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Figure 1. Topology-aware denoising of a measured fluid velocity field: (left) original field, (middle) gaussian denoising, (right) gaussian denoising
preserving topological singularities selected through our interface.

Abstract—Recent developments in data acquisition technol-
ogy enable to directly capture real vector fields, helping for
a better understanding of physical phenomena. However mea-
sured data is corrupted by noise, puzzling the understanding
of the phenomena. This turns the task of removing noise,
i.e. denoising, an essential preprocessing step for a better
analysis of the data. Nonetheless a careful use of denoising
is required since usual algorithms not only remove the noise
but can also eliminate information, in particular the vector field
singularities, which are fundamental features in the analysis.
This paper proposes a semi-automatic vector field denoising
methodology, where the user visually controls the topological
changes caused by classical vector field filtering in scale-spaces.
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I. INTRODUCTION

Denoising is the process of removing noise from a signal.
It plays an important role as preliminary step for modeling
and analysis. The main reason is that any measuring device
are inherently susceptible to noise. As a consequence, signal
processing should filter out uncertain information contained
in the measured data in order to obtain a clean model. In
real data, noise can have magnitude in average similar to
the signal although not at coincident locations. Therefore,
filtering out the noise without losing important information
is, for sure, a very challenging task. In this context, this
paper proposes a semi-automatic topology-aware denoising
methodology for vector field data.

We focus here on vector fields and their topology since
the interpretation of several physical behaviors, in particular
fluid dynamics, is eased by a the detection and identification
of its singularities, like sinks, sources and saddles. Moreover,
several recent devices allow for measuring such vector fields:
For example, Particle Image Velocimetry (PIV) [1] is an
imaging technique to measure fluid velocity field that has
been used on several applications in aerodynamics and
hydrodynamics research. However, such real data is typically
corrupted by noise, which harms singularity detection and
further analysis, puzzling the interpretation.

Classical denoising approaches, such as convolution fil-
ters [2], [3], [4], [5], [6], rely on the assumption that the
information is present in the measured data at a stronger
scale than noise. Successive applications of such convolution
filters noise generate a scale space [7], [8] representing the
original data hierarchically, helping for subsequent analysis,
in particular topological singularities [9], [10]. However,
reconstructing such vector field using a single scale may
keep either both noise and information or neither, leading
to a delicate tradeoff. The main characteristic of the vector
field denoising methodology to be presented is that the user
controls the topological changes caused by classical vector
field filtering by the use of a suitable interface. The main
part of the user interaction is to provide local tradeoffs
between information and noise. The reconstructed field is
then a smooth combination of different denoising scales.



II. RELATED WORK

Denoising: Among vector field filtering techniques on
structured grids, several are specifically dedicated to colored
image processing [11]. In particular, color image filters
focus on the reduction of impulse noise [12], [13], [14].
More recently, Westenberg and Erlt [2] proposed a 2D
vector field denoising algorithm that suppress additive noise
by thresholding vector wavelet coefficients. Close to this
work, a class of vector field filters has been introduced as
generalized random walks: for images [15], meshes [16],
[17] and vector fields [6]. This work will use random walk
filters with Gaussian or anisotropic kernels as instances for
the proposed methodology, since they naturally represent the
original data in a hierarchical form as a scale space.

Scale spaces on vector fields: Scale-space techniques
have become popular in computer vision for their capability
to represent the multi-scale information inherently contained
in real data. In particular, Bauer and Peikert [18] use scale
spaces to track vortices in 2D-time dependent computational
on fluid dynamics simulations. Klein and Ertl [9] proposes
a strategy to track singularities over multiples scales in
order to evaluate the importance of the critical points to the
analysis and interpretation of the vector field. We propose
here to employ such scale-space representations to let the
user choose locally which scale to utilize for reconstruction.

Topology-aware techniques: Turbulent vector fields
usually have structures in different scales that difficult their
analysis. A possible solution to this problem is to analyze
the topology of the vector field in order to automatically
simplifying while keeping the most persistent features [19].
Another strategy, proposed in this work, relies on the user
knowledge of the vector field, letting him decide interac-
tively which topological singularities to keep or to smooth.
Such approach has already been proposed in the field of
surface reconstruction [20], [21].

III. BASIC CONCEPTS OF VECTOR FIELDS

A vector field v on a planar domain D ⊂ R2 is a
function assigning to each point (x, y) ∈ D a 2D vector
v(x, y) = (vx(x, y), vy(x, y)). Assuming that vx and vy are
differentiable bivariate functions, then the Jacobian matrix
of v at point (x0, y0) is:

Jv(x0, y0) =

[
∂vx

∂x (x0, y0) ∂vx

∂y (x0, y0)
∂vy

∂x (x0, y0) ∂vy

∂y (x0, y0)

]
.

A point (x0, y0) ∈ D is singular for v if v(x0, y0) = (0, 0).
Following Hartman-Grobman theorem, singular point can be
partly classified by looking to the eigenvalues of the Jacobian
matrix at that point:
• If the real parts of both eigenvalues are strictly negative,

then the singular point is a sink.
• If the real parts of both eigenvalues are strictly positive,

then the singular point is a source.

• If the eigenvalues are non-zero real number with dif-
ferent sign (one positive and one negative), then the the
singular point is a saddle.

• If the real part of one of the eigenvalues is zero, the
the singularity is of higher order.

In measured data, the vector field v is not given as
a differentiable function. We will suppose here that we
have the values of vector field v at the points (xi, yj) of
a regular grid of size M × N . We will denote vi,j =
(vxi,j , v

y
i,j) = v(xi, yj), for i = 1, . . . ,M and j = 1, . . . , N .

When needed, we can interpolate those values in-between
the sample points. The simplest such interpolation is the
bilinear interpolation:

bi,j : [0, 1]2 → R2 ,

bi,j(x, y) = vi,j · (1− x)(1− y) + vi+1,j · x(1− y)

+ vi,j+1 · (1− x)y + vi+1,j+1 · xy.
(1)

IV. TOPOLOGY-AWARE VECTOR FIELD FILTER

The basic idea of our methodology is to let the user
locally select the noise scale to remove, defining a scale
parameter s(x, y) at each point. We start by generating a
scale space from the original vector field and let the user
choose a central scale s0. In order to avoid the arduous task
of defining the scale parameter s(x, y) sample by sample, we
display to the user the singularities that appear or disappear
at different scales nearby s0, where the distance can be set by
the user as a scale difference or as a number of topological
changes. When the user selects a topological change at a
singular point (x0, y0), we define s(x0, y0) to be the closest
scale to s0 that reverts the change. Finally, we return the
reconstructed vector field as a smooth mixture of different
scales of the scale space.

Figure 2. An artificial vector field represented by its streamlines (left)
with its singularities marked (right).

Before entering in detail for each step, let’s illustrate our
technique on the example of Figure 2. This field contains
some relatively clean parts at the bottom, and noisy parts at
the top. The singular points at the bottom should be retained,
almost all the singularities at the top should be cleaned,
except for a sink that many streamlines point to.



Figure 3. The vector fields at scale s0 = 10 of its Gaussian scale space
(left) with its singularities marked (right).

Scale-space: In this example, we use a simple Gaussian
filter to generate a scale-space (see Figure 3). Our method
can build on any denoising scale-space, as exemplified in
Section V using isotropic or anisotropic filters.

Singularity detection: All the vector fields of the scale
space are available to the user at any time. Moreover, we
display the singularities of the field in each scale. There
are different methods to detect singularities however the
detection mechanism can easily be replaced. In particular,
we propose a new singularity detection, which tries to detect
weak regions of the field, as detailed at Section VI. As it
can been seen in Figure 3, even though the field is still noisy
at scale s0 = 10, the meaningful singularity shown in the
bottom left of Figure 2 was lost in the denoising process. The
top part of the field is still noisy, needing more denoising.

Figure 4. Our interface shows to the user the topological changes in nearby
scales, here from 5 to 15 (left). The user then selects which topological
changes he wants to revert (in purple on the right image).

Interface: In order to allow the user to denoise more
of the top part while denoise less of the bottom to keep the
meaningful singularity, we display to the user the topological
changes at scales around 10 (see Figure 4). The user then
selects which topological changes he wants to revert by a
simple click.

Reconstruction: Each user selection defines a scale at
the chosen point as the closest scale to s0 = 10 that reverts
the topological change. This gives a sparse sampling of the
per-point scale parameter, which is smoothly interpolated to

Figure 5. We finally interpolate the scales indicated by the user into a
smooth function (left) which defines the reconstructed vector field (right).

the whole domain. Our scheme supports different interpola-
tions, and we provide two examples in Section VII. From
this interpolation we can reconstruct an adaptively denoised
vector field (see Figure 5).

V. SCALE-SPACE FOR VECTOR FIELD FILTERING

The scale-space representation of the vector field is a
collection of progressively denoised versions of the vector
fields. Each version is associated to an increasing scale
parameter s. We denote v̄(s, x, y) the vector value of the
field at scale s and point (x, y). The fundamental example
of a scale-space on continuous vector fields is the Gaus-
sian scale space, obtained by convolving with a Gaussian
kernel of increasing variance: Gσ(x, y) = exp(− x2+y2

2σ ):
v̄(s, x, y) = v(x, y) ∗Gs(x, y) [9].

In the discrete setting, this convolving approach fits into
the more general framework of random walks [22], which
ensures nice scale-space properties from local convolution
masks. The scale parameter is then the number of convolu-
tions applied. We exemplify our editing interface using two
types of scale-space: using the Gaussian kernel Gσ and an
anisotropic kernel [18], [6]:

Aσ,τ (x, y,v) = exp

(
− x2 + y2

2σ

)
exp

(
− ||v||

2

2τ

)
,

which takes into account the direction of the vector field
and better preserves discontinuities. The scale space is then
directly generated by the repeated application of a 3 × 3
mask with the above kernels.

VI. DETECTION OF SINGULARITIES

We use two classical approaches for the detection of
critical points on a regular 2D grid. The first one is to search
where the bilinear interpolation of the vector field vanishes.
The second one computes the winding numbers of the same
bilinear interpolation. Also we propose a detection of weak
regions of the vector field, where the bilinear interpolation
almost vanishes. This introduces a threshold, which let the
user be more precise in his interaction.



A. Singularities of the bilinear interpolation

In the bilinear interpolation case, the detection boils down
to solving the system of quadratic equations b0,0 = (0, 0),
where bi,j is defined in Equation (1). This can be explicitly
solved by computing the roots of the polynomial in y:

( −vx01 v
y
00 + vx01 v

y
10 + vx11 v

y
00 − vx11 v

y
10+

+vx00 v
y
01 − vx00 v

y
11 − vx10 v

y
01 + vx10 v

y
11 ) · y2

+ ( 2 vx01 v
y
00 − 2 vx00 v

y
01 − vx11 v

y
00−

−vx01 v
y
10 + vx10 v

y
01 + vx00 v

y
11 ) · y

+ vx00 v
y
01 − vx01 v

y
00

To obtain the value of the x coordinate of the singular point
we use the following expression:

x =
(vy00 − v

y
01) · y − vy00

(vy00 − v
y
10 − v

y
01 + vy11) · y − vy00 + vy10

.

Eventually, this system may degenerate to a lower degree
polynomial. It can then have zero, one or two solutions.
Each of them must be tested to lie in the quadrilateral.

B. Winding numbers

The winding number counts the number of turns the vector
fields achieves along a given closed curve Γ. It can be
computed from the angular component of the vector field
θ(v) by:

wΓ(v) =
1

2π

∮
Γ

dθ(v)

This winding number is zero if the region inside Γ does not
contain critical points. If Γ contains a single saddle, then
wΓ(v) = −1. If it contains a single sink or source, it will
be +1.

We compute the winding number for each cell of the
discrete grid using for Γ the square that bounds the cell. With
the linear interpolation on edges, we get the contribution of
edge (x0, y0)→ (x1, y0) to the above integral explicitly:

w00→10 = arctan

(
vx00

2 − vx00 v
x
10 − v

y
00 v

y
10 + vy00

2

vy10 v
x
00 − v

y
00 v

x
10

)

− arctan

(
vx00 v

x
10 − vx10

2 + vy00 v
y
10 − v

y
10

2

vy10 v
x
00 − v

y
00 v

x
10

)
Summing over the four edges gives the desired winding
number.

C. Weak regions

Finally we propose a method to detect weak regions.
Instead of searching for zero values of the vector field, we
give some leeway, controlled by the parameter ε, to find
“almost singular” points. Formally, we search for

(i, j) such that min‖bi,j‖ ≤ ε.

Figure 6. A weak region of a vector field, with no singular point
(b(x, y) 6= 0 and w = 0) (left). Using the weak region detection, we
can let the user keep the vector field close to the original one near the
“almost singular” point (middle). Selecting those points better preserves
the original features of the vector field (right).

This reduces to find the roots of a 3rd degree polynomial
system in two variable, which leads to a 5th degree polyno-
mial in one variable.

This is useful in our context, since some regions of
the vector field may contain too few singularities, but still
requires adapted scale to preserve weak subregions (see
Figure 6).

D. Singularity classification

For the reader interested in implementing a classification
of the singularities, we provide the explicit Jacobian matrix
of the bilinear interpolation b00:[
vx11 y − vx00 ȳ + vx10 ȳ − vx01 y ; vx11 x− vx00 x̄− vx10 x+ vx01 x̄

vy11 y − v
y
00 ȳ + vy10 ȳ − v

y
01 y ; vy11 x− v

y
00 x̄− v

y
10 x+ vy01 x̄

]
,

where x̄ = 1−x and ȳ = 1−y. The eigenvalues are directly
computed using the trace and determinant of the matrix.

The topological changes we can display to the user
correspond to the creation, destruction, or change of type
of a singularity at a fixed grid point.

VII. RECONSTRUCTION

The singularities selected by the user provides a sampling
of the scale function s(x, y) on the domain. To reconstruct
the whole vector field, we need to interpolate this sampling.
Denoting v̄i,j(s) the vector field sample at scale s, we define
the reconstructed vector field ṽ at grid point (xi, yj) by:

ṽi,j = v̄i,j(s(xi, yj)) .

Virtually any interpolation scheme may work, although
with different resulting qualities. If the interpolation is not
smooth enough, the rapid changes in the scale parameter
may create artifacts in the reconstructed field. Moreover, the
interpolation must maintain the scale in a neighborhood of
the singularity to preserve it. We implemented two methods
for the interpolation of s that gave satisfactory results:
radial basis functions (RBF), with Gaussian basis, and kernel
Shepard interpolation [23] with Gaussian kernel.



The RBF interpolation of s(x, y) from the scales of the
used selected singularities sk at (xk, yk) is obtained by a
least-squares minimization on the coefficients αk of

min
{αk}

∑
k

‖srbf (xk, yk)− sk‖2 , where (2)

srbf (x, y) =
∑
k

αkGσ (x− xk, y − yk) . (3)

The kernel Shepard method modifies the original Shepard
interpolation [24] by using kernels instead of the Euclidean
distance:

sks(x, y) =
1∑

k

Gσ(x−xk, y−yk)
·
∑
k

Gσ(x−xk, y−yk)·sk .

A important property of this method is that the image is
limited to [mink sk,maxk sk].

VIII. RESULTS

In this section we will present our experimental results
on synthetic, simulated and measured vector fields. Since
we work with relatively small 2D vector fields stored in
regular lattices compared to the computing power of ac-
tual hardware, the interface responds in real-time to user
interactions, except for the initial scale-space generation (see
Table I). In all the experiments presented in this paper, the
singularities detected by the winding number method and
the bilinear one were the same, although they may differ in
very particular cases. Moreover, those detected singularities
are always a subset of the weak region detection, therefore
only the interface and not the final results are not altered by
the choice of the singularity detection method.

Synthetic data: We first validate our approach on a syn-
thetic vector field, corrupted by an artificial, non-Gaussian
noise (see Figure 7). We can denoise adaptively the vector
field, recovering the original singularities. We use Gaussian
scale-space with a kernel Shepard interpolation. Observe
that, varying the σ of the kernel, we can carry larger portion
of the fields at the selected scale.

Simulation data: We then experimented on a vector
field of 2500 samples issued by a granular simulation [25].
The shearing of the granular system generates five main
vortices between the shear bands, which are clearly visible
in Figure 8 besides the noise. We use an anisotropic filter to
generate the scale space, requiring around s = 40 steps to
denoise the granular bands at the top and bottom. However,
this smoothens out one of the main vortices. Selecting it in
our interface allows to reconstruct a clean vector field with
the main singularities, using here the RBF interpolation.

Measured data: We finally experimented our method
on real measured vector field of 15624 samples, acquired
through PIV imaging. The experiments of Figure 1 and
Figure 9 are measured from a wall-jet setup, where water
is injected from the left of the image and kicks on the wall

Figure 7. Experiments on an analytic vector field (top left) artificially
corrupted by non-Gaussian noise (top right). The user can choose between
singularities that disappeared before scale s0 (in blue) or singularities that
could be smoothed out at scale s > s0 (in red) (middle left). From the
user selection (middle right), we reconstruct the vector field maintaining
the selected scale in a small (bottom left) or larger radius (bottom right).

on the right. The images correspond to the top half of the
jet. The water injection is stronger in the experiment of
Figure 1 as compared to the one of Figure 9. In both case,
the top left part of the image is very noisy since there is less
water, while the right part is turbulent. This leads to several
important singularities on the right part of the field, which
disappear before the singularities caused by the noise. In the
reconstructed vector field, those singularities are recovered.
We used a Gaussian scale-space for this experiment.

Table I
TIMINGS, IN MILLISECONDS, FOR EACH STEP OF THE EDITION.

Data Fig Size Filter Singularity Scale Reconstruction
type (ms) type (ms) select type solve eval

Analytic 7 2500 Gσ 18.9 wΓ 98.0 7.3 KS 0.1
Granular 8 2500 Aσ,τ 587.5 wΓ 110.8 8.3 RBF 0.8 0.9
PIV 1 1 15624 Gσ 135.0 b=0 947.6 65.6 RBF 0.1 7.6
PIV 9 9 15624 Gσ 182.8 b ≤ ε 96.6 66.7 RBF 0.1 3.6



Figure 8. On a vector field from a simulated shear band granular system (left) 40 steps of denoising recovers the granular bands but loses one of the
main vortices (middle). Selecting that vortex in our interface allow for a denoised reconstruction with the main singularities (right).

Limitations: The method proposed here has a few
shortcomings. First of all the detection of singularities is
only done locally and the reconstruction is done on a local
base. Therefore, it does not handle non-local singularities
such as a closed orbit. Also the technique works on a
structured grid, while many recent vector field datasets are
meshless to better take into account errors in the measure-
point localization. Finally, large-scale denoising may dis-
place the location of the singularity. Our interface then
displays two very close-by topological changes, which are
not relevant. A tracking of the singularities [26], [9] would
certainly improve our technique on larger datasets.

IX. CONCLUSION

We proposed a methodology to denoise vector fields that
takes advantage of the user knowledge of the data. Our
interface displays topological contents to guide the user
in adapting the local filtering scale in order to preserve
important information while aggressively removing noise.
The method supports different techniques for singularity
detection, scale function interpolation or scale-space gen-
eration. Using 3D versions of each technique would allow
to extend this work to 3D vector fields.
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