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Figure 1. Overview of our fiducial marker framework: Each marker is a checkerboard with color cells that provides accurate three-dimensional pose
estimation and tens of thousands of distinct markers.

Abstract—In this paper we present a planar fiducial marker
system to be used with color cameras. Our system provides
precise and robust full 3D pose estimation of the markers with
superior accuracy when compared with many fiducial systems,
while color information is used to provide more than 65,000
distinct markers. In contrast with most color-based fiducial
frameworks, ours requires no prior classification training nor
color calibration other than a rough white balance adjustment
and can perform reliably under illumination changes. Finally,
we also provide means of detecting when poor illumination
conditions will compromise marker identification, thus avoiding
to evaluate a false marker identification. We present several
experiments that show significant improvement in accuracy of
estimation of both position and orientation when compared
with traditional techniques.

Keywords-fiducial markers; localization; pose estimation;
augmented reality.

I. INTRODUCTION

Visual or fiducial markers are planar patterns designed to
be easily detected when imaged by cameras and whose pose
(either two- or three-dimensional) can be readily estimated
with respect to the camera. The development of fiducial
marker systems is commonly associated to Augmented
Reality (AR) applications, but they have been used in
several other applications, such as robot localization, medical,
television, gaming, industrial, video conferencing, and human-
machine interaction in general. Fiducial markers also have an
important role in the study of robot swarms, where a large

number of robots (possibly in order of tens of thousands)
need to be individually tracked using camera systems.

It is often desired that fiducial marker tracking systems
present at least the following properties [1]: usability (the
system must be easily adaptable to several hardware and
software platforms), efficiency (it must be fast and run at
frame-rate speed), accuracy (identification must be exact and
pose estimation must be precise), and reliability (the marker
should be correctly tracked under significant perspective
distortions and/or illumination changes). Some scenarios also
require that a large number of markers (in order of hundreds
or thousands) be uniquely identified.

To estimate the full 3D pose of a visual marker, at least
3 salient features must be identified and located in the
image space (4 if perspective distortion is expected in the
image [2]). The majority of fiducial systems [1], [3]–[7]
was designed to be presented with a marker having a thick
square border whose corners can be easily localized, thus
providing a minimum number of features to recover pose,
up to a 90-degrees ambiguity of the orientation. Features
inside the square provide marker identification and orientation
resolution. However, using only 4 features to track the marker
also means that pose estimation is obtained with restricted
precision, and can be severely affected by noise. Also,
perimeter analysis of a dark object against a light background
suffers from the unwanted effect if the illumination is
abundant: light areas “bleed” through dark ones, which
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Figure 2. Proposed fiducial marker: (a) The marker is a checkerboard
of dark (black or blue) and light (white or yellow) cells. The marker is
composed by: (b) a checkerboard in the luminance channel and (c) several
bits in the saturation channel. The meaning of the bits in the saturation
channel is explained in the text. Luminance levels are depicted as: D=dark,
L=light. Saturation levels are depicted as: U=unsaturated (black or white),
S=saturated (colored).

causes shifting corner/edge position towards the interior of
the perimeter. This way, the resulting estimated pose is farther
from the camera than it should be.

Use of color in fiducial markers have already been
investigated in the last years. Passive markers are generally
composed of circle or square colored blobs and have been
proeminently used for robot localization in swarms and
robotic team competitions [8], [9]. However, in general these
approaches give a limited precision pose recovery (since
center of blobs are used as reference points) and require
careful radiometric calibration in order to correctly classify
pixel colors in images. On the other hand, some effort has
been put into development of active markers based on color
or infrared light emitting diodes (LEDs) [10]–[12], based on
the premise that active markers suffer less influence from
ambient illumination conditions. Marker identification is
usually provided by recognition of temporal blinking patterns.
However, these approaches present several drawbacks — for
instance, they require power and embedded electronics, they
can interfere with other sensors used in the scene, and marker
identification cannot be carried with a single frame. Also,
several frameworks presented in literature do not provide full
3D pose.

In this paper we propose a novel fiducial marker framework
that overcomes the aforementioned limitations (Figure 1). It is
even more precise than several other systems that use no color
information, yet it does not require prior color calibration
other than a rough white balance adjustment. Color is used
to provide more than 65,000 unique marker identification
and to detect poor illumination conditions that can degrade
marker recognition.

The rest of this paper is organized as follows: Section II
presents the proposed methodology for the 6×6-sized marker.
Size generalization accounts for scalability and is discussed
in Section III. The methodology is validated by several
experiments whose results are shown in Section IV. Finally,
Section V concludes with a discussion of the results and
further research directions.
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Figure 3. Composition of the saturation channel: (a) The saturation pattern is
a combination of (b) a (constant) border that identifies the marker orientation
and (c) a (variable) kernel that uniquely tags the marker.
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Figure 4. Channel separation of a real image, using CIE L∗a∗b∗ color
space: (a) color image captured by the camera, (b) luminance (L∗) channel,
(c) saturation (|b∗|) channel. For visualization purposes, the saturation image
is shown in reversed scale (darker = more saturated).

II. METHODOLOGY

The proposed fiducial marker is depicted in Figure 2a. The
marker is a checkerboard of dark (either black or blue) and
light (either white or yellow) square cells. These colors
were intentionally selected because an image containing
instances of our markers can be easily decomposed in two
main channels:
• the luminance channel (Figure 2b), which displaces the

checkerboard in dark and light tones; and
• the saturation channel (Figure 2c), which tags the

cells as either colored (highly saturated) or uncolored
(unsaturated).

Channel separation can be carried out using several
methods. In our experience, the most stable results were
obtained by converting the image into the CIE L∗a∗b∗ color
space and using the L∗ band as luminance and |b∗| as
saturation.1 A real image and corresponding channels can be
seen in Figure 4. If speed is of serious concern, a faster (but
less stable) approach is to convert the chromatic bands of
the image into the HSV color space and use the V band as
luminance and S as saturation.

The key advantage of the checkerboard pattern (luminance
channel) is that its pose can be estimated with great accuracy.
Pose estimation of a checkerboard is usually carried by
finding the inner corners. A 6×6 checkerboard has 25 of such
features, thus providing plenty of information redundancy.
Pose estimation will probably undergo unaffected in presence

1The a∗ band is useless with the chosen color set, since its value is
almost the same for blue and yellow colors and grayscale tones.



of poor, noisy localization of a few corners (or even the
failure to recognize one or two). Checkerboard identification
and pose estimation is a well-studied subject and has
been implemented in several freely-available libraries and
toolboxes [13], [14].

The saturation channel is further composed by two pieces:
• the orientation border (Figure 3b), a fixed, 1-cell wide

border with the same size of the checkerboard pattern;
and

• the identity kernel (Figure 3c), a 4× 4 cell pattern.
The orientation border pattern (alternating pairs of sat-

urated and unsaturated cells) is the same for all fiducial
markers. The pattern was designed with two properties in
mind:

1) to provide a fast and stable way of overcoming the
180-degree orientation ambiguity of the checkerboard;
and

2) since there are 5 cells of each color, it also provides a
way of evaluating the distinctiveness of the information
in the two aforementioned channels. If the high/low
levels or either luminance or saturation channels be-
comes hard to distinguish, then illumination conditions
are regarded as poor and a warning can be issued to
the user or application. Analysis of channel levels is
discussed in details in Subsection II-B.

The 4× 4 identity kernel provides 16 bits of information,
thus allowing a theoretical limit of 216 = 65,536 distinct
markers. To ease the color classification and to improve the
reliability of the marker identification, some constraints over
the kernel pattern may be enforced in order to provide error
detection and possibly error correction. Obviously, these
constraints come at the expense of reducing the number of
distinct markers. Such considerations will be further detailed
in Subsection II-C.

A. Coordinates for color sampling

Checkerboard detector algorithms usually return only the
coordinates of inner corners (red circle markers seen in
Figure 5). Based on the intrinsic camera parameters, it is
possible to recover the 3D pose of the marker — up to a
90n-degree ambiguity about the axis normal to the marker
plane at the center of the checkerboard. Correct orientation
can only be fully recovered after analyzing the colors of the
orientation border pattern. The marker identity is encoded in
the color pattern of the identity kernel.

Colors are inferred by sampling the luminance and
saturation channels around the center of each cell (Figure 5).
Coordinates of each cell’s center are evaluated according to
its position in the checkerboard (refer to Figure 6):
• Centers of kernel (inner) cells (PA) are evaluated as the

mean of coordinates of surrounding corners:

PA =
1

4
(P1 + P2 + P3 + P4); (1)

Figure 5. Interest points plotted over a real image: are corners found by
the checkerboard detector; are the center of sampling regions used for
kernel cell color analysis; and are the center of sampling regions used
for border cell color analysis.
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Figure 6. Conventions for explaining the evaluation of coordinates of
sampling region centers. Refer to Subsection II-A for explanation.

• Centers of edge (non-corner) cells of the orientation
borders (PB) are evaluated by extrapolating coordinates
of corners of the adjacent cell:

PB =
1

2

[
P3 +

1

2
(P3 − P1) + P4 +

1

2
(P4 − P2)

]
;

(2)
• Centers of outer corner cells (PC) are evaluated by

extrapolating coordinates of corners of the nearest inner
cell:

PC = P4 +
1

2
(P4 − P1). (3)

The pixels around each of these coordinates are sampled
to recover the color of each cell. This procedure will be
explained next.

B. Color classification

Color classification of all pixels are performed in three
steps:

1) In the first step, only the border cells are analyzed
to recover marker orientation (i.e., to overcome the
90n-degree ambiguity);
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Figure 7. Example of values sampled from luminance and saturation
channels.

2) Next, an analysis is performed to check if there
is a significant probability of color misclassification
(which indicates poor illumination conditions and/or
inadequate camera white balance);

3) Finally, the saturation levels of inner (kernel) cells to
extract the unique marker identification are checked.

Let us call lr,c and sr,c respectively the luminance and
saturation of the cell located in r-th row and c-th column of
the checkerboard, assuming an arbitrary selection of the top-
left cell. For each cell, our current implementation evaluates
the average luminance and saturation levels of the pixel in
the center of each cell and the corresponding 4-connected
neighbors. More complex methods could be used to provide
more robustness against noise, but as it will be shown later,
this simple approach provides good results.

While the cell colors are not yet known, the orientation
border has a clever property: when read in clockwise order
(see Figure 2a), cells present a cycle of “black, yellow,
blue, white” colors. This means that the following cells
have approximately the same luminance, regardless of actual
marker orientation:

l1,1 ≈ l1,5 ≈ l4,6 ≈ l6,4 ≈ l5,1 (4a)
l1,2 ≈ l1,6 ≈ l5,6 ≈ l6,3 ≈ l4,1 (4b)
l1,3 ≈ l2,6 ≈ l6,6 ≈ l6,2 ≈ l3,1 (4c)
l1,4 ≈ l3,6 ≈ l6,5 ≈ l6,1 ≈ l2,1, (4d)

and the same applies for saturation values. We evaluate the
mean of each group’s luminance. The two lower values cor-
respond to darker (black and blue) colors and the remaining
correspond to lighter (white and yellow) colors. Evaluation
and comparison of the average value of saturation ultimately
tags each cells with corresponding color, which eliminates
the aforementioned orientation ambiguity. Figure 7 shows an
example of color classification plotted in the color channels
space.

Statistical analysis of sampled values also gives the
classification quality. For each color we evaluate the Gaussian
distribution over sampled values of luminance (Figure 8a). If
the overlap between a darker and a lighter color is significant,
then there is a high probability of color misclassification.
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Figure 8. Example of Gaussian distribution curves over (a) luminance
and (b) saturation of each border’s cell groups, evaluated from image of
Figure 4.

This may be due to (i) over- or under-exposed images, (ii)
too much noise or (iii) the marker being exposed to a highly
uneven illumination. Same goes for Gaussian distribution
curves of saturations (Figure 8b): in this case, curve overlaps
may indicate poor white balance.

C. Marker identification

Saturation values of identity kernel cells (s2,2 to s5,5)
provide a total of 16 bits of information, thus allowing
216 = 65,536 unique markers. We call this the unconstrained
variant of our marker identification framework. The problem
of this variant is that color misclassification of a single kernel
cell will provide another valid identification: there is no way
to check the validity of the acquired bit pattern or to identify
and correct wrong bits.

There are several solutions to constrain the pattern in
order to detect identification errors. Below we present three
possible simple approaches:

1) In the saturation-constrained variant, exactly half of
the cells are saturated, meaning that the kernel has 8
color cells (yellow/blue) and 8 black/white cells. This
gives C16

8 = 12,870 distinct markers;
2) In the color-constrained variant, there are exactly 4

cells of each color, thus giving C8
4 ·C8

4 = 4,900 distinct
markers;

3) In the SECDED variant, there are no specific con-
straints on the cell colors count. Instead, the pattern is
regarded as a 16-bit sequence, where each bit represents
a cell (1 iff the corresponding color is saturated). This
pattern is coded using a Hamming(15,11) coding with
an additional odd parity bit. Since there are 11 data
bits, this variant provides 211 = 2,048 distinct markers.

One advantage of the first and second variants is that a
single misclassification (actually, any odd number of mis-
classifications) will output an invalid identification. however,
they do not provide error correction. On the other hand, the
SECDED (“single error correction, double error detection”)
variant can detect a single- or double-bit error in 100% of
the cases and provides correction for any single-bit error.



Table I
PROBABILITY OF INCORRECT MARKER IDENTIFICATION ACCEPTANCE IN

FACE OF WRONG COLOR CLASSIFICATION.

Misclassification amount

Ident. variant 1 bit 2 bits 3 bits 4 bits

Unconstrained 100.0% 100.0% 100.0% 100.0%
Sat.-constrained 0.0% 53.3% 0.0% 43.1%
Color-constrained 0.0% 26.7% 0.0% 18.0%
SECDED 0.0% 0.0% 100.0% 7.7%

The odd parity bit guarantees that the completely saturated
and completely unsaturated kernels (which may happen
under complete saturation misclassification) are both invalid
patterns.

Table I gives the probability of generating a valid but
incorrect identification for each variant in face of different
number of misclassifications. The end user must select a
variant as a balance of the quality of available imaging
process and the need of large number of distinct markers.
Also, we stress that these are not the only possible solutions:
the end user can adopt any other identification schema if these
variants are somehow inappropriate for a given scenario.

III. SCALABILITY

Although we discuss in details the 6 × 6-sized marker,
our methodology trivially scales to any N ×N -sized marker,
where N ≥ 4 and N is even. Under these constraints, the
smaller possible marker has 4 × 4 cells, thus providing
a 2 × 2 kernel with 16 distinct markers and no error
detection/correction capabilities. This may be suitable in
situations where a small marker is required and there is no
need to place several markers in the scene.

On the opposite direction, bigger markers provide room
for much more distinct and/or highly redundant coding
schemes. For instance, an 8× 8-sized marker can have its
identification directly encoded as a binary number with no
error detection/correction (which gives 264 ≈ 1.84 × 1019

distinct markers — probably too much for most practical
purposes), or it can be encoded with the extended binary
Golay code, thus providing room for 212 = 4,096 distinct
markers with automatic correction of up to 3 wrong bits and
error detection of 4 wrong bits. However, bigger markers are
practical only if high-resolution cameras are available.

Strictly speaking, there is no need to adopt square-
sized, even-sized marker patterns. Actually the framework
can be generalized to any M × N -sized marker (with
M,N ≥ 3 in order to provide room for kernel cells), but
the proposed “black, yellow, blue, white” border pattern
requires the number of border cells to be multiple of 4. The
generalization algorithm for the border patter is currently
under development.

Figure 9. Markers and motion device used in comparative experiments.

Table II
TEST CASES: CAMERA POSES RELATIVE TO THE TABLE.

Vertical distance Angle between camera
Test case to the table axis and table plane

CloseDist 60 cm 90◦

MedDist 90 cm 90◦

FarDist 140 cm 90◦

Inc30d 90 cm 60◦

IV. EXPERIMENTS AND RESULTS

The experiments were conducted in order to compare the
precision and robustness of our fiducial marker framework
against open-sourced ARToolKitPlus project [6], which is an
improvement of the very popular ARToolKit [4].2

The experimental setup consists of a small moving wheeled
base constrained to move in a straight track pulled by an
electric motor in order to travel at fairly constant speed
(Figure 9). Both markers are square and equally sized at
120 mm on a side. For checkerboard detection we have used
the OpenCV 2.0 library [13] with some modifications to
detect small checkerboards.

For each test run, one of the markers is fixed on the
wheeled base. A 640 × 480 PointGrey DragonFly CCD
camera with f = 4 mm lens is fixed over the scene and
captures the marker movement at 15 fps. The wheeled base
is then reset to the original position, where markers are
exchanged and a new set of images is obtained. Poses of the
camera relative to the table are described in Table II. We ran
each experiment twice (each run is tagged with suffix “1”
or “2” in the results discussion session). Each run captures
approximately 280 to 400 frames.

From each run we recover the complete 3D pose of the
marker being under analysis: three-dimensional coordinates
of the fiducial marker center and its orientation described by
a quaternion.Since the wheeled base (hence the marker) is

2Several variants of ARToolKit/ARToolKitPlus emerged in last years,
however, in general, the pose estimation based on outer square corners has
not changed. So, we have elected ARToolKitPlus as a representative of an
entire class of fiducial markers systems.



traveling in a straight path, then (i) all 3D marker coordinates
must be collinear and (ii) the orientation must not change
throughout the run. From these constraints we can extract
two noise measurements:

1) Linear errors: Given {Pf}, the set of 3D positions of
the marker recovered at each frame f , the line that best
describes the path followed by the marker (in terms
of quadratic distance minimization) is defined by the
line that crosses P̄ and goes in the direction of the
eigenvector correspondent to the maximum eigenvalue
of the 3× 3 matrix P ·P>, where P is defined as:

P =
[
P1 − P̄ P2 − P̄ . . . PF − P̄

]
. (5)

The linear error of a point Pf , called εPf , is defined
as the Euclidean distance between Pf and the best fit
line;

2) Angular errors: One of the advantages of using
quaternions to represent three-dimensional orientations
is that it is easy to evaluate the rotation between two
arbitrary quaternions qa and qb, i.e., to obtain a rotation
axis ~v and an angle α (where 0◦ ≤ α ≤ 180◦) that
describes the rotation that can be applied into the
orientation qa to reach qb. Here we will adopt the
notation α = ](qa, qb) to denote the operation that
evaluates the angle α (the rotation axis has no interest
in this paper).
Given {qf}, the set of quaternions that represent the
orientation of the marker recovered at each frame f ,
we define the best fit orientation as a quaternion qfit
that minimizes the quadratic angular distance to all qf ,
or:

qfit = arg min
q

∑
f

[
](qf , q)

]2
. (6)

The angular error of an orientation qf , called εqf , is
simply defined as:

εqf = ](qf , qfit). (7)

Both error measurements are always non-negative (zero
under ideal circumstances).

For each test case we analyze two global error measure-
ments: the Root Mean Square Error, RMSE(ε), defined as

RMSE(ε) =
1

F

√∑
f

εf 2, (8)

and the Mean Absolute Error, MAE(ε), defined as

MAE(ε) =
1

F

∑
f

εf , (9)

where ε can refer both to linear and angular errors. Smaller
values obtained for RMSE(ε) and MAE(ε) indicate better
results. RMSE is more sensitive to outliers than MAE.
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Figure 10. Linear error measurements for all described test cases and error
measurements.

0 5 10 15 20 25
RMSE (degrees)

Deg30d2

Deg30d1

FarDist2

FarDist1

MedDist2

MedDist1

CloseDist2

CloseDist1

3.40

3.52

8.53

8.57

11.44

17.14

1.54

1.65

0.54

1.85

3.53

3.73

0.58

0.54

1.46

1.44
ARTK+
Ours

0 5 10 15 20
MAE (degrees)

2.99

3.18

6.81

6.99

7.57

13.11

1.30

1.37

0.51

1.51

2.87

2.97

0.55

0.51

1.31

1.28
ARTK+
Ours

Figure 11. Angular error measurements for all described test cases and
error measurements.

All global error measurements are presented in Figures 10
and 11. For almost all test cases, we have observed a
noticeable improvement in the pose estimation precision. In
general, RMSE and MAE values decreased significantly when
our method was used when compared with ARToolKitPlus,
for both linear and angular measurements. Also, notice that
linear errors of about 1 mm were measured for objects placed
about 1 m far from a low-resolution camera. These results
indicate that our methodology may be used in applications
that require high-precision estimation of marker positions.

Table III shows the marker recognition rate, i.e., the
percentage of the frames where a visible marker was actually
recognized. In this specific test, ARToolKitPlus performs
slightly better than our method. This is due to the fact that
the ARToolKitPlus framework needs to recognize only 4



Table III
MARKER RECOGNITION RATE.

Test case ARTK+ Ours

CloseDist1 100.0% 98.0%
CloseDist2 100.0% 98.6%
MedDist1 100.0% 100.0%
MedDist2 100.0% 99.7%
FarDist1 100.0% 97.7%
FarDist2 100.0% 98.1%
Inc30d1 100.0% 98.4%
Inc30d2 100.0% 100.0%

visual features (the square borders), while ours requires up
to 25 features (the checkerboard inner corners). However,
as explained in Section II, we stress that our current
implementation rejects the marker if a single checkerboard
corner is not recognized. This restriction can be relaxed to
accept a small number of misses. Nevertheless, it is worth
noting that recognition rates approach 100% even in worst
cases.

V. CONCLUSION AND FUTURE WORK

We have presented a novel fiducial marker framework that
provides full 3D pose recovery. Compared to current methods,
our approach provides significantly better pose estimation
accuracy, as evidenced by the considerable decrease in both
RMSE and MAE error measurements. Color information
is used to provide tens of thousands of distinct markers
(as for the 6 × 6-sized markers), which is enough for
most applications in several interest areas. We also provide
identification variants embedded with redundant information
in order to provide confident identification and optional error
correction. On top of that, our framework is also robust in the
sense that it detects poor illumination conditions, inadequate
white balance and other conditions that would otherwise lead
to invalid results.

Although our method is generally more precise than tradi-
tional alternatives, working with color imaging poses some
drawbacks. Factors such as image/video compression and
color aberration can impair the color classification step, thus
compromising orientation resolution and marker estimation.
Also, since our algorithm relies on the identification of several
image features (compared to only 4 needed by square-border
methods), it is expected that marker recognition rates are
lower when compared to those of traditional techniques,
specially when used with low-resolution cameras. In general,
one must consider the tradeoff between pose accuracy and
recognition rates when selecting between our framework and
other approaches.

Our current implementation is highly unoptimized and
must be further developed in order to be evaluated in terms
of efficiency. Also, pose estimation in face of misrecognition
of a few checkerboard corners is currently under evaluation.
This requires careful study to estimate the loss of precision

caused by progressive corner misses. This is being currently
addressed by the authors, as part of ongoing researches in
swarm robotics and augmented reality.

ACKNOWLEDGMENTS

This work was partially supported by Fundação Centro
de Análise, Pesquisa e Inovação Tecnológica (Analysis,
Research and Technological Innovation Center) — FUCAPI,
Manaus, AM, Brazil; Conselho Nacional de Desenvolvimento
Científico e Tecnológico (National Counsel of Technological
and Scientific Development) — CNPq, Brazil; and Fundação
de Amparo à Pesquisa do Estado de Minas Gerais —
FAPEMIG, MG, Brazil.

REFERENCES

[1] X. Zhang, S. Fronz, and N. Navab, “Visual marker detection
and decoding in AR systems: A comparative study,” in
Proceedings of the 1st International Symposium on Mixed
and Augmented Reality, 2002, pp. 97–106.

[2] M. Fiala, “Designing highly reliable fiducial markers,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 99, Jul. 2009.

[3] J. Rekimoto, “Matrix: A realtime object identification and
registration method for augmented reality,” in Proceedings
of the 3rd Asia Pacific Computer Human Interaction (APCHI

’98), 1998, pp. 63–68.

[4] H. Kato and M. Billinghurst, “Marker tracking and HMD
calibration for a video-based augmented reality conferencing
system,” in Proceedings of the 2nd International Workshop
on Augmented Reality (IWAR 99), San Francisco, USA., Oct.
1999.

[5] M. Fiala, “ARTag, a fiducial marker system using digital
tecnhiques,” in Proceedings of the Computer Vision and
Pattern Recognition, Jun. 2005, pp. 590–596.

[6] D. Wagner and D. Schmalstieg, “ARToolKitPlus for pose
tracking on mobile devices,” in Proceedings of 12th Computer
Vision Winter Workshop (CVWW’07), Feb. 2007.

[7] D. Flohr and J. Fischer, “A lightweight ID-based extension
for marker tracking systems,” in Eurographics Symposium on
Virtual Environments (EGVE) Short Paper Proceedings, 2007,
pp. 59–64.

[8] J. Bruce and M. Veloso, “Fast and accurate vision-based
pattern detection and identification,” in Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA), Taipei, Taiwan, Sep. 2003.

[9] H. Zhang, F. Yang, and Y. Wu, “Robust color circle-marker
detection algorithm based on color information and Hough
transformation,” Optical Engineering, vol. 48, no. 10, 2009.

[10] Y. Hada and K. Takase, “Multiple mobile robot navigation
using the indoor global positioning system (iGPS),” in Pro-
ceedings of the 2001 IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 2, Maui, HI, Nov. 2001,
pp. 1005–1010.



[11] N. Matsushita, D. Hihara, T. Ushiro, S. Yoshimura, J. Reki-
moto, and Y. Yamamoto, “ID CAM: A smart camera for scene
capturing and ID recognition,” in Proceedings of the 2nd IEEE
and ACM International Symposium on Mixed and Augmented
Reality. Washington, DC, USA: IEEE Computer Society,
Oct. 2003, pp. 227–236.

[12] M. Sakata, Y. Yasumuro, M. Imura, Y. Manabe, and K. Chihara,
“ALTAIR: Automatic location tracking system using active
IR-tag,” in Proceedings of the International Conference on
Multisensor Fusion and Integration for Intelligent Systems
(MFI2003), Jul. 2003, pp. 299–304.

[13] “Open Source Computer Vision library,” available at http:
//sourceforge.net/projects/opencvlibrary/. Accessed in May,
2010.

[14] J.-Y. Bouguet, “Camera calibration toolbox for Matlab,”
available at http://www.vision.caltech.edu/bouguetj/calib_doc.
Accessed in May, 2010.


