
A Hierarchical Adaptive Mesh Generation Strategy for Parametric Surfaces Based
on Tree Structures

Daniel Siqueira, Joaquim Bento Cavalcante-Neto, Creto A. Vidal and Romildo J. da Silva
Federal University of Ceara

Fortaleza - CE, Brazil
Contacts: {siqueira, joaquimb, cvidal}@lia.ufc.br, rjsdusk@gmail.com

Figure 1. The Utah teapot mesh generated by this adaptive method.

Abstract—This work presents a hierarchical adaptive mesh
generation strategy for parametric surfaces based on tree
structures. The error measured between the analytical and
discrete curvatures guides the adaptive process. While the
analytical curvature is an mathematical representation that
models the domain, the discrete curvature is an approximation
of that curvature and depends directly on the used mesh
configuration. The presented strategy possess the following
properties: it is able to refine and coarsen regions of the
mesh; it ensures compatibility between neighbouring regions;
it considers the contribution of the local error measures to
ensure good global mesh quality and it works with any type
of parametric surface geometry, since the process is performed
in the parametric space.

Keywords-adaptivity; parametric surfaces; surface meshes

I. INTRODUCTION

Triangular meshes are a spatial representation of great
importance. They are widely used in various areas, and allow
the manipulation and visualization of complex surfaces with
relative ease. The meshing of surfaces is a subject that has
been studied since the 70’s and is still a topic of great interest
in engineering and computer graphics.

Among the main aspects taken into account in the as-
sessment of a technique for generating surface meshes,
two important ones are the processing time for generation
and quality of the mesh generated. The processing time
depends on the desired discretization, which is represented
by the number of elements present in different regions of
the model. The quality of the mesh, on the other hand,
takes into account the quantity, distribution and shape of its
elements [1], [2]. This quality is essential for many different
applications: in computer graphics, for example, the quality
directly influences the visual aspect of the model.

Depending on the application, it is necessary to save the
amount of data used in the mesh without losing its quality.

To achieve this goal, the use of adaptive meshes is an
interesting option. These meshes have a higher concentration
of elements in regions of greater curvature and a lower con-
centration of them in regions of lower curvature. The mesh
adaptation improves the size, organization and arrangement
of elements, facilitating the storage or transmission of the
mesh and processes such as rendering and simulations.

The techniques for adaptive meshes attempt to generate
the mesh according to some criterion adopted, modifying the
mesh where necessary. Among the most common changes
there are: resizing, insertion and removal of elements. These
changes are applied until a stopping criterion is reached. The
criteria adopted for the modification must not be computa-
tionally expensive. In this work, an approach of low cost and
good convergence is adopted, which is the use of geometric
criteria [3], [4], [5], [6], [7]. Here, the curvature is consid-
ered as an important parameter in determining the density
distribution of elements. The closer the discrete curvature
measured in the mesh is to the analytical curvature, the mesh
will be more faithful to the geometric characteristics of the
surface.

Following this concept, this paper presents a strategy
for generating hierarchical adaptive meshes of parametric
surfaces based on tree structure, adding the advantages of
two classical approaches: the advancing front and Delaunay
triangulation. It is a posteriori strategy, i.e., the user provides
a geometric definition for the model, and from this geometry,
the strategy constructs a first approximation with a very
coarse mesh. By each interaction, a new mesh, closer to
the mathematical definition of the surface, is generated. The
strategy presented seeks to ensure the following properties:
i) to be able to refine and coarsen regions of the mesh, ii)
to ensure a smooth transition between regions of the mesh
with higher and lower refinement, iii) to ensure compatibility

between different regions, iv) to consider the contribution of
the local error to measure the overall error in order to ensure
a good quality for the entire mesh.

This paper is organized into 5 sections. Section 2 presents
some related work, understanding some operators to calcu-
late the curvature and some existing techniques for gen-
erating surface meshes using curvature control. Section
3 presents an overview of the strategy, explaining each
stage of the adaptive process. This Section also shows the
mathematical concepts used for the calculation of curvatures.
These curvatures are used to calculate the estimation error to
guide the adaptive process. Section 4 presents some results
achieved by generating meshes using the strategy. The
results show its effectiveness and robustness in dealing with
various levels of curvature. In Section 5, the conclusions
about the strategy are presented.

II. RELATED WORKS

From a purely theoretical point of view, triangular meshes
have no curvature, since all faces are flat and the curvature
is not properly defined along the edges and vertices, because
the surface has no continuity C2 defined for edges and
vertices. But, by taking into account that a triangular mesh
is an approximation of the solid surface, it is possible to
estimate the curvatures by the information in the mesh.

The Gaussian curvature is one of the most known methods
to estimate the curvature of a surface. This measure has been
extensively used in various fields such as image processing,
computer aided geometric design, robotics, computer graph-
ics and many others. Magid et al. [7] present some of the
most widely used algorithms for calculating the Gaussian
and mean curvatures. In their work, such algorithms are
presented, analysed and tested to determine what is the best
alternative for the calculation of curvatures. Through com-
parative tests, the authors conclude that the best algorithms
to calculate the Gaussian curvature are those that employ
Gauss-Bonnet scheme. Xu [6] analyses the convergence of
the scheme of Gauss-Bonnet, which was presented in [7].
The convergence of discretization scheme was considered
by Meek and Walton [4].

Kim et al. [3] presents an error metric in order to generate
several different mesh refinements to use in applications
that involve levels of detail. This metric uses the method
of discrete curvature as a criterion for simplification. The
operators used follows the scheme of Gauss-Bonnet and
can be used to calculate the curvatures for both the vertices
located within the mesh and for those located on a border.
Because of this feature, and for following the scheme of
Gauss-Bonnet, such operators have been chosen for the
calculation of discrete curvatures in the presented work.

Lau and Lo [8], [9] present a technique for generating
finite element meshes using the curvature as a measure to de-
termine the size of the elements and guide the discretization.
In the first work [8], it is proposed a scheme for automatic

generation of triangular meshes with arbitrary distribution
of elements on curved surfaces and without the use of a
parametric space. The second work [9] brings a similar
approach, but proposes more control over the curvature.

Seibold [10] presents a method for generating a mesh sur-
faces using the parametric space and Delaunay triangulation.
An initial set of points may be created in the parametric
space, which can be random or entered manually. While this
set of points is not mandatory, the starting point may be the
parametric space square divided into two triangles, creating
an initial very coarse mesh. The mesh error is measured and
if this error is less than a certain precision ε and the number
of triangles is less than a maximum, the triangle of greatest
error is split at the point of greatest error according with the
Delaunay criteria. The error of the mesh is the mainly point
discussed in the article. The authors present some techniques
of measurement error: the angle between the normals of two
adjacent triangles, an analytical error and a geometric one.
None of these measures takes into account the curvature of
the surface and are based on distances between a point on
the surface and its corresponding parametric space. Such
approaches may have problems as the distance between
points on the surface and its parametric representation may
not reflect the real geometry of the model or indicate an
error greater than the actual.

Dyn et al. [11] proposes an algorithm to obtain an optimal
mesh triangulated using the operation of swapping edges in
a sequential manner in order to reduce a cost function that
measures the quality of the mesh. The cost function used by
the authors is developed to take into account the curvature
of the surface.

Miranda and Martha [12] describe an algorithm to gen-
erate triangulated meshes of finite elements in arbitrary
surfaces with high curvature. The mesh is generated in the
parametric space and mapped to the 3D space. In this work,
the curvature taken into account is not calculated, since its
values are given as an entry to the process.

The majority of these works and other works presented
in the literature are able to refine regions of the mesh but
are not able to coarsen regions of the mesh where there
are more elements than necessary. They also do not ensure
mesh compatibility between regions since they do not refine
the curves independently from the domain. This can be very
important in many applications and essential in applications
where compatible meshes are required. Finally, although
some of these works are in the parametric space, they do not
allow the mesh to be generated for different mathematical
description of the patches such as Hermite, Bézier and so
on.

III. ADAPTIVE STRATEGY

The adaptive strategy presented herein assumes that the
surface to be meshed is composed of parametric patches,
such as Coons patches, each of them bounded by parametric

a) b) c)

Figure 2. Patch definition.

curves. Although this kind of patch is generally bounded by
four parametric curves, the method can handle any kind of
parametric patch, since what is relevant is the parametric
coordinates.

It is also assumed an initial mesh just to start the proce-
dure. The strategy consists of two phases per iteration: first,
given the geometric models of the patches and curves, as
well as the initial mesh for the current iteration, the mesh
quality measure based on error of curvature is computed;
second, the mesh is modified by adding more elements in
certain regions, and removing elements from other ones.
The iterative process stops when a predefined global quality
criterion is achieved. In phase 2, the curves are rediscretized
first and, only then, the patches are rediscretized. Each part
of the adaptive strategy is discussed in details in the sequel.

A. Initial model

The mathematical description of the patches together with
the description of their boundary curves define the geometry,
which is used in all steps of the adaptive strategy. The
geometry description and an initial mesh compose the initial
model that is used to start the adaptive process.

The geometric description is hierarchical: the descriptions
of the curves come first, followed by the patches descrip-
tions. The model depicted in Figure 2 (a) describes a patch
Pk and its curves Ci . This model is used throughout this
work to illustrate the adaptive strategy.

The initial mesh of all patches compose the initial mesh
of the model, and it is a first approximation of the desired
mesh. If Pk is a patch and Ci represents its boundary
curves, the generation of the initial mesh, Mk, starts with the
discretization of Ci into segments. Thus, the initial mesh is
generated considering these segments, ensuring compatibil-
ity of meshes at common borders of neighbouring patches.
The number of elements, forming mesh Mk, depends on the
discretization of Pk’s boundary curves. In Figure 2 (b), the
discretization of the boundary curves in three segments each
determines the discretization of the patch into nine regions.
The subdivisions of curves and patches are performed in
parametric space and mapped into the three-dimensional
space. It is important to mention, however, that this mesh is
generated if no initial mesh is given, which is used instead.
This makes the process completely generic for any given
initial mesh.

B. Mesh quality

The quality of every mesh generated during the adaptive
process must be evaluated, according with an error criterion.
Herein, a geometric criterion is adopted. It computes, at
every mesh vertex, the error between the surface’s curvatures
evaluated both analytically and approximately. If the overall
error distribution approaches zero in the average sense, the
mesh quality is considered good, and the adaptation process
stops. The local error indicates whether the mesh should be
refined or coarsened at a particular region.

The analytic curvatures adopted to compute the error
measures are the mean curvature

H =
1

2
(kmin + kmax) (1)

and the Gaussian curvature

K = (kmin.kmax) (2)

where kmin and kmax are the principal curvatures. The
computation of H and K for a bi-parametric surface Q(u,v)
can be found in [13] and elsewhere.

The discrete curvatures, unlike the computations of the an-
alytical curvatures, which use the mathematical formulation
of the patch, are evaluated based on the local information
about the mesh. That is, the discrete curvatures are computed
at a given mesh vertex and are based on the adjacent
triangles’ configurations. The discrete Gaussian and mean
curvatures used in this work are computed with the discrete
curvature operators presented in [3]. The discrete Gaussian
curvature K for a inner vertex (see Figure 3a) is expressed
as

K =
2π −

∑
φi

1
3A

(3)

where A is a sum of each triangles area, and φi denotes the
angle at a vertex.

For a boundary vertex (see Figure 3b), the Gaussian
curvature is defined by the following equation

K =
π −

∑
φi

1
3A

(4)

where A again represents the sum of each triangles area and
φi the angle at a vertex.

The discrete mean curvature H is given by

H =
Σm(ei)

1
3A

(5)

where ei represents an edge of a vertex and m(ei) is a
function of an edge ei that return the angle between two
adjacent surface normals (see Figure 4).

m(ei) =

 γ, if the adj. faces are convex
0, if the adj. faces are plane
−γ, if the adj. faces are concave

(6)

Figure 3. (a)The Gaussian curvature of an inner vertex. (b)The Gaussian
curvature of a boundary vertex.

Figure 4. The angle γ for the mean curvature.

Error estimation based on the curvatures: The adaptive
process consists of curves and patches rediscretization. This
is performed based on the error estimation of the discrete
curvature relative to the analytical curvature evaluated at the
vertices. If the computed error indicates a high discrepancy
between these curvatures, it suggests that the mesh be locally
refined or coarsened, based on a size parameter h.

Table I illustrates the possible scenarios and the determi-
nation of the new size parameter. ka and kd represent the
analytic and discrete curvatures. The Gaussian curvature is
the measure used to perform the error estimation, but when
the Gaussian curvature is zero, the mean curvature is used
instead.

In the first scenario, ka is approximately equal to kd.
If these values are not close to zero (ka 9 0), the mesh
captures well the local curvature of the surface and no
refinement is necessary (hnew = hold). However, if the
mean curvatures ka is close to zero (ka→ 0), the surface is
locally planar and a coarsening of the mesh may be possible
(hnew = hold ∗ f, f > 1).

In the other scenarios, the discrepancy between ka and
kd is large. Then, when the mean curvature ka is close to
zero (ka → 0), the mesh is too coarse to capture the local
flatness of the surface and should be refined. When ka is
not close to zero (ka 9 0), the mesh is again too coarse to
capture the correct curvature and should be refined.

The factor f used for rediscretization is determinant to the
rate of convergence of the process. Which value of f to use

Table I
ERROR AND ESTIMATION OF ELEMENT SIZES.

ka ≈ kd ka → 0 hnew = hold ∗ f coarsening
(ka
kd
→ 1) ka 9 0 hnew = hold stop

ka � kd ka → 0 hnew = hold/f refinement
ka 9 0 hnew = hold/f refinement

ka � kd ka → 0 hnew = hold/f refinement
ka 9 0 hnew = hold/f refinement

is empirical at the moment and deserves more study in the
future. In this work, a factor of 4 was used in the examples.
This value experimentally showed good results. However,
what is more important is that the strategy converges for
many ranges of f.

Global error estimate: Although the rediscretization is
based on local errors from the curvatures, it is necessary a
global measure to guide the whole iterative process. When
a global quality measure is reached, the process stops. This
measure implies the use of a global error estimate, ηglobal,
which, in this work, is evaluated as follows

ηglobal =

∑Nv

j=1 ηj

Nv
(7)

where Nv is the number of vertices of the whole mesh and ηj
is the absolute value of the relative discrepancy between the
analytical and the discrete curvatures at vertex j, computed
as

ηj =
|ka − kd|

ka
. (8)

The mesh has good quality when ηglobal < ε. What
value of ε is considered reasonable is a matter of judgment.
Therefore, in this work, no suggestion is made about what
value of ε to use. It is simply shown that the errors decrease
when the mesh is improved, indicating convergence of the
iterative process.

C. Curve adaptation

The first step of the presented strategy requires that the
boundary curves of every patch be rediscretized prior to,
and independent of, the rediscretization of the domain. It
turns out that this is one of the main advantages of the
strategy, since it leads to a more regular discretization
of the patches’ boundaries, consistent with the geometric
characteristics of the surface near these curves. This is also
important to insurance of mesh compatibility between two
adjacent patches. The new discretization of the complete set
of boundary curves defines the basis for the rediscretization
of the domain, generating a new mesh for the model.

The boundary curves’ rediscretization procedure is a one-
dimensional version of the procedure based on a quaternary
tree (quadtree) used to refine the domain [14]. It employs
a recursive spatial enumeration technique, associated with a
binary tree data structure, and adopts a criterion of curvature
error to refine or coarsen a curve discretization, taking into
account the curvature characteristics of its adjacent surfaces.
Thus, at a given vertex of a curve’s approximation polygon,
discrete and analytic curvatures are computed. The discrete
curvature considers all the triangles adjacent to the vertex
that lie on the neighbouring surfaces. The analytic curvature,
on the other hand, considers the maximum of the curvatures
computed for the surfaces sharing the curve. A curvature
error measure guides the determination of new size of mesh
triangles adjacent to that vertex.

The rediscretization of each curve is divided into three
phases, as described in the following for a generic curve
Ci.

Binary tree initialization: The first phase consists of
initializing the binary tree that will guide the curve re-
discretization. This tree is initialized with the minimum
and maximum parametric coordinates (0, 1) of the non-
discretized curve. This is done to allow a generic refinement
procedure for any type of curve. The depth of the tree is
initialized as zero, since the tree has only one level at this
point.

Binary tree rediscretization: Each curve keeps the set of
old adjacent vertices, which is set up when the initial mesh
is generated and is updated after a new mesh is determined
at each step. A curve also holds the set of new vertices that
are generated during the current phase. Hence, these two
sets have to co-exist until a new mesh has been committed.
These sets are sorted based on the parametrization of the
curve.

The binary tree rediscretization of a curve (Algorithm
1) starts by traversing its sorted set of vertices from the
old discretization. The process begins from the minimum
and maximum parametric coordinates (0, 1). Every two
consecutive vertices represent a segment of the curve. Each
leaf of the tree stores the minimum and maximum parametric
coordinates of the segment represented by that leaf.

Algorithm 1: Construction of the binary tree.

Initialize the binary tree with the root node empty ;1

Assign min, max parametric coordinates (0,1) to the2

root;
Compute the length of the curve, Lcurve;3

for each segment defined by the old set of curve’s4

vertices, Sk, k ← 1 to nseg do
Compute the segment’s length in 3D space, Lsegk ;5

hold ← Lsegk ;6

Compute the segment’s center in 3D space, Csegk ;7

Compute ka at Csegk ;8

Compute kd as average of the kd’s at the enfpoints,9

kd = 1
2 .(

k−1kd +k1 Kd);
Compute hnew according to the Table I;10

// hpar ∈ [0, 1]

Compute hpar = hnew

Lcurve
;11

Determine the parametrer uk corresponding to12

Csegk ;
Determine in wich cell of the tree uk is located;13

while size of the cell > hpar do14

Subdivide the cell in two children;15

Increment the depth of the tree;16

Determine in wich cell of the tree uk is located;17

Both hpar and the vertex on the center of a curve’s

Figure 5. Refinement of a curve Ci.

Figure 6. Tree for the curve Ci of Figure 5.

segment have to be considered in the parametric space
because the curve is treated in this space.

After the curve segments’ traversal, the resulting binary
tree reflects the refinement according to the error in the
curvatures computed at the vertices of the polygon approxi-
mation of curve Ci. Each leaf of the tree will generate a new
segment of the curve’s approximation polygonal line. These
segments will be the sides of elements adjacent to the curve
when the domain is rediscretized. Figure 5 illustrates an
example of refinement of a curve Ci and Figure 6 illustrates
the corresponding binary tree.

Update of the discretization of the curve based on the
binary tree: When the binary tree of curve Ci is finally
redefined, the new discretization is included in the curve
(Algorithm 2) and at the end of this process, the new curve
discretization is obtained, in a sorted way. The new set of
vertices is kept and the old set of vertices from the previous
step is released.

Algorithm 2: Curve discretization.

Compute the 3D coordinates associated with u = 0;1

Include these coordinates in the curve’s structure;2

for each leaf of the binary tree do3

Obtain the max parametric coordinate;4

Compute the corresponding 3D coordinates;5

Include these coordinates in the curve’s structure;6

D. Mesh adaptation

After the discretization of the boundary curves, the next
phase of the adaptive process generates a new mesh on
the domain, using a procedure based on quadtree. However,
in this work the quadtree is not responsible for the mesh
generation in the whole domain. A strip close to the patch’s
boundary is left out to be discretized by a Delaunay-
based technique. The procedure ensures that the mesh on
the interior of a patch agrees with the discretization of
its boundary curves. This is important because meshes on
adjacent patches can be combined.

Figure 7. Patch’s curves discretization.

The mesh generation by the quadtree procedure is based
on the work by [14], while the elements generated on the
strip close to the boundary is generated by an advancing
front technique, combined with a Delaunay criterion. The
advancing front technique was modified in this work to
account for the quadtree information, in order to speed up the
process by avoiding that a element is generated by a vertex
far from its base edge. Figure 7 illustrates the boundary
discretization for a given patch Pk. Since the procedure is
based on a quadtree on a two-dimensional parametric space,
it is necessary to map each vertex on the three-dimensional
space to the parametric space of each patch. Moreover, at
the end of the mesh generation, it is necessary to map the
vertices of the elements generated in the parametric space
back to the three-dimensional space.

The generation of each patch’s new mesh occurs in three
phases: the generation in the interior by a quadtree proce-
dure; the generation in the transition zone by an advancing
front approach and the smoothing of the generated mesh, as
described in the following for a generic patch Pk.

Mesh generation in the interior of the domain by a
quadtree procedure: Each patch Pk keeps the set of old
adjacent elements, which is set up when the initial mesh is
generated and is updated after a new mesh is determined at
each step. A patch also holds the set of new elements that
are generated during the current phase. Hence, these two
sets have to co-exist until a new mesh has been committed.

The quadtree procedure not only ensures that the interior
density of the cells is sensitive to the boundary discretization
but also guarantees a good transition between regions with
different degrees of refinement. The procedure consists of
the following steps: 1) Construction of the initial quadtree,
2) Adjustments due to errors of curvature for the elements,
3) transformation of the tree into a restricted quadtree, 4)
Elimination of cells close to the boundary, and 5) Generation
of elements in the interior cells by patterns.

The initial quadtree is constructed taking into account the
discretization of the patch’s boundary curves obtained in the
previous phase of the process (Figure 7 shows the patch Pk

in both 3D and parametric spaces). The construction process
is performed in the parametric space according with the
algorithm described in Algorithm 3.

Figure 8 shows the initial quadtree associated with the
boundary curve partition of Figure 7.

The initial quadtree is then modified according with both
the characteristics of the domain’s mesh and the curvature

Algorithm 3: Construction of the initial quadtree from
boundary discretization.

Initialize the tree structure with the root node empty;1

for each boundary curve, Ci, i← 1 to 4 do2

Compute the length of the curve Ci in 3D space,3

Li;
for each curve’s segment, Sj , j ← 1 to nseg do4

Compute the size of Sj in 3D, Lsegj ;5

Compute the segment’s center in 3D space,6

Csegj ;
Find the parametric coordinates of7

Csegj , (uj , vj);
Determine in which cell (uj , vj) is located;8

while size of the cell >
Lsegj

Li
do9

Subdivide the cell into four children;10

Determine in which cell (uj , vj) is located;11

Figure 8. Quadtrees: initial, adjusted by errors and restricted.

errors at the mesh vertices. This is done by the procedure
shown in Algorithm 4. In the evaluation of hold, the area is
computed in the 3D space. This helps to avoid distortions
between the parametric and Cartesian spaces, which can
occur since a square bounding box [(0,0) to (1,1)] is used. At
the end of this step, the old set of elements is released. Figure
8 shows the adjusted quadtree after taking into account the
error of curvatures in the domain’s mesh.

Transforming the quadtree obtained in the previous step
into a restricted quadtree is required because interior ele-
ments are created in interior cells of the quadtree by patterns.
Moreover, only one level of difference between adjacent
cells ensures a good mesh transition. Figure 8 illustrates the
restricted quadtree. The marked cell, for instance, had to be
divided.

The next step is the triangulation of the cells. However,
due to the boundary curves’ discretization, not only the
patterns cannot be applied but also distorted elements may be
generated. In order to avoid this problem, a transition zone
is created by the union of all cells which have contact with
the boundary (see Figure 9). The cells that are not part of
the transition zone will be meshed with the same patterns
presented in [14] (see Figure 9). The cells that are in the
transition zone are not used for meshing this region. Instead,

Algorithm 4: Adjustments due to curvature.

Atotal ← 0;1

for each element of the old set, Ek, k ← 1 to nel do2

Atotal = Atotal +AEk
;3

for each element of the old set, Ek, k ← 1 to nel do4

Compute hnew according with Algorithm 5;5

Compute the center of Ek in 3D space, CEk
;6

Find parametric coordinates of CEk
, (uk, vk);7

Determine in which cell (uk, vk) is located;8

while size of the cell > hnew do9

Subdivide the cell into four children;10

Determine in which cell (uk, vk) is located;11

Algorithm 5: Computing hnew for an element.

holdk
=

√
AEk

Atotal
;1

hnew ← 0;2

for each vertex of Ek, nj , j ← 1 to 3 do3

Compute ka and kd at vertex nj ;4

Compute hnewj
as as in Table I;5

hnew = hnew + hnewj
;6

hnew = hnew

3 ;7

an advancing front based on a Delaunay triangulation is
used.

The cell elimination process results in a quadtree com-
posed of two types of cells: transition and interior cells. If the
cell touches the boundary, it is a transition cell; otherwise,
it is an interior cell. The leaves of the tree that are interior
cells represent the sub-regions that will be meshed with the
patterns [14]. The use of patterns facilitates the generation of
the interior mesh, accelerating the process. The subdivision
made according to the curvature concentrates more elements,
generated by patterns, in the most curved areas, mitigating
the effect of distortion caused by the parametrization.

Meshing of the transition zone: The transition zone is
meshed by an advancing front procedure based on Delaunay
triangulation. The advancing front was adapted to search
only points in the adjacency of the chosen active edge,
avoiding the unnecessary work of searching points occluded
by the inner cells. This is the last phase of mesh generation
for patch Pk, and is performed as described in the Algorithm

Figure 9. The transition zone.

Algorithm 6: Advacing front.

Initialize the active edge list with boundary curves’1

segments;
while the active edge list is not empty do2

// for a new triangle’s base
choose an edge;3

for each chosen edge do4

Build a list of inner cells that are adjacent to5

the cells that contain the initial and final vertex
of the chosen base edge;
if there is no such inner cells then6

Build a list of cells that are in the7

8-adjacency of the cells that contain the
initial and final vertex of the chosen base
edge;

Find the best vertex from the adjacent cell list;8

Build the triangle;9

Update the active edge list;10

a) b)

Figure 10. a) Final mesh generated in parametric space. b) Final mesh
generated in 3D space.

6. Figure 10 (a) illustrates the mesh after the advancing front.
The quality of the mesh is already good, but there are some
distortions that can be fixed.

Finally, after the whole new mesh is generated, a smooth-
ing of the mesh is performed. The smoothing adopted here is
to compute new coordinates (in the parametric space) for all
the vertices of the mesh (except for those of the boundary)
as the average of the coordinates of the vertices of the
elements which are adjacent to the vertex being modified.
This average is repeated several times to provide a more
satisfactory result. It is noteworthy that as the smoothing
is performed in the parametric space, important features of
the surface are not lost and the mesh will represent the
parametric surface.

IV. EXAMPLES

In this Section, a series of examples is shown. The patches
are modeled as bi-parametric surfaces resulting from blend-
ing of the boundary curves. As the strategy works directly
with parametric surfaces, this approach gives independence
to the technique to work with any kind of parametric surface.
The convergence criterion used was the ηglobal (see Equation
7). The ε used is 3%, but this value is user dependent.

Figure 11. The tire mesh generation.

Figure 12. The mesh quality error decay.

The initial meshes were chosen as very coarse meshes.
This choice was made on purpose, since the goal is to
show the robustness and the effectiveness of the strategy.
The Figure 12 shows that even with few steps, where the
mesh is still coarse, the error drops drastically. This happens
because the number of elements is growing in the correct
regions, i.e. where there are great variations of curvatures.
This process continues, but tends to stabilize as the mesh
represents the geometry more accurately.

A. The tire model

The tire is modelled with two Hermite patches. The first
coarse mesh, which is more likely a octahedron than a tire,
has 8 triangles and has an error of 71.7%. The final mesh
has 2196 elements and an error of 2.9%. Figure 11 shows
each step of the process and the time taken from initial to
the final mesh was 22.147s.

B. The Utah teapot

This is a well know classic mesh. The Utah teapot was
modelled using 32 Bézier patches and the meshes are shown
in Figure 1. The first coarse mesh has 128 elements and
a error of 58.2% and the final mesh, generated after the
4th step has an error of 2.85% with 25162 elements. This
example shows that the method is robust enough to deal
with many different levels of curvature, while maintaining a
smooth transition between adjacent patches.

V. CONCLUSIONS

This work presented a hierarchical adaptive mesh genera-
tion strategy for parametric surfaces based on tree structures.
It is an curvature-based strategy which is able to refine and
coarse regions of the mesh and ensures good mesh transition.
It also ensures mesh compatibility between regions since it
rediscretizes the curves independently of the domain. The
strategy considers the contributions of local error measures

to ensure good global mesh quality and it works for any
type of parametric surface. The examples shown in this work
demonstrated that the adaptive strategy converges to a good
quality mesh even if the initial mesh is very coarse.

REFERENCES

[1] Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos and Tatha-
gata Ray, Sampling and Meshing a Surface with Guaranteed
Topology and Geometry, Proceedings of the twentieth annual
symposium on Computational geometry, pp. 280 - 289 (2004).

[2] Boissonnat, Jean-Daniel and Oudot, Steve, Provably good
sampling and meshing of surfaces, Graph. Models, v. 67 n.5,
pp. 405-451 (2005).

[3] S.J. Kim, W.k. Jeong and C.H. Kim, LOD Generation with
Discrete Curvature Error Metric, In Proceedings of Korea Israel
Bi-National Conference, pp. 97-104 (1999).

[4] D. Meek, D. Walton, On surface normal and Gaussian curva-
ture approximations given data sampled from a smooth surface,
Computer Aided Geometric Design, v. 17, pp. 521543 (2000).

[5] M. Meyer, M. Desbrun, P. Schrder and A.H. Barr, Discrete
Differential-Geometry Operators for Triangulated 2-Manifolds,
Visual and Mathematics, v. III, pp. 35-57 (2002).

[6] G. Xu, Convergence Analysis of a Discretization Scheme for
Gaussian Curvature over Triangular Surfaces, Computer Aided
Geometric Design,vol. 23 no. 2, pp. 193-207 (2006).

[7] E. Magid, O. Soldea, and E. Rivlin, A Comparison of Gaussian
and Mean Curvature Estimation Methods on Triangular Meshes
of Range Image Data, Computer Vision and Image Understand-
ing, vol. 107, no. 3, pp. 139-159 (2007).

[8] S.H. Lo and T.S. Lau, Finit Element Mesh Generation over
Analytical Curved Surfaces, Computers and Structures, vol. 59
no. 2, pp. 301-309 (1996).

[9] S.H. Lo and T.S. Lau, Mesh Generation over Curved Surfaces
with Explicit Control on Discretization Error, Engineering Com-
putations, vol. 15 No. 3, pp. 357-373 (1998).

[10] W. Seibold, G. Wyvill, Towards an Understanding of Sur-
faces through Polygonization, Computer Graphics International
Conference, pp. 416 (1998).

[11] N. Dyn, K. Hormann, S.J. Kim and D. Levin, Optimizing 3D
triangulations using discrete curvature analysis, Mathematical
Methods for Curves and Surfaces, pp. 135-146 (2000).

[12] A.C.O. Miranda and L.F. Martha, Mesh Generation on High-
Curvature Surfaces Based on a Background Quadtree Structure,
Proceedings of 11th International Meshing Roundtable, Sandia
National Laboratories, pp. 333-342 (2002).

[13] D.F. Rogers and J.A. Adams. Mathematical elements
for computer graphics, pages 420-421, McGraw-Hill Sci-
ence/Engineering/Math, 2nd edition (1990).

[14] S. Wittchen, P. Baehmann and M. Shephard, Robust geo-
metrically based, automatic two-dimensional mesh generation.
International Journal for Numerical Methods in Engineering,
vol. 24, pp. 1043-1078, (1987).

