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Abstract—This paper presents a novel methodology to per-
form consistent matching between visual features of a pair
of images, particularly in the case of point-of-view changes
between shots. Traditionally, such correspondences are deter-
mined by computing the similarity between descriptor vectors
associated with each point which are obtained by invariant
descriptors. Our methodology first obtains a coarse global reg-
istration among images, which constrains the correspondence
space. Then, it analyzes the similarity among descriptors, thus
reducing both the number and the severity of mismatches. The
approach is sufficiently generic to be used with many feature
descriptor methods. We present several experimental results
that show significant increase both in accuracy and the number
of successful matches.
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I. INTRODUCTION

In Computer Vision, one often needs to determine corre-
spondences between points of pairs of images. This problem
is known as matching or correspondence and is a fundamental
step to solve many other problems, such as multiple view
geometry, image mosaicing, object tracking, visual odometry,
scene mapping and monocular SLAM. Recently, a large
number of works have been published that perform matching
of small image patches based on visual feature descriptors,
such as SIFT [1], [2], PCA-SIFT [3], GLOH [4], SURF [5],
MSER [6] and ASIFT [7]. However, none of these methods
addresses the (almost always expected) general geometric
consistency between the transformation from one image to
the other, which often generates correspondences between
seemingly random points of the images.

To significantly avoid outliers, descriptor-based correspon-
dence can be combined to robust methods that enforce
geometric compatibility between the matched points. While
RANSAC [8] comes to mind as a candidate, in the general
case of unknown scene geometry it can only be used
to estimate the simplest image relations, such as affine
transformations or homographies; also, the large number
of parameters to estimate (8 for a full homography between
images) makes it unsuitable for real-time applications.

In a previous work, the authors [9] presented a methodol-
ogy that uses geometric clues (position, orientation and size),
already provided by feature descriptor algorithms, to search
for ranges for translation, rotation and scaling that describe

the relation between points of a pair of images. Although
this method attempts to capture the global correspondence
as a (bounded) affine transformation from one image to the
other, it was shown that it suffices to describe even small
perspective changes between shots. However, the original
algorithm presents two main weaknesses:

1) it cannot cope with general point-of-view changes
between shots (large perspective transformations and
scenes with objects placed at distinct distances from
the camera) nor with dynamic scenes; and

2) more importantly, it only compares descriptors that
comply with the aforementioned transformation bounds,
which sometimes causes the algorithm to blindly select
the “best of the worst” pairing from a set of features
that are utterly visually incompatible.

This paper presents an improvement of the aforementioned
algorithm that corrects the second problem and minimizes
the first one. We introduce a main loop that searches for
several groups of transformation bounds, thus segmenting the
images in regions for which geometric transformations are
locally consistent. This makes our algorithm able to deal with
dynamic scenes, since the region of the image corresponding
to each moving object fits into the concept of local consistent
geometric transformation. Also, we reject a pairing between
two points if there exists an unbounded correspondence for
which the descriptors are much more similar.

The rest of this paper is organized as follows: Section II
gives an overview of the main issues behind feature de-
scriptors and the matching process; Section III presents
the proposed methodology, which is evaluated by several
experiments whose results are shown in Section IV. Finally,
Section V concludes with a discussion of the results and
possible further directions.

II. FEATURE DESCRIPTORS AND MATCHING

Given an input image q, a feature descriptor algorithm
outputs a set of features, {Fq,n}, where each feature Fq,n
comprises the descriptor vector among some geometric
information associated with the feature. Typically, most affine-
invariant feature descriptors give at least the following data:

Fq,n = 〈xq,n, yq,n, sq,n, φq,n,dq,n〉, (1)



where (xq,n, yq,n) are the coordinates of the feature centroid,
in pixels; sq,n is a scale factor; φq,n is the orientation of
some particular characteristic of the feature; and dq,n is the
descriptor vector. Traditionally, only the descriptor vectors
are used to match pairs of points of two input images, as
described below:
• Given the set of descriptors of all distinct features found

in both images, Dq = {dq,1, . . . ,dq,Nq
} for q ∈ {1, 2},

where d∗,∗ are vectors with K elements and Nq is the
number of features detected in image q;

• given a distance function, dist : RK × RK → R+

(possibly, but not necessarily, the Euclidean distance),
where R+ is the set of non-negative real numbers;

• for each descriptor d1,i, search for a d2,j that minimizes
the distance dist(d1,i,d2,j).

The output is a set of pairs of indexes 〈i, j〉 of corre-
sponding features. Formally, the set M of all pairs can be
described by:

M =
{
〈i, arg min

j
dist(d1,i,d2,j)〉 |

∀k 6= j
[

dist(d1,i,d2,k) ≥ τ dist(d1,i,d2,j)
]}

(2)

for a given distinctiveness threshold τ ≥ 1 that avoids
ambiguous matches and minimizes matchings between not-
much-alike features (i.e., it prevents forced pairing of features
F1,i that have no particularly good correspondences in the
other image). Unfortunately, the adoption of a distinctiveness
threshold also avoids pairing of features that appear more
than one time in the images, such as recurrent patterns or
homogeneous textures. Ideally, matchings should be searched
for all rich features, no matter how many times they appear
replicated in the images. So, a better approach would be to
rely on other constraints while keeping τ = 1, effectively
allowing matchings of repeated features.

Regarding the geometric data presented in Eq. (1), in
general the scale factor sq,n and the orientation angle φq,n
may have no meaning in image space, serving only to
compare the geometry among local patches (around the
neighborhood of (xq,n, yq,n)) in both images. On the other
hand, it also means that all “good” matches between two
images can be grouped into regions for which all scale
ratios s2,j/s1,i and difference of orientations φ2,j − φ1,i

are somewhat consistent and therefore bounded. Intuitively
there should also be some consistency between translation
of the coordinates, x2,j − x1,i and y2,j − y1,i (albeit not
trivially bounded, since translation may be embedded in
a more general perspective transformation of each image
region). The identification of these limits is the inspiration
of our methodology, which is presented next.

III. METHODOLOGY

Our methodology is depicted in Figure 1, and it works
as follows. Given Minit = {〈i, j〉}, the set of matchings
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with geometrical constraints

Mp
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Figure 1. Overview of our methodology. From an initial matching set,
we first analyze scaling, rotation and translation to evaluate the geometric
constraints, then the matching is rerun under these constraints.

generated by any matching method (e.g., Eq. (2)), we first
search for a region-wise consensus for scaling, rotation, and
translation of the image features and define “acceptable”
ranges for these transformations. We then build a new set of
matchings based solely on geometric constraints (as if the
distinctiveness threshold τ was set to 1). This entire procedure
is repeated several times, in order to (ideally) cover all regions
of the first image for which there are corresponding regions
on the second image.

While Eq. (2) can be used to evaluate the initial set of
matched features Minit, this would also cause our algorithm
to be slower than current methods (since the total time
required to run our methodology includes the time spent to
computeMinit). A more time-efficient method to evaluate the
initial set is discussed next. Further details on the following
steps will be described in Subsections III-B to III-D.

A. Initial matching

Evaluation of a matching set according to Eq. (2) has
asymptotic time complexity of O(KN1N2), where K is the
descriptor vector length and N1 and N2 are the number
of features found in each input image respectively. While
reducing the asymptotic cost profile is not a trivial task, we
can actually reduce the computational cost by taking only
a subset of descriptors of D1 to evaluate Minit. Although
the resulting matching set is probably smaller than that
evaluated by Eq. (2), this does not compromise the rest
of the methodology, since Minit is used only to compute the
limits for the rematching step.

We define Z as a random subset of D1, where the number



of elements of Z is defined as

|Z| =
⌊
|D1|
z

⌋
(3)

for a given subsampling factor z ≥ 1. Then we redefine
Minit by adapting the definition presented in Eq. (2):

Minit =
{
〈i, arg min

j
dist(d1,i,d2,j)〉 |

∀k 6= j
[

dist(d1,i,d2,k) ≥ τ dist(d1,i,d2,j)
]}

∀d1,i ∈ Z. (4)

While the asymptotic time complexity is still the same (since
O(K N1

z N2) = O(KN1N2)), the actual time required to
compute Minit as in Eq. (4) will be significantly reduced for
a large z when compared to the original proposition shown in
Eq. (2). The optimal determination of z will not be addressed
in this paper and will be left as future work.

B. Geometric constraints evaluation

The objective of this step is to define acceptable ranges
for all geometric transformations considered here: scaling,
rotation, and translation. The first two transformations (scal-
ing and rotation) can be directly estimated from the scaling
factors s and orientations φ computed by the feature detector
(Eq. (1)). However, feature translations in image coordinates
can only be consistently estimated after determining the other
transformations. Thus, the evaluation of geometric constraints
is performed in two steps: (i) scale and rotation and (ii)
translation.

1) Scale and rotation constraints evaluation: For scale and
rotation constraints evaluation, we first analyze the scaling
ratios and rotation angles that occur between matched features.
We then define an acceptable range for these transformations
and discard all pairs that fall outside these constraints.

For scaling ratios, we proceed as follows: Given the set
of all scaling ratios, represented by S and defined as:

S ,
{
s2,j/s1,i

}
∀〈i, j〉 ∈ Minit, (5)

we first estimate the Probability Density Function (PDF) of
S using Parzen windows [10] with a Gaussian kernel. For the
bandwidth value we use the automated method discussed in
[11]. From the estimated PDF we pick the following values:
• the mode of scale ratio (the value at the PDF’s peak),

∆sp;
• the largest scale ratio below ∆sp for which the likeli-

hood equals 5% of the mode, ∆smin; and
• the smallest scale ratio above ∆sp for which the

likelihood equals 5% of the mode, ∆smax.
The same procedure is applied to find the peak and limits

of the rotation angle (difference of orientations). Given the
set of all rotation angles, R, defined as:

R ,
{
φ2,j − φ1,i

}
∀〈i, j〉 ∈ Minit, (6)

(a) (b)

(c) (d)

(e) (f)
Figure 2. Test cases evaluated in this paper: (a)-(b) WallMap: point-of-view
change of planar scene (ground truth homography is available); (c)-(d)
BooksInTable: groups of objects in distinct depths; (e)-(f) MovingBook: non-
planar, dynamic scene.

we estimate the PDF of R, again using Parzen windows.
However, since angles form a cyclic group, the estimated
PDF must be confined to a (2π rad)-wide window centered
on the likelihood peak ∆φp, i.e., the PDF is defined over the
domain (∆φp − π rad,∆φp + π rad]. The acceptable range
limits ∆φmin and ∆φmax are defined from this PDF exactly
as ∆smin and ∆smax.

Finally, we build the set Msr ⊆ Minit containing only
matching pairs whose scaling and rotation transformations
fall within the limits previously defined:

Msr ,
{
〈i, j〉 ∈ Minit |
(∆smin ≤ s2,j/s1,i ≤ ∆smax) ∧
∧ (∆φmin ≤ φ2,j − φ1,i ≤ ∆φmax)

}
, (7)

where φ2,j − φ1,i is normalized to the interval (∆φp −
π rad,∆φp + π rad].

2) Translation constraints evaluation: As explained be-
fore, translation is analyzed on the transformed (scaled and
rotated) feature coordinates. For each pair 〈i, j〉 ∈ Msr, we
define the transformed displacement vector ~vi,j as:

~vi,j ,
[

∆xi,j
∆yi,j

]
,
[
x2,j
y2,j

]
−∆sp

[
cos ∆φp − sin ∆φp
sin ∆φp cos ∆φp

] [
x1,i
y1,i

]
.

(8)



Translation limits are defined as follows: Given a two
dimensional histogram over x and y axes of vectors ~vi,j , the
rectangle that covers the connected island of all histogram
bins around the histogram peak defines the acceptable ranges
for both axes: [∆xmin,∆xmax], and [∆ymin,∆ymax].

C. Rematching

From the constraints evaluated during the previous step,
we now build the set of matching pairs Mp for the p-th
region:

Mp ,
{
〈i, arg min

j
dist(d1,i,d2,j)〉 |

(∆smin ≤ s2,j/s1,i ≤ ∆smax) ∧
∧ (∆φmin ≤ φ2,j − φ1,i ≤ ∆φmax) ∧
∧ (∆xmin ≤ ∆xi,j ≤ ∆xmax) ∧
∧ (∆ymin ≤ ∆yi,j ≤ ∆ymax) ∧
∧ (dist(d1,i,d2,j) ≤ η dist(d1,i,d2,k))

}
∀i ∈ {1, . . . , N1} and j, k ∈ {1, . . . , N2}. (9)

The most important aspect of Eq. (9) is the last acceptance
condition: it states that a pair 〈i, j〉 will be accepted only if
the distance between their descriptors are not much larger
(based on a threshold η ≥ 1) than the distance from d1,i to
any other descriptor of the second image. In other words, if
a pair 〈i, k〉 is significantly more visually compatible than
the candidate pair 〈i, j〉 (and, of course, 〈i, k〉 does not meet
the transformation bounds), then the candidate is rejected.

D. Multiple region correspondence

The matchings recovered by the previous steps may
not cover the entire image space. In order to provide a
more comprehensive coverage, first one needs to remove all
matched features from the input sets,

D1 ← D1 − {F1,i}
D2 ← D2 − {F2,j}

}
∀〈i, j〉 ∈ Mp, (10)

and then repeat the entire procedure (Subsections III-A
to III-C) a finite number of times. After the execution of
all iterations, the final set of matchings, Mfinal, is the union
of the matchings Mp obtained in each iteration. The ideal
number of iterations depends on several factors and will not
be addressed in this paper.

IV. EXPERIMENTS AND RESULTS

In this section we compare three matching methods: the
classical one, represented by Eq. (2); the original algorithm
previously published by the authors [9], referred here as
“Original”; and the improved version proposed in this paper.
They were all implemented in Matlab, with some routines
implemented in C++ for the sake of speed. The test platform
consists of an Intel R© 2.67GHz CoreTM i7 processor with
12GB of RAM, running a 64-bit GNU/Linux Ubuntu box
(kernel v2.6.28). Images were taken using a Canon PowerShot
SX10 IS digital camera with 10 megapixels and subsampled

(a)

(b)

(c)
Figure 3. Results of the WallMap test case with (a) classical method, (b)
original method with z = 1/2, and (c) improved method with 2 iterations
and z = 1/2. For visualization purposes, only 10% of the matches were
plotted in each case. Notice that the classical method matches gives a number
of severe outliers. The original method fails to capture the essence of the
perspective transformation and (incorrectly) matches only a small number
of features in the right portion of the images. Our improved method behaves
much like the classical method, but does not generate visible outliers.

to 1/16 of the original dimensions, resulting in images of
912× 684 pixels.

Some images of different scenes, shown in Figure 2,
were used to compare our proposed method with the others.
Pairs of these images compose the test cases evaluated in
our experiments. Notice that these images were selected
to compare the efficiency of the three methods in face of
perspective transformations (changes in the point-of-view)
and dynamic scenes. In all cases, feature sets D1 and D2 are
evaluated using the SIFT algorithm [1], [2].1

The set of matchings for each test set are presented in
Figures 3, 4 and 5. All tests show a consistent behavior: While
the classical matching method is able to match a large number
of features, outliers occur frequently. The original method
fails to provide extensive coverage of the images, since
the underlying geometric model cannot cope with general
perspective transformations. On the other hand, the improved
method not only provides extensive coverage of the images,

1Although we use SIFT algorithm in our experiments, please recall
that our methodology is not specifically tied to it. Any feature descriptor
algorithm that outputs the data presented in Eq. (1) can be used instead.



(a)

(b)

(c)
Figure 4. Results of the BooksInTable test case with (a) classical method,
(b) original method with z = 1/2, and (c) improved method with 3
iterations and z = 1/2. For visualization purposes, only 25% of the matches
were plotted in each case. Notice that in this case the classical method
behaves very well, except for some outliers. The original method only
matches the background object. Our improved method selects three groups
of correspondences (one per iteration), effectively segmenting the image
into regions of objects for which the distances to the camera are locally
consistent.

but also avoids severe mismatches.
Table I shows the number of matches obtained with each

method for each test case after 30 runs and respective timings.
For the WallMap test case, the mean number of matches is
similar for all methods. However, notice that the random
selection of features in the original method can significantly
affect the number of matches, which ranges from less than
1,400 to more than 3,400. Our methodology behaves much
more steadily in this matter. In the remaining test cases the
original method behaved poorly when compared to the other
two, since the geometric transformation between the image
sets cannot be accurately represented by a single bounded
affine transform. On the other hand, the time spent by our
improved algorithm suggests that the original algorithm may
be a better choice if speed is a main concern and if the images
do not undergo significative perspective transformations.

The WallMap test case consists of two images with a
checkerboard pattern with known size. This allows for a
direct quantitative evaluation of the results based on image
homography. Thus, we define the error vector ~εi,j as the

(a)

(b)

(c)
Figure 5. Results of the MovingBook test case with (a) classical method, (b)
original method with z = 1/20, and (c) improved method with 4 iterations
and z = 1/20. For visualization purposes, only 10% of the matches were
plotted in each case. Notice that the classical method matches both the
static (computer) and dynamic (book) portions of the scene, but also gives
a number of severe outliers. On the other hand, the original method only
matched a small, static portion of the scene. Our improved method correctly
finds matches in the entire image space.

Table I
MEAN, MINIMUM AND MAXIMUM NUMBER OF MATCHES AND

EXECUTION TIME OBTAINED WITH EACH METHOD IN EACH TEST CASE
AFTER 30 RUNS.

Number of matches Mean exec.

Test case Method Mean Min Max time [s]

WallMap Classical 2488 2488 2488 5.75
Original 2688 1364 3475 3.14
Improved 2652 2518 2840 13.39

BooksInTable Classical 669 669 669 0.48
Original 268 235 284 0.37
Improved 606 375 844 1.58

MovingBook Classical 625 625 625 0.93
Original 250 134 428 0.64
Improved 776 526 1707 4.58

difference between observed (from feature detector and
matcher) and predicted (from homography) coordinates:

~εi,j ,

[
x2,j

y2,j

]
−H

([
x1,i

y1,i

])
, (11)



Table II
STATISTICS OF ERROR MEASUREMENTS OBTAINED FOR EVALUATED

METHODS.

Error measurements

Method RMSE [px] MAE [px]

Classical 80.88 21.71
Original 12.13 5.99
Improved 7.25 4.85

where H : R2 → R2 is the homography function which
maps two dimensional coordinates from the first image to
the coordinate space of the second image. The homography
is estimated using Bouguet’s Camera Calibration Toolbox for
Matlab [12] based on the checkerboard calibration patterns
present in the images.

Based on the set of error vectors we analyze two
global error measurements: the Root Mean Square Error,
RMSE({~εi,j}), and the Mean Absolute Error, MAE({~εi,j}).
Smaller values obtained for RMSE and MAE indicate better
results. RMSE is particularly sensitive to outliers (i.e., a
single big value of ‖~εi,j‖) than MAE. Results are presented in
Table II. The expressive decrease of the RMSE measurement
clearly shows that the general transformation estimated by
our method is closer to the recovered homography than those
estimated by other methods.

V. CONCLUSIONS AND FUTURE WORK

We have presented a novel methodology for feature
matching in a pair of images that provides more accurate
results. Compared to current methods based on similarity
between descriptor vectors alone, our approach is able
to significantly reduce the occurrence of mismatches, as
evidenced by the considerable decrease in both RMSE and
MAE error measurements. Since RMSE is very sensitive
to outliers, the expressive decrease in its magnitude, when
compared to typical approaches in the literature, is a clear
indication that occurrence of feature mismatch is much less
frequent in the proposed method. Also, as we have shown, the
increase in the number of successful matches suggests that
other techniques are likely to discard correct matches due to
the use of a distinctiveness threshold. This undesirable effect
is not present in the proposed method, since no distinctiveness
threshold is used.

Currently our method depends on the manual determination
of the number of iterations, which limits its applicability to
completely automated tasks. It is possible to circumvent this
limitation by analyzing the number of new correspondences
obtained in each iteration, thus stopping the loop if the
probability of further growing the number of correspondences
is small. The determination of this criteria is currently being
addressed by the authors. Another possible approach is to use
clustering techniques to segment the image prior to the main

loop and perform each iteration based on the transformation
parameters corresponding to each cluster. Also, it is worth
noting that the current implementation of our methodology
is largely unoptimized and thus it takes much more time to
execute than the compared methods.
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