (k) ·Hk .

Since we are here interested in deforming the mesh, we will
consider the signal F (i) to be the coordinates x(i), y(i), z(i)
of vertex i. We therefore get three harmonic amplitudes
x̃(k), ỹ(k), z̃(k) for each frequency k. Since the mesh is
not a priori aligned, we will filter all the three coordinates
with the same amplification ϕ. Finally, since high frequencies
correspond to very small perturbations, appearing as noise, we
will only filter using the lowest #k frequencies:

Fϕ(i) =

#k−1∑
k=0

ϕ(k)·F̃ (k)·Hk+di with di =

n−1∑
k=#k

F̃ (k)·Hk .

The coefficients di can be computed at preprocessing.

Fig. 3. Initial gallery on an octopus model, with the corresponding transfer and amplification functions. The frequency input f̃ is drawn at the bottom.

IV. TUNING MANIFOLD HARMONICS

We want to apply manifold harmonics filters to illustrate
signals f(t) such as audio content. Since manifold harmonics
filters are very sensitive, eventually leading to large deforma-
tion for small variations of the filter, the transfer of signal har-
monic amplitudes f̃(k) to the manifold harmonic amplitudes
ϕ(k) would require a very careful edition if done manually.
In this section, we introduce a simple design model for such
mapping. This design allows a gallery interface [16] with
genetic reproduction [2], which permits the user to quickly
navigate between mappings (see Fig. 3).

A. Mapping to manifold harmonics filters

We want to design a filter ϕ(k) from the harmonic ampli-
tudes f̃(ω) of an input signal, where the dependency ϕ(k) =
Φ(f̃)(k) of ϕ from f̃ is not necessarily linear. Moreover, the
number of frequencies #ω computed from the signal may
differ from the number of harmonics #k of the mesh. We
decompose this mapping in two steps: a frequency transfer
function t : ω 7→ k ∈ {0, . . . ,#k − 1} combined with an
amplification function a : k 7→ a(k) ∈ R applied on the
manifold harmonic amplitudes.

We want each harmonic of the mesh to receive contributions
from different harmonics of the signal, so that a musical in-
strument, which covers different frequencies, could be mapped
to a single manifold harmonic. Therefore, the transfer function
maps sound frequencies ω to mesh frequencies k, and a mesh
frequency k will receive contributions from all the sound

frequencies in t−1 ({k}). We propose a harmonic mapping
Φt,a : f̃ 7→ ϕ as (see Fig. 4):

Φt,a(f̃)(k) = a (k) ·

 ∑
ω∈t−1({k})

f̃ (ω)

+ 1 .

By adding one, we maintain the usual intuition of amplifica-
tion: amplifying all the mesh frequencies to 0 (i.e. a ≡ 0) does
not deform the mesh. Note that, since the harmonic amplitudes
of the sound may be negative, the amplification a may also
be negative.

Sound

A
m

pl
ifi

ca
tio

n:

Sound Frequencies:

Transfer:

M
es

h
Fr

eq
ue

nc
ie

s:

Deformed
mesh

Fig. 4. Filter design as the composition of a frequency transfer function
t and an amplification function a (drawn vertically). The grey curve for the
transfer corresponds to the direct mapping from ω ∼=

√
Λt(ω).

Fig. 5. Gallery after one reproduction from the 1st, 4th and 5th items of Fig. 3 in reading order, with the reproduced transfer and amplification functions.

B. Tuning through design galleries
The filter design above gives a concise representation of the

harmonic mapping Φt,a from sound harmonic amplitudes to
manifold harmonic amplitudes. Indeed Φt,a is represented as
two vectors: t ∈ N#ω is an integer vector of size #ω, and a ∈
R#k is a real vector of size #k. This allows to easily mix two
harmonic mappings by combinations of those vectors. Using
vocabulary from genetic algorithms, the harmonic mapping
Φt,a is represented by two chromosomes a and t, which can
reproduce by combination.

This leads to a direct design gallery interface, where dif-
ferent harmonic mappings are proposed to the user, who can
select the ones he likes. From this selection, a new gallery is
generated using genetic reproduction, until the user chooses
only one harmonic mapping, as explained in the next section.
The following section will detail the initial gallery creation.
The harmonic mapping can then be directly edited from the
two curves of t and a.

C. Reproduction
The reproduction generates a new gallery of S harmonic

mappings from a selection of old mappings. To do so, S pairs
of distinct selected old mappings are randomly chosen. Each
pair is then combined into a new mapping as follows.

Since the frequency transfer and amplification functions
t and a have complementary effects, we reproduce them
independently. This also reduces the initial gallery size, as
explained in the next subsection. In practice, this means that
we first decide if we combine the frequency transfer functions

of the pair using a 1
2 -Bernoulli trial (“heads or tails”). We

decide in a similar manner if the amplification functions will
be combined.

The combination of the frequency transfer functions t′

and t′′ of the pair is done as follow. First we randomly
choose an integer value n0

k, as a geometric random variable in
{1, . . .#k}, and a random real value w0 uniformly in [0, 1].
We then set the first n0

k coefficients of vector t as the first
n0
k coefficients of w0 · t′ + (1 − w0) · t′′. We choose again

random values n1
k ∈ {1, . . .#k} and w1 ∈ [0, 1], and clamp

n1
k to ensure n0

k + n1
k ≤ #k (the geometric random process

intends to reduce the effect of this clamping). We then set the
following n1

k values of t as above, and repeat until completing
all the frequencies. We perform the same operations for the
amplifications (see Figs. 3 and 5).

This combination method avoids producing combination
that varies too quickly, as compared to randomly choosing
real values w at each frequency.

D. Gallery initialization

We generate an initial gallery (see Fig. 3) that could
theoretically generate any harmonic mapping by the above
reproduction. Since the reproduction of the frequency transfer
and amplification are independent, we can use the S elements
of the initial gallery to span the frequency transfer functions
and the same S elements to span the amplification functions.
This reduces the size of the initial gallery, although it generally
requires one more reproduction to get interesting mappings.

Fig. 6. Frames of pop music visualization using the dinosaur model.

The first frequency transfer function is the direct mapping:

tini(ω) = min{k such that
ω

ω#ω
≤

√
Λk

Λ#k
} .

This expression ensures that, if there exist a unique k such
that ω

ω#ω
=
√

Λk

Λ#k
, then tini(ω) = k. This function maps

the sound low (resp. high) frequencies to the mesh low (resp.
high) frequencies. The function trev = #k − tini maps high
sound frequencies to low ones, and vice versa.

Usually, altering the low frequencies of the mesh give more
visible effects. We therefore define the frequency transfer
functions of the initial galleries as condensed transfers towards
the low frequencies: t(ω) = tir(α ·ω), where tir is either tini
or trev and α ∈ {0, 1, 2

S , 2
2
S , 3

2
S , . . . }. The first value α = 0

is a constant mapping to the lowest and highest frequency.
It is included to guarantee that any transfer function can be
generated by combinations.

The amplification functions of the initial gallery are simple
band-pass filters, with positive or negative factors. The interval
of manifold harmonic frequencies {0, . . . ,#k− 1} is divided
in intervals Iα, for α ∈ {S2 , 2

S
2 , 3

S
2 , . . . }. After we define

the amplification function for the first half of the gallery
aα(k) = M if k ∈ Iα, and aα(k) = 0 otherwise, where M
is the maximal amplification factor. The other half is defined
similarly using −M . If the sound amplitudes are normalized
to [−1, 1] and the if the mesh is reasonably smooth, the order
of magnitude of M is 5,000. Since we try to emphasize the
low frequencies, we define the intervals Iα = [α2, (α+ 2

S)2].

V. MAKING IT REAL-TIME

The main challenge for the above interface to work with
sound signals is to compute and render the deformation of each
gallery element synchronously with the music (see Fig. 6). If
we have S elements in the gallery, each of which is a mesh
of n vertices with #k manifold frequencies and #ω sound
frequencies, a single frame represents O(S ·#ω ·#k ·3n) op-
erations! (The #ω factor comes from the evaluation of Φt,a).
We therefore propose a GPU implementation of the manifold
harmonics filter, while the manifold harmonics decomposition
is pre-computed in CPU.

uniform sampler1D x̃ỹz̃;
uniform sampler2D dxyz;
uniform sampler3D Hk;
uniform sampler1D φ;
uniform float δk;

void main() {
vec3 texcoord = gl TexCoord[0].stp ;
vec3 pos = texture2D(dxyz,texcoord.st).xyz ;
for(float k=0.0; k ≤ 1.0;) {

texcoord.p = k ;
vec4 H = texture3D(Hk, texcoord);
vec4 f = texture1D(φ, k);
vec3 x̃ỹz̃0 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
vec3 x̃ỹz̃1 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
vec3 x̃ỹz̃2 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
vec3 x̃ỹz̃3 = texture1D(x̃ỹz̃, k).xyz ; k += δk ;
pos += f[0] * H[0] * x̃ỹz̃0 + f[1] * H[1] * x̃ỹz̃1 +

f[2] * H[2] * x̃ỹz̃2 + f[3] * H[3] * x̃ỹz̃3 ;
}
gl FragColor.rgb = pos.xyz ;

}

Fig. 7. GLSL fagment shader for the manifold harmonics filter.

A. GPU implementation

For the sake of portability, we chose to use GLSL [17] as
GPU language. The manifold harmonics filters actually require
a single fragment shader, which computes the filtering Fϕ for
each coordinate x, y, z (see Section III-C), together with a
render-to-vertex-buffer mechanism [18].

Data textures: The manifold harmonics is sent to the
GPU as textures: a texture x̃ỹz̃ containing the harmonic am-
plitudes x̃(k), ỹ(k), z̃(k) of the original mesh, a texture dxyz
containing the sum of high frequencies contributions for each
coordinate (see Section III-C) and a texture Hk containing the
manifold harmonics eigenvectors. The filter ϕ must be sent
to the GPU at each gallery element of each frame. Since the
computed ϕ has a smaller size than the sound frequencies f̃
and the t and a vectors, we compute ϕ on the CPU and send
it as a 1D texture φ.

Texture storage: All the textures are stored using 32 bits
floats to keep the precision of the vertices coordinates. Since
the number of vertices of the mesh is usually higher than
the maximal texture size for 1D textures, we use two texture

coordinates in {0 . . . d
√
n − 1e} as vertex indexes. The high

frequency contributions dxyz are stored as a 2D RGB texture
of size d

√
n e × d

√
n e, where the coordinates are mapped to

the RGB color components.
Since the number of manifold frequencies #k kept fits in

a texture row, the original harmonic amplitudes texture x̃ỹz̃
are stored as a 1D RGB texture of size #k, where the x̃, ỹ, z̃
components are mapped to RGB.

Finally, the scalar data Hk and φ of the manifold harmonics
eigenvector n coordinates and the filter can be stored in the
RGBA components to optimize space: φ is then a d#k

4 e 1D
and Hk an d

√
n e × d

√
n e × d#k

4 e 3D RGBA textures.
Fragment shader for the filter: When all the above

textures are bound, the rendering of a single square of size
d
√
n e × d

√
n e will call the fragment shader for each of

the vertex index and compute the new vertex positions as
frame color (see Fig. 7). The fragment shader renders to a
frame buffer containing the filtered vertex coordinates, which
is then copied to the vertex buffer inside the GPU [18]. The
shader receives a uniform variable which is the normalized
increment δk = 1

4(#k−1) for manifold frequency iteration
inside normalized texture coordinates.

B. Complementary effects

Normal enhancement: The previous method updates the
vertex positions, but not the normal. Since a second render-to-
vertex-buffer would be too costly, we use a geometry shader
that computes, for each triangle, a constant normal. This
normal is used in a per-pixel lighting via fragment shader.
However, the constant normal per triangle leads to flat shading.
To obtain smoother result, we average, in the geometry shader,
the constant normal of the triangle with the original normal
of the vertex (see Fig. 8).

Harmonic mapping re-use: The gallery interface allows
to quickly navigate between all the possible harmonic map-
pings within our proposed design. If a harmonic mapping gives
a very exciting effect, it would be nice to be able to re-use it
on other models. The main obstacle is that the number of man-
ifold frequencies #k may differ from model to model. We can
work around this problem by normalizing the image values of
t to a constant interval [0, 1]: t̄(ω) = t(ω)

#k , and adapt the defini-

tion of Φt,a to Φt̄,a(f̃)(k) = a (k)·
(∑

ω∈t̄−1({ k
#k })

f̃ (ω)
)

+1.
Beat detection: Until now, the whole deformation of the

mesh is seen from a single point of view with a constant
lighting. We propose to use those degrees of freedom to
transpose global sound feature, such as beat. We implemented
a simple beat detection [19], and at each detected beat we
randomly choose to rotate the model or the light positions.

C. Implementation details

We used the Scalable Library for Eigenvalue Problem
Computations (SLEPc) [20] software package to compute the
first #k manifold harmonics eigenvalues and eigenvectors. We
use the Compact Half Edge [21] data structure to represent the
model mesh. The proposed shaders require an OpenGL 2.x
compatible card [17]. Finally, we use FFmpeg [22] for sound

(a) Original model with the origi-
nal normals.

(b) Deformed model with the orig-
inal normals.

(c) Deformed model with the de-
formed, flat normals.

(d) Average normals with 40% de-
formed normals.

Fig. 8. Normal enhancement for the deformed model.

decompression and OpenAL [23] for stereo sound rendering in
a separate thread. A nice tutorial for such sound configuration
can be found at kcat.strangesoft.net/openal.html.

VI. RESULTS

We experimented the proposed filter design with gallery
interface to check the feasibility of such approach. The actual
validation of the interface is beyond the scope of this paper.
However, our proposal is able to provide an animated gallery
interface synchronized with sound in real time.

Performance: We first compare the CPU implementation
of manifold filters [1] with our GPU implementation. Since
the problem fits well for streaming process, we expect the
GPU implementation to outperform the CPU counterpart (see
Table I, comparing a single mesh deformation on CPU with
6 and 12 deformations on GPU). Furthermore, we validated
that the GPU implementation supports real-time rendering
to keep synchronization with the sound. Those experiments
allow estimating the appropriate gallery size depending on the
graphics hardware (see Table I). We conclude that for models
with around 50,000 vertices, a correct gallery size would be
between 6 and 12 on a GeForce 130 with 48 cores at 500
MHz.

Fig. 9. Frames of electronic music visualization using the alien head model.

TABLE I
Performance tests: all models are normalized into a [−1, 1]3 bounding box,

and the gallery of S items is rendered in a 1024× 768 window. All
experiments are performed on a 3.06GHz processor with a GeForce GT
130 with 512MB of RAM. The deformation speed is measured in frame

per second (fps), while the harmonic basis pre-computation time is
expressed in seconds.

#verts #freqs pre- CPU GPU GPU
n #k process S=1 S=6 S=12

model secs fps fps fps
pig 1 843 184 4 54.2 203.0 122.8
triceratops 2 832 256 7 46.9 153.9 63.6
neptune 9 392 276 32 12.7 58.6 31.2
multitorus 11 898 270 43 11.5 73.9 40.1
dinosaur 14 054 533 74 4.7 28.3 13.9
octa 15 136 529 25 4.1 26.8 13.2
octopus 20 351 546 129 3.0 21.4 7.1
alien 24 988 540 232 3.4 22.4 12.1
david 24 988 804 116 2.6 14.8 7.3
david head 30 058 1317 232 1.8 15.0 7.0
cat 30 059 271 379 9.6 45.7 23.0
gargoyle 30 059 1052 96 2.1 13.7 6.9
bunny 34 834 1070 478 1.7 12.1 5.8
buste 37 874 1075 329 1.5 13.4 3.4
blooby 42 432 1065 553 1.5 12.5 7.5
egea 63 739 275 718 0.9 7.2 3.2
head 65 002 1607 739 0.5 8.7 4.3
armadilo 86 488 2376 1 134 0.2 10.3 3.4

Music visualization: We use our music visualization for
deforming different models in real-time (see the accompanying
video). Since the music is decoded and analyzed on the CPU,
the combination of sound does not alter the performance of the
gallery. We introduce a callback that update the filter every 50
milliseconds, and the rendering is done following the rendering
cycles, so that even with large galleries that would harm the
real-time rendering, the sound playing does not stop. Finally,
we add a parameter m ∈ [0, 1] to control how smoothly
the frequencies are passed to the mesh: the sound frequency
amplitudes f̃(ω) passed to the filter are continuously averaged
by f̃new(ω) = w · f̃old(ω) + f̃(ω). For very rhythmic music,
this avoids flickering effects on the mesh (see Figs. 1, 6, 9,
and 11, and the accompanying video).

Limitations: The GPU implementation allows real-time
animated galleries, but it prevents complex processing or
further control on the deformed mesh. In particular, it does
not permit to directly used quality measure or more advanced
interface such as intelligent galleries [24]. The proposed
method generates exciting animation on top of a given music.
However, we used a very raw sound analysis, which can be
enhanced to get more correlated effects. Several complemen-
tary effects, in particular on the mesh textures, could improve
our music visualization.

VII. CONCLUSION

In this paper we proposed a GPU implementation of mani-
fold harmonics filters, which allows computing and rendering
spectral mesh deformations at a very high rate. We applied
this technique for music visualization, using animated design
galleries for navigation between different visual effects. Each
effect is represented as a mapping from music frequencies to
manifold harmonics. We represent such mapping in a concise
way to be able to couple genetic reproduction in the gallery.

ACKNOWLEDGMENT

This paper is the result of many discussions between the
numerous authors. It has been partially financed by CNPq,
FAPERJ and FAPEAL.

Fig. 10. Frames of reggae music visualization using the cow model.

Fig. 11. Frames of rock music visualization using the armadillo model.

REFERENCES

[1] B. Vallet and B. Lévy, “Spectral geometry processing with manifold
harmonics,” in Computer Graphics Forum, vol. 27, no. 2, 2008, pp.
251–260.

[2] F. de Moura Pinto and C. M. D. S. Freitas, “Two-level interaction trans-
fer function design combining boundary emphasis, manual specification
and evolutive generation,” in Sibgrapi. IEEE, 2006, pp. 281–288.

[3] A. Bordignon, L. Sigaud, G. Tavares, H. Lopes, T. Lewiner, and
W. Morgado, “Arch generated shear bands in granular systems,” Physica
A: Statistical Mechanics and its Applications, vol. 388, no. 11, pp. 2099
– 2108, 2009.

[4] H. Jenny, Cymatics: A Study of Wave Phenomena & Vibration, 3rd ed.
Macromedia, 2001.

[5] R. W. Clough and J. Penzien, Dynamics of Structures. Mcgraw-Hill,
1975.

[6] A. Pentland and J. Williams, “Good vibrations: modal dynamics for
graphics and animation,” Siggraph, vol. 23, no. 3, pp. 207–214, 1989.

[7] C. Yinghui, W. Jing, and L. Xiaohui, “Real-time deformation using
modal analysis on graphics hardware,” in Graphite. ACM, 2006, pp.
173–176.

[8] J. F. O’Brien, C. Shen, and C. M. Gatchalian, “Synthesizing sounds
from rigid-body simulations,” in Symposium on Computer animation.
ACM, 2002, pp. 175–181.

[9] G. Taubin, “A signal processing approach to fair surface design,” in
Siggraph, 1995, pp. 351–358.

[10] B. Lévy and H. R. Zhang, “Spectral mesh processing,” in Siggraph Asia
Course Note. ACM, 2009, pp. 1–47.

[11] G. Rong, Y. Cao, and X. Guo, “Spectral mesh deformation,” The Visual
Computer, vol. 24, no. 7, pp. 787–796, 2008.

[12] Y. Liu, B. Prabhakaran, and X. Guo, “A robust spectral approach for
blind watermarking of manifold surfaces,” in Multimedia and Security.
ACM, 2008, pp. 43–52.

[13] K. Wang, M. Luo, A. Bors, and F. Denis, “Blind and robust mesh
watermarking using manifold harmonics,” in ICIP. IEEE, 2009, pp.
3657–3660.

[14] M. Ovsjanikov, J. Sun, and L. Guibas, “Global intrinsic symmetries of
shapes,” in SGP. Eurographics, 2008, pp. 1341–1348.

[15] H.-Y. Wu, T. Luo, L. Wang, X.-L. Wang, and H. Zha, “3D shape retrieval
by using manifold harmonics analysis with an augmentedly local feature
representation,” in VRCAI. ACM, 2009, pp. 311–313.

[16] J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. Gibson, J. Hod-
gins, T. Kang, B. Mirtich, H. Pfister, W. Ruml et al., “Design galleries:
A general approach to setting parameters for computer graphics and
animation,” in Siggraph. ACM, 1997, p. 400.

[17] “The OpenGL Shading Language v 4.0,” 2010, www.opengl.org/ docu-
mentation/ glsl.

[18] Apple, “PBORenderToVertexArray: render-to-vertex-array using FBO,
PBO and VBO,” 2006, developer.apple.com/ mac/ library/ samplecode/
PBORenderToVertexArray.

[19] F. Patin, “Beat detection algorithms,” 2003, www.gamedev.net/ refer-
ence/ programming/ features/ beatdetection.

[20] V. Hernandez, J. Roman, and V. Vidal, “SLEPc: A scalable and flex-
ible toolkit for the solution of eigenvalue problems,” Transactions on
Mathematical Software, vol. 31, no. 3, p. 362, 2005.

[21] M. Lage, T. Lewiner, H. Lopes, and L. Velho, “CHF: a scalable
topological data structure for tetrahedral meshes,” in Sibgrapi. IEEE,
2005, pp. 349–356.

[22] F. Bellard, “FFmpeg,” 2004, www.ffmpeg.org.
[23] G. Hiebert, “OpenAL programmer’s guide,” 2005, con-

nect.creativelabs.com/ openal.
[24] T. Vieira, A. Bordignon, A. Peixoto, G. Tavares, H. Lopes, L. Velho,

and T. Lewiner, “Learning good views through intelligent galleries,”
Computer Graphics Forum (Eurographics Proceedings), vol. 28, no. 2,
pp. 717–726, 2009.

