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Abstract—Supervised Learning (SL) is a machine learning
research area which aims at developing techniques able to take
advantage from labeled training samples to make decisions over
unseen examples. Recently, a lot of tools have been presented
in order to perform machine learning in a more straightfor-
ward and transparent manner. However, one problem that is
increasingly present in most of the SL problems being solved
is that, sometimes, researchers do not completely understand
what supervised learning is and, more often than not, publish
results using machine learning black-boxes. In this paper, we
shed light over the use of machine learning black-boxes and
show researchers how far they can get using these out-of-the-
box solutions instead of going deeper into the machinery of the
classifiers. Here, we focus on one aspect of classifiers namely
the way they compare examples in the feature space and show
how a simple knowledge about the classifier’s machinery can
lift the results way beyond out-of-the-box machine learning
solutions.
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Pattern Analysis; Support Vector Machines; Optimum-Path
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I. INTRODUCTION

In our digital age, information reaches us at remarkable
speed and the amount of data it brings is unprecedented. In
the hope of understanding such flood of information, data
mining and machine learning approaches are required. In
this scenario, one of the problems we often face is data
classification.

There are several approaches for data classification in the
literature and one of the problems they need to address in
almost every situation is how to take advantage of known
information to infer properties to allow the inference over
unseen data examples.

Different approaches have been proposed to deal with
classification problems. Solutions range from supervised
learning ones which aims at developing techniques able to
take advantage from labeled training samples to make deci-
sions over unseen examples [1]–[5], to unsupervised ones in
which label information is not used [6]–[9]. In between these
solutions, there are semi-supervised approaches designed to
learn from both labeled and unlabeled data [10]–[13].

Recently, a lot of tools have been presented in order to
perform machine learning (ML) in a more straightforward
and transparent manner helping researchers to solve hard
classification problems. This increasing activity is also true
for supervised learning methods with several methods be-
ing proposed in the last 15 years [1]. With several good

research groups actively working in ML approaches, we
now have the concept of self-containing machine learning
solutions that many times work out-of-the-box leading us
to the concept of ML black-boxes. By black-box we mean
the researchers using well-known ML libraries and tools
which, theoretically, come “ready-to-use”. When using an
ML black-box, most of the times, we do not need to worry
about implementation details regarding the classifiers neither
some confusing parameters needed to tune the classification
training process.

There are several machine learning black-boxes out there
implemented in software such as: Weka1, R2, SVM Light3,
LibSVM4, LibOPF5 among others.

Although it is quite important to have such black-boxes
helping us to deal with several problems nowadays, it
comes with an inherent problem increasingly more evident.
Researchers and students are progressively relying on these
black-boxes and, more often than not, achieving results
without even knowing what is going on in the machinery
of the classifiers. This lack of knowledge sometimes just
mean the researchers can not explain their results but also
mean they are achieving one result that could be much more
effective if they had knowledge about some important details
about the classifiers.

In this paper, we shed light over the use of machine
learning black-boxes. We show how far researchers can
get using these out-of-the-box solutions instead of going
deeper into the machinery of the classifiers. We focus on
one aspect of classifiers namely the distance function used
to compare examples in the feature space. We show how
a simple knowledge about the classifier machinery can lift
the results way beyond out-of-the-box ML solutions. For
instance, we show that with the same descriptor and the
same classifier, sometimes we can reduce the classification
error in more than 50% by just providing the classifier with
a proper comparison metric.

To validate our observations, we show results using a
series of well known data sets, feature descriptors, and
classifiers. The researchers can easily see how the classifiers
behave in each scenario and how they behave when changing

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.r-project.org/
3http://svmlight.joachims.org/
4http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
5http://www.ic.unicamp.br/∼afalcao/libopf/



a few parameters regarding the policy of comparison of
examples. We hope the questions we raise in this paper can
help researchers when thinking about using ML approaches
to solve research problems.

The remaining of this paper is organized as follows.
Section II presents some subjects we consider important
for the fully understanding of this paper without the need
of recurring to reference books and papers. Section III
conveys the experiments we perform to corroborate our
position in this paper and show how just the choice of the
comparison policy in the classifiers’ machinery can influence
the classification outcomes. Finally, Section IV closes this
paper and discusses some additional perspectives we should
look at when using machine learning approaches to help us
solving daily-life problems.

II. BACKGROUND

In this paper, we raise the question of how far researchers
can get using out-of-the-box machine learning solutions.
We discuss the importance of choosing appropriate policy
(dis)similarity functions to compare examples in a machine
learning approach. Without loss of generality, we discuss our
position using image categorization problems. In a general
purpose image categorization problem, we are given a set of
images and we need to point out the general class of such
images.

To perform the categorization task, it is common to find
a proper feature space in which we can characterize the
images under analysis and make the comparison among them
faster and more discriminative. The characterization is often
made by employing image descriptors. Later on, a machine
learning approach is fed with these features to perform the
classification leading to the final outcome of the system.

In this context, this section presents some definitions
regarding the state-of-the-art in supervised learning as well
as feature image description.

A. Machine Learning
Machine learning is a scientific discipline concerned with

the design and development of approaches that allow ma-
chines to evolve behaviors based on empirical data. Machine
learning approaches often focus on learning to recognize
complex patterns for further intelligent decision-making
processes. Nowadays, we face several problems in which
machine learning techniques can help us such as charac-
ter recognition, speech recognition, heart attack prediction,
data classification and categorization, detection of frauds
in checks, credit cards, among others [1]. When solving
such complex problems, we can use pre-defined classifiers
or learning-based classifiers which can be supervised, semi-
supervised or unsupervised.

In this context, a classifier is an inference motor that seeks
to implement efficient and effective strategies to compute
relationships between pairs of concepts or to compute rela-
tionships between a concept and a set of instances [1].

Supervised learning approaches are those that aim at
estimating a classification function f from a training data

set. The commonest output of the function f is a label
(class indicator) of the input object under analysis. The
learning task is to predict the function outcome of any
valid input object after having seen a sufficient number of
training examples. In the literature, there are many different
approaches for supervised learning such as Linear Discrim-
inant Analysis (LDA), Support Vector Machines (SVMs),
Classification Trees, Neural Networks (NNs), Ensembles of
Classifiers (Bagging and Boosting), K-Nearest Neighbors,
Neural Networks and several others [1]–[4].

Unsupervised learning approaches are those in which no
label information is available. Often, we seek to determine
how the data are organized. Unsupervised learning relates
to the problem of density estimation in statistics and also
encompasses many other techniques designed to summarize
key features on the data under analysis. In the litera-
ture, there are many different approaches for unsupervised
learning such as Self-Organizing Maps (SOM), Adaptive
Resonance Theory (ART), K-Means, K-Medoids, Density-
Based Partitioning, among others [6], [14].

In between Supervised and Unsupervised solutions, there
are semi-supervised approaches designed to learn from both
labeled and unlabeled data such as [10]–[13].

No matter what kind of solution we employ, in order to
perform the intended tasks, most of these approaches need
to compute relationships between pairs of concepts. This
need leads us to the feature space in which such compu-
tations need to be deployed. Often, these computations are
performed upon feature descriptors aimed at summarizing
the underlying data they represent. In this paper, we discuss
that the simple choice of the comparison policy between
concepts has a major impact on the classification outcome.
The problem is that, most of the times, researchers do not
even have this in mind and simply use machine learning
black-boxes and rely on their built-in comparison policies.
Notwithstanding, such built-in comparison policies some-
times are not appropriate to the set of descriptors at hand.

B. Feature Description
Roughly speaking, in data classification, we have an input

example we want to classify, the feature vector summa-
rizing and, hopefully, characterizing this example, and a
(dis)similarity function to compare this concept to other
valid ones. The (dis)similarity measure is a matching func-
tion which gives the degree of (dis)similarity for a given pair
of concepts as represented by their feature vectors [15].

More formally, an example herein called stream is a se-
quence of elements of an arbitrary type (e.g., bits, characters,
images, etc.). A stream is a sequence whose codomain is a
nonempty set [16].

Representing it in the domain of image processing, an
image stream (or simply image) Î is a pair (DI , ~I), where:

• DI is a finite set of pixels or points in N2 (DI ⊂ N2);
• ~I : DI → Rn is a function that assigns to each pixel
p in DI a vector ~I(p) ∈ Rn (e.g., ~I(p) ∈ R3 when
a color in the RGB or HSV system is assigned to a
pixel).



In this context, we can model a feature vector ~vÎ
of an image Î as a point in an Rm space such that
~vÎ = (v1, v2, . . . , vm), where m is the number of
dimensions (dimensionality) of the feature vector.

Proper descriptors to characterize the underlying data
under analysis vary from one application to another. In the
image processing domain, we can list some very well-known
ones such as: color histograms, multi-scale fractals, Fourier
coefficients, texture descriptors among others. Essentially,
an image descriptor seeks to encode the maximum image
properties as possible (e.g., color, texture, shape, silhouette,
etc.) in order to encode the underlying concepts they strive
for summarizing [15].

Following this line of thought, we may think of an image
content descriptor D as a pair (εD, δD), such that

• εD : Î → Rm is a function, which extracts a feature
vector ~vÎ from an image Î;

• δD : Rm × Rm → R is a similarity function (e.g.,
based on a distance metric) that computes the similarity
between two concepts as the inverse of the distance
between their corresponding feature vectors.

To make it easier the understanding of these concepts,
suppose we want to compare two images Î1 and Î2. The
first step consists of characterizing them using the extraction
algorithm εD which yields the feature vectors ~vÎ1 and ~vÎ2 .
To compare the examples, we use the similarity function δD
to determine the similarity value between ~vÎ1 and ~vÎ2 [15].

The whole argument of this paper is that as machine
learning black-boxes are becoming increasingly available
to general-purpose uses, people are forgetting to think of
their problems under the appropriate point of view and,
most of the times, feed their feature vectors to these out-
of-the-box solutions without worrying about the underlying
(dis)similarity function implemented. Sometimes, the out-
come requirements are already met, for instance, when the
machine learning black-box built-in (dis)similarity function
represents a good comparison metric for the supplied feature
vector. However, we argue that, sometimes, the researchers
could have a much more impressive result by simply under-
standing the nature of their feature vector function extraction
and its underlying appropriate (dis)similarity function.

In the following we present some of the feature de-
scriptors we use in this paper as well as their appropriate
(dis)similarity functions.

1) Moment Invariants [17], [18]. For Moment Invari-
ants, each object is represented by a 14-dimensional
feature vector, including two sets of normalized Mo-
ment Invariants, one from the object contour and
another from its solid object silhouette. Again, the
Euclidean distance is usually used to measure the
similarity between different shapes as represented by
their Moment Invariants.

2) Beam Angle Statistics (BAS) [19]. The BAS de-
scriptor is based on the beams originated from a
contour pixel. A beam is defined as the set of lines
connecting a contour pixel to the rest of the pixels

along the contour. At each contour pixel, the angle
between a pair of lines is calculated, and the shape
descriptor is defined by using the third-order statistics
of all the beam angles in a set of neighborhoods.
The similarity between two BAS moment functions
is measured by an optimal correspondent subsequence
(OCS) algorithm [20]. The most appropriate metric
for this descriptor, as discussed by the authors, is
OCS [19] (c.f., Section II-C:5).

3) Tensor Scale Descriptor (TSD) [21]. TSD is a
shape descriptor based on the tensor scale concept
morphometric parameter yielding a unified represen-
tation of local structure thickness, orientation, and
anisotropy [22]. That is, at any image point, its tensor
scale is represented by the largest ellipse (2D) cen-
tered at that point and within the same homogeneous
region. TSD is obtained by extracting the tensor scale
parameters for the original image and then computing
the ellipse orientation histogram. TSDs are compared
by using a correlation-based distance function.

4) Multiscale Fractal Dimension (MFD) [23]. MFD is
an alternative method for estimating the shape com-
plexity of objects. Basically, it consists in estimating a
curve that represents the changes in shape complexity
as we change the visualization scale. Different of
Fractal Dimension, which is a numeric value, this
approach produces a curve which performs a more
accurate shape discrimination

5) Fourier Descriptor (FD) [24]. Fourier transformation
on shape signatures is widely used for shape analysis.
The FD is essentially the Fourier transformed coef-
ficients of the shape. These descriptors represent the
shape of the object in a frequency domain. The lower
frequency descriptors contain information about the
general features of the shape, and the higher frequency
descriptors contain information about finer details of
the shape.

6) Border-Interior Descriptor (BIC) [25]. Stehling et al.
have presented the border/interior pixel classification
(BIC). The approach relies on the RGB color-space
uniformly quantized in 4 × 4 × 4 = 64 colors. After
the quantization, the image pixels are classified as
border or interior. A pixel is classified as interior
if its 4-neighbors (top, bottom, left, and right) have
the same quantized color. Otherwise, it is classified
as border. After the image pixels are classified, two
color histograms are computed: one for border pixels
and another for interior pixels. The most appropriate
metric for this descriptor, as discussed by the authors,
is dLog [25] (c.f., Section II-C:1). In particular, for
this descriptor we can generate a feature vector with
a dLOG embedded space. For that, we transform each
feature value using dLOG [25] and the outcome is a
value between 0 and 9.



C. (Dis)similarity functions

In this section, we present some (dis)similarity functions
we use in this work. Some of the descriptors we discuss in
this paper, have an appropriate (dis)similarity function and
we point out when that is the case.

1) dLOG. It is a distance function to compare two
histograms [25]. It is the appropriate metric to use with
the border-interior descriptor (c.f., Section II-B:6).
Given two histograms q and d with M bins each,
dLOG compares them according to the following
definition

dLOG(q, d) =

i<M∑
i=0

‖f(q[i])− f(d[i])‖ (1)

f(x) =

 0, if x = 0
1, if 0 < x < 1
dlog2 xe+ 1, otherwise

(2)

2) Manhattan. It is a distance function often used to
compare two histograms or feature vectors. It is com-
monly known as L1 distance. Given two vectors q and
d with M features each, Manhattan compares them
according to the following definition

Manhattan(q, d) =

i<M∑
i=0

|q[i]− d[i]| (3)

3) Euclidean. It is a distance function often used to com-
pare two histograms or feature vectors. It is commonly
known as L2 distance. Given two vectors q and d with
M features each, the Euclidean distance compares
them according to the following definition

Euclidean(q, d) =

√√√√i<M∑
i=0

(q[i]− d[i])2 (4)

4) Canberra. It is a distance function often used to com-
pare data scattered around an origin [26]. Given two
vectors q and d with M features each, the Canberra
distance compares them according to the following
definition

Canberra(q, d) =

i<M∑
i=0

|q[i]− d[i]|
|q[i]|+ |d[i]|

, (5)

where, by definition, 0
0 = 0.

5) OCS. The OCS (Optimal Correspondence of String
Subsequences) metric function was originally designed
to compute the distance between two strings [20]. The
main idea is to calculate the minimum effort to match
two different alphabet sequences. For a formal defini-
tion, please refer to the work of Wang & Pavlidis [20].
It is the appropriate metric to use with the BAS
descriptor (c.f., Section II-B:2).

D. Data sets

To corroborate the hypothesis we discuss in this paper, we
have used a series of image descriptors (c.f., Section II-B)
and image data sets. In this section, we present some details
about the data sets we have used and how they can be freely
obtained through the Internet.

1) MPEG-7. MPEG-7 CE Shape-1 Part-B data set in-
cludes 1,400 shape samples, 20 for each class en-
compassing 70 classes. The shape classes are very
distinct, but the data set shows substantial within-class
variations6.

2) Corel Relevants. This data set comprises 1,624 im-
ages from Corel Photo Gallery reported in [25]. The
collection contains 50 color image categories and is
referred to as the Corel Relevant sets (RRSets)7.

E. Quality Assessment

The accuracy Acc of each classifier we report in this paper
is measured by taking into account the fact that the classes
may have different number of elements in the testing as
reported in [27]. For instance, if there are two classes with
very different sizes and a classifier always assigns the label
of the largest class, its accuracy will fall drastically due to
the high error rate on the smallest class.

Let Zi, i = 1, 2, . . . , c, be the number of samples in the
test set Z for each class i. We define

ei,1 =
FP (i)

|Z| − Zi
and ei,2 =

FN(i)

Zi
, i = 1, . . . , c (6)

where FP (i) and FN(i) are the false positives and false
negatives, respectively. That is, FP (i) is the number of
samples from other classes that were classified as being from
the class i in Z, and FN(i) is the number of samples from
the class i that were incorrectly classified as being from
another class in Z. The errors ei,1 and ei,2 are used to define

E(i) = ei,1 + ei,2, (7)

where E(i) is the partial sum error of class i. Finally, the
accuracy Acc is defined as

Acc =
2c−

∑c
i=1E(i)

2c
= 1−

∑c
i=1E(i)

2c
. (8)

III. EXPERIMENTS AND DISCUSSION

In this section, we show the experiments we perform
to validate our hypothesis in this paper. We show that the
choice of the comparison policy in the classifiers’ machinery
influences the classification outcomes and, furthermore, must
be tackled when dealing with ML problems. We organize the
experiments into two rounds. In the first round, we evaluate
a series of shape descriptors over the MPEG-7 CE Shape-1
Part-B data set (c.f., Section II-D:1). In the second round,

6This data set can be found at http://www.cis.temple.edu/
∼latecki/TestData/mpeg7shapeB.tar.gz

7This data set can be found at http://webdocs.cs.ualberta.ca/
∼mn/BIC/



we evaluate a well known color image descriptor over the
Corel color images RRSets data set (c.f., Section II-D:2).

In all experiments, we have performed a 10-fold cross-
validation in order to assess how the results generalize to
an independent data set [1]. More specifically, in a K-fold
cross validation procedure, we partition a data set into
K subsamples. Of the K subsamples, we retain a single
subsample as the validation data for testing the model, and
use the remaining K − 1 subsamples as training data. We
repeat the cross-validation process K times (the folds), with
each of the K subsamples used exactly once as the validation
data. We average the K results from the folds to produce a
single estimation. Since most of ML black-boxes, by default,
do some fine-tuning without warning the user, we have
decided to use the training sets to tune SVM parameters
(e.g., gamma/sigma, C etc.). We thus provide results (for
the test sets) considering the best parameters found in the
training sets.

A. Experiments – Round I

In the first round of experiments, we explore the MPEG-
7 CE Shape-1 Part-B data set in order to verify our hypoth-
esis on the importance of the (dis)similarity function used in
the classification. In this experiment, we have considered the
classifiers SVM with a Linear, Sigmoid, and RBF kernels as
well as a simple SVM with no kernel. In addition, we have
tested ANN and SOM classifiers as well as KNN and OPF
with different metrics to show how this choice influence the
final classification outcome.

In this paper, we define the classification error as
ε = 1 − µ, where µ is the classification accuracy. For
instance, if a method A achieves an accuracy of µA = 80%,
it has an error εA = 20%. In addition, if a method B, under
the same scenario, has a classification error εB = 10%,
we can say that B reduced the classification error in
∆ = 1 − εB / εA = 50%.

Table I shows a series of classifiers used with the BAS
(c.f., Section II-B:2) descriptor characterizing the chosen
data set. Note how the powerful out-of-the-box SVM clas-
sifier achieves better classification accuracies as we change
the way the feature vectors are compared. This is also true
for the simple KNN and OPF classifier which take more
advantage of some (dis)similarity function than others.

The out-of-box KNN classifier (with an L2
comparison metric) has a classification error of
ε = 100%− 79.1% ∼= 20.9%. Compared to KNN-L2,
the KNN classifier adapted to compare the examples
according to the OCS metric which is more appropriate
for shape representations, KNN-OCS, has a classification
error of ε = 100% − 85.5% ∼= 14.5% which means a
reduction of ∆ = 14.5%

20.9%
∼= 31% in the classification error.

The reader might ask why the OCS metric allows such
an improvement. The reason is simple: given that OCS
(dis)similarity function strives for finding the minimum
effort to match two different alphabet sequences (e.g.,
a shape representation) it is more robust to rotations in

the images yielding a more reliable measure of matching
between two shapes considering BAS descriptor.

More important than just establishing comparisons among
classifiers, is to see that even with variations of the same
classifier, results can be improved with a proper choice of the
comparison (dis)similarity function. Sometimes, this choice
is not as easy as it seems to be with a classifier such as
KNN. SVM classifiers often require a complex mathematical
knowledge in designing kernel functions respecting a series
of constraints [1]. When the researcher verifies that the
comparison (dis)similarity function has a major role in her
experiments, perhaps it might be the case of selecting a
classifier in which it is straitforward to switch and evaluate
different (dis)similarity functions.

This experiment gives us another interesting conclusion:
with the appropriate (dis)similarity function, sometimes we
can obtain the classification results faster without paying
the price of a smaller classification accuracy. For instance,
KNN classifier achieves ∼= 85.55% with the computation
cost of only 0.01 seconds for testing an entire fold (∼= 140
elements). At the same time, the computationally-intensive
SVM-RBF requires 0.47 seconds and achieves a classifica-
tion accuracy of 81.25%. Sometimes, the choice of a better
metric does not mean an increase in the computation time.
Also, OPF and KNN classifiers with OCS metric are not
necessarily computationally more intensive than their L2
versions.

Classifier µ Acc. σ ttrain ttest
SVM No-Kernel 71.88% 1.76% 2116.18 0.01
SVM Kernel Linear 72.03% 1.57% 88.85 0.07
SVM Kernel Sigmoid 50.00% 0.01% 77.12 0.06
SVM Kernel RBF 81.25% 1.64% 2185.83 0.47
ANN 50.43% 0.48% 1554.20 0.01
SOM 50.00% 0.01% 2376.28 0.39
KNN-L2 79.09% 1.00% 1.12 0.01
KNN-OCS 85.55% 1.42% 1.08 0.01
OPF-L1 84.56% 1.06% 0.05 0.01
OPF-L2 82.88% 1.62% 0.46 0.05
OPF-CAN 84.20% 1.20% 0.05 0.01
OPF-OCS 87.13% 1.43% 0.04 0.01

Table I
MPEG-7 CE SHAPE-1 PART-B 10-FOLD CROSS-VALIDATION

AVERAGE (µ) AND STDEV (σ) CLASSIFICATION RESULTS FOR BAS
DESCRIPTOR (C.F., SECTION II-B:2). ALSO SHOWN IN THE TABLE, ARE

THE AVERAGE TRAINING (ttrain) AND TESTING (ttest) TIMES FOR
EACH FOLD, IN SECONDS.

Figure 1 shows a series of classifiers used with the
Moments (c.f., Section II-B:1) descriptor characterizing the
chosen data set. Note that the out-of-the-box OPF classifier
with its L2 default (dis)similarity function is not as good as
its adapted version with an appropriate Canberra comparison
function. The difference of the comparison policies also
holds for the SVM classifier. With a more appropriate kernel,
we have better classification results. The standard out-of-the-
box OPF classifier (with an L2 metric) has a classification
error of ε = 100% − 68.9% = 32.1%. Compared to
the out-of-the-box OPF, OPF classifier enhanced with the



Canberra (dis)similarity measure has a classification error of
ε = 100% − 77.3% ∼= 22.7% which means a reduction
of ∆ = 22.7%

32.1%
∼= 30% in the classification error.

Although is dangerous to compare different classifiers
with a more strict protocol, we can see that KNN classifiers
have statistically similar classification errors compared to
SVM-RBF classifier regardless the (dis)similarity measures.
However, when this is the case, a researcher might want to
choose the less time-consuming classifier (usually KNN is
faster). Notwithstanding speed issues, sometimes we also
have to take into consideration the available space for
parameter storage. When this is the case, SVM classifier
requires less space and is recommended.

This experiment also shows us that neural network-
based classifiers such as ANN and SOM do not perform
well without parameter tuning and therefore are not rec-
ommended as out-of-the-box classifiers. Furthermore, often
neural networks have complex configuration parameters and
to evaluate different comparison (dis)similarity function with
them is not straightforward. Neural Networks enthusiasts
would say that with the proper choice of parameters, NNs are
able to implicitly learn several (dis)similarity functions but
we are not going do delve into more details in this direction.
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Figure 1. MPEG-7 CE Shape-1 Part-B 10-fold cross-validation average (µ)
classification results and the corresponding confidence intervals with 95%
confidence for Moments descriptor (c.f., Section II-B:1).

Sometimes, the comparison (dis)similarity measure does
not have a statistically relevant variation contrary to what we
have shown in the last experiments. Figure 2 shows a series
of classifiers used with the Tensor Scale (c.f., Section II-B:3)
descriptor characterizing the chosen data set. In this case,
OPF and KNN classifiers have statistically similar classifi-
cation accuracies (∼= 77%). This observation also holds for
SVM-RBF classifier which is comparable to OPF and KNN.

B. Experiments – Round II

In the second round of experiments, we explore the Corel
Relevants data set in order to verify our hypothesis on
the importance of the (dis)similarity function used in the
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Figure 2. MPEG-7 CE Shape-1 Part-B 10-fold cross-validation average (µ)
classification results and the corresponding confidence intervals with 95%
confidence for Tensor Scale descriptor (c.f., Section II-B:3).

classification in the context of color image classification.
In this experiment, we have considered the classifiers SVM
with a Linear, Sigmoid, and RBF kernels as well as a
simple SVM with no kernel. In addition, we have tested
ANN and SOM classifiers as well as KNN and OPF with
different metrics to show how this choice influences the
final classification outcome. For this particular experiment,
we have chosen the well-established color image descriptor
BIC (c.f., Section II-B:6)). BIC descriptor codifies each
input image with two histograms of border and interior
pixels [25].

Table II shows a series of classifiers used with BIC
descriptor characterizing the chosen data set. Recall that
BIC descriptor allows the generation of a feature vector
with an embedded dLOG space. When that is the case,
we refer to the classifier used in the experiment followed
by the embedded space and the comparison policy used.
For instance, SVM-dLOG Kernel Linear uses the SVM
classifier with a linear kernel fed with a feature vector in an
embedded dLOG space. On the other hand, if we have the
label KNN-L2, it means have used KNN classifier fed with
a feature vector with no dLOG embedded and L2 is the
chosen comparison policy.

This experiment shows us that the powerful SVM is better
with a dLOG embedded space regardless the comparison
policy. This happens because the dLOG mapping transforms
the feature vector in a well conditioned feature vector where
each bin ranges from 0 to 9. This behavior allows SVM
black-boxes to generalize gracefully. However, when we use
the normal feature vector where each bin does not have
an upper bound, the comparison policy between elements
presents additional normalization problems to SVM harden-
ing the localization of meaningful hyperplanes to separate
the elements.

ANN and SOM classifiers do not take advantage of
dLOG embedding and produce poor results. Note that in



this experiment the simple classifiers KNN and OPF once
more take advantage of simple tweaks in the comparison
policies and produce very good results with no real increase
in the classification computational time. KNN with a simple
L1 metric over the embedded dLOG space reduces ∼= 31%
of the classification error when compared to SVM with a
linear kernel fed with the same feature vector.

We also can observe that OPF classifier with an embedded
dLOG space achieves ∼= 90% of classification accuracy
(∼= 10% classification error) while achieving ∼= 88% classi-
fication accuracy using a simple L1 comparison policy and
no embedded space. This is because OPF is more robust for
comparing feature vectors with no upper bounds. The OPF
classifier does not only use the distance between samples
to classify them. Papa et al. [27] have showed that the
path-cost function applied by OPF to partition the graph
into Optimum-Path Trees, encodes a power of connectivity
between the samples, which makes OPF more robust to
handle overlapped classes. On the other hand, KNN is more
sensitive to L2 metric than the other classifiers. We believe
this happens because, with an unbounded feature vector,
some ill conditioned bins (in the feature vector) dominates
the others when squared.

Finally, this experiment reinforces our hypothesis in this
paper: it is very important to think about the classification
choices taking place and how to compensate them. A bad de-
cision can give us a terrible result (e.g., ∼= 55% classification
accuracy when using ANN and an embedded dLOG metric
space). On the other hand, a better planning and knowledge
about the classifier and the problem at hands can achieve
very good results (e.g., ∼= 90% classification accuracy when
using OPF and an embedded dLOG metric space).

C. Additional Experiments

Even though we do not show explicitly here, we have
conducted several additional experiments with descriptors,
classifiers and data sets to reinforce the hypothesis we draw
in this paper. For instance, considering the BAS descriptor
and the ShapeMatcher8 data set, the out-of-the-box KNN
classifier (which uses an L2 metric by default) has a classifi-
cation error of ε ∼= 26.9%±1.9%. However, if we change the
comparison function to OCS, KNN has a classification error
of only ε ∼= 14.2%±1.2%, reducing the error in ∆ ∼= 47.2%.

In the same line, the out-of-the-box OPF classifier (which
uses L2 metric by default) has a classification error of
ε ∼= 28.1%± 1.83%. However, if we change the comparison
function to L1, OPF reduces this error in ∆ ∼= 62%
achieving an error of ε ∼= 11.4%±0.6%. Even more radical,
when OPF classifier is adjusted to use OCS function as
the comparison policy, it reduces the classification error in
∆ ∼= 77% compared to its standard version with L2 metric.

8This data set comprises 2,688 shape images with 21
classes with 128 samples for each one and can be found at
http://www.cs.toronto.edu/∼dmac/ShapeMatcher/

Classifier µ Acc. σ ttrain ttest
SVM-dLOG No-Kernel 79.13% 2.89% 3.72 0.01
SVM-dLOG Kernel Linear 83.75% 2.85% 2670.83 0.06
SVM-dLOG Kernel Sigmoid 83.54% 3.01% 55.20 0.06
SVM-dLOG Kernel RBF 83.16% 3.09% 68.40 0.06
SVM No-Kernel 72.33% 2.56% 20.90 0.01
SVM Kernel Linear 76.41% 3.50% 56.74 0.05
SVM Kernel Sigmoid 50.00% 0.01% 52.91 0.06
SVM RBF 50.17% 0.32% 69.20 0.06
ANN-dLOG 54.62% 1.45% 141.29 0.01
ANN 55.68% 1.57% 138.51 0.01
SOM-dLOG 63.42% 3.39% 272.19 0.35
SOM 58.38% 3.16% 196.09 0.32
KNN-dLOG-L1 88.93% 1.50% 9.01 0.06
KNN-dLOG-L2 71.24% 2.74% 9.08 0.08
KNN-dLOG-CAN 88.93% 1.50% 8.96 0.07
KNN-L1 84.82% 1.43% 8.33 0.06
KNN-L2 63.39% 2.02% 9.07 0.08
KNN-CAN 84.82% 1.43% 9.04 0.07
OPF-dLOG-L1 89.75% 1.56% 0.06 0.01
OPF-dLOG-L2 81.24% 2.94% 0.03 0.01
OPF-dLOG-CAN 85.00% 2.78% 0.06 0.01
OPF-L1 87.83% 2.07% 0.06 0.01
OPF-L2 73.39% 2.92% 0.03 0.07
OPF-CAN 87.20% 2.40% 0.07 0.01

Table II
COREL RELEVANTS 10-FOLD CROSS-VALIDATION AVERAGE (µ) AND

STDEV (σ) CLASSIFICATION RESULTS FOR BIC
DESCRIPTOR (C.F., SECTION II-B:6). ALSO SHOWN IN THE TABLE, ARE

THE AVERAGE TRAINING (ttrain) AND TESTING (ttest) TIMES FOR
EACH FOLD, IN SECONDS.

IV. CONCLUSIONS AND FINAL THOUGHTS

In this paper we have showed that the use of machine
learning black-boxes shall be taken into account when solv-
ing classification problems. Despite the initial good results
we obtain with such out-of-the-box classifiers, sometimes it
is important to go deeper into the classifier machinery and
with the proper knowledge, tweak a few parameters to obtain
a more discriminative classifier.

We have focused on one aspect of the classifiers namely
the (dis)similarity function used to compare examples in the
feature space. We have shown how the knowledge about the
classifier machinery lifts the results way beyond out-of-the-
box ML solutions. For instance, using KNN classifier, BAS
descriptor with the appropriate OCS metric, we are able to
reduce the classification error in the MPEG-7 CE Shape-1
Part-B data set in ε ∼= 23% when compared to the out-of-
the-box SVM classifier with a standard (non-tweaked) RBF
kernel (c.f., Section III-A).

It is important to state that we are not advocating in
favor of any classifier. On the contrary, we believe that each
situation requires a proper problem understanding for the
deployment of a good solution. The experiments we have
performed reinforces our hypothesis in this paper: it is very
important to think about the classification choices taking
place and how to compensate them. A bad decision can give
us a terrible result.

We should not select one classifier just because it is an
hype and everyone is using it. Perhaps, it is interesting
to use the so called out-of-the-boxes classifiers (with no



difficult parameter configuration) as a starting point towards
the solution of the problem. After selecting a few classifiers,
we need to think about what is going on within them in order
to compensate some decisions. For instance, if we choose
to represent the data at hands with an unbounded descriptor,
perhaps we should choose a classifier which is not highly
sensitive to this kind of data (c.f., Section III-B).

We also note that sometimes the feature descriptors have
similar discrimination power. In these cases, more than on
any other, the success of a classification task will depend on
the proper choice of the (dis)similarity function.

Although in this paper we have focused in the choice of
(dis)similarity function as comparison policies, we believe
there are several other important choices we need to think
of when solving a machine learning problem. We have just
touched the tip of the iceberg. Therefore, our future work
include the investigation of: (1) the impact of using a binary
classifier to solve a multi-class classifier throughout binary
combinations; (2) the impact of using features of with dif-
ferent dimensionality; (3) the parameter choice for modeling
the kernels in kernel-based classifiers (e.g., SVMs); (4) the
use of categorical variables with numerical ones; and finally
(5) the behavior of other important classifiers in the literature
such as Maximum Likelihood [1] with respect to all of these
questions.
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