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Abstract

This work presents a method for the detection, track-
ing and spatial matching of connected components in a 3D
video stream. The video image information is combined
with 3D sites in order to align pieces of surfaces that are
seen in subsequent frames. This is a key step in 3D video
analysis for enabling several applications such as compres-
sion, geometric integration and scene reconstruction, to
name a few. Our approach is to detect salient features in
both image and world spaces for further alignment of tex-
ture and geometry. We use a projector-camera system to
obtain high quality texture and geometry at 30 fps. Suc-
cessful experimental results corroborating our method are
shown.

1 Introduction

The acquisition and manipulation of 3D video informa-
tion is a key topic of modern research in computer vision
and graphics [4, 11]. There are some important open prob-
lems in the field that state-of-the-art research has recently
started to address. The present paper describes a new solu-
tion for one of such problems, namely tracking geometrical
connected components (CCs for short) by integrating both
geometry and texture information provided by the 3D video
stream.

The data acquisition is performed by a recently proposed
projector-camera system [10] that provides both dynamic
geometry and texture information of the scene in real-time
(30 fps). This system is part of a project for obtaining 4-
dimensional video which is a recent concept [10]. A 4D
video can be though as “general 3D objects changing in
time”. More specifically, it can represent objects embed-
ded in volumes, varying by any form in function of some
independent variable.

One possibility for obtaining 4D video is the incremental
construction of a scene geometry from a 3D video stream.
The goal is to generate full 3D information accumulated as
time flows (4D = 3D + time). This idea represents one step
beyond traditional range video where each frame provides
depth information from the camera viewpoint (i.e. range
images). However, there is no method that has fully solved
this problem, to the best of our knowledge.

The main difficulty is how to integrate 3D information
from each frame along time. A required intermediary step
is tracking and matching 3D object structure along the video
stream. This is the task addressed in the present paper. The
fact that the objects may be deformable (i.e. non rigid) rep-
resents a further difficulty of the whole process.

In order to address this problem, our approach starts by
identifying 3D CCs in each frame that represent whole ob-
jects or object parts. The next required steps are: (1) to track
the connected components; (2) to identify corresponding
salient points; (3) to estimate the geometrical transforma-
tion for 3D registration of the connected components. We
report here our solution for these three steps, which con-
sists in the original contributions of the present paper. The
introduced techniques are not only fundamental intermedi-
ary steps to implement a 4D video system, but also allow
noise filtering to improve the data quality.

This paper is organized as follows: Section 2 reviews
some relevant literature to put the present paper in context.
Section 3 presents an overview of the proposed framework
while Section 4 reviews the basic concepts behind the 4D
video acquisition system. The CC tracking procedure is ex-
plained in Section 5 and CC matching in Section 6. Sec-
tion 7 shows some experimental results that corroborate our
approach. This paper is concluded with some comments on
our ongoing work in Section 8.



2 Related Work

In general, 3D acquisition methods in computer vision
strongly depend on correspondence and calibration. These
methods can be classified based on what type of input data
is used and how correspondences are obtained.

The obvious choice for 3D acquisition would be a sys-
tem based on a pair of cameras and the use of passive stereo
methods. However, fully general stereo is an ill-posed in-
verse problem which is very hard to solve - and real-time
requirements make matters even worse. The literature on
passive stereo methods is very extensive and for this reason,
we will restrict the discussion here to real-time systems.
Most of the proposed algorithms cannot perform in real-
time without some kind of hardware acceleration. In this
context, a recent trend is to take advantage of programmable
GPUs [4]. Another option is to use multiple fixed cameras
and scene analysis to obtain a background-foreground de-
composition of the scene. This is the basis for visual hull
and photo hull methods [3, 5].

An alternative to passive stereo algorithms is a system
based on camera/projector and active stereo. This option
has the advantage of simpler and robust constrained stereo
algorithms, but the price is that a pattern of light has to be
projected on the scene. Recent work in this area investigates
different configurations of cameras and projectors [4, 11].
Some approaches along this line of research use either vis-
ible color patterns from a projector [11] or a set of sparse
laser sources [7], or even invisible infrared patterns [2].

Our 3D video system [10] is based on a camera/projector
pair and active stereo. The hardware is built with off-the-
shelf equipment which has many advantages, such as good
cost-performance and compatibility. Furthermore, as we
will see later, the active stereo color code is simple and ef-
fective.

3 Overview of the Proposed Approach

Tracking objects along video sequences is an important
computer vision problem that has received much attention.
Tracking methods have several applications such as feature
detection and extraction, matching, image alignment and
stitching for panorama generation.

In the present paper, we are interested in tracking 3D
connected components obtained from each frame of a 3D
video stream [6]. This is a different problem than track-
ing 2D objects in traditional gray-level or color video se-
quences. The output of the tracking procedure is an inter-
frame mapping of each connected component.

Figure 1 illustrates our approach. Two subsequent
frames are schematically shown (denoted as frame t−1 and
frame t). Firstly, connected components are detected for

CC in frame t−1 CC in frame t

CC Tracking

Correspondence between salient points

CC registration

Frame t−1: segmentation in 3D CCs Frame t: segmentation in 3D CCs

Figure 1. Overview of the proposed scheme
for tracking and matching connected com-
ponents in a 3D video stream.

each frame. The tracking procedure identifies which con-
nected component in frame t − 1 corresponds to which in
frame t.

Once the CCs are tracked along the video sequence, the
next step is to match each pair of CC in subsequent frames.
In order to match the CCs in an efficient way, three steps
are followed: (1) salient points are detected in frame t; (2)
the corresponding points are identified in frame t − 1; (3)
an alignment between the corresponding points in frames
t − 1 and t is carried out. These steps are indicated in Fig-
ure 1. It is important to note that our 3D video acquisition
system provides both texture and geometry information of
the scene at each frame, i.e. the data is provided as a Monge
surface (range image) with texture. Besides the geometrical
information of each 3D CC, our approach takes advantage
of the texture image to improve the results in an efficient
way. The acquisition rate (30 fps) implies a high temporal
consistence that is explored by the tracking and alignment
procedures.

Texture resolution is higher than that of geometry be-
cause active stereo (structured light) is adopted to obtain 3D
geometry information. Based on the Nyquist rate concept,
texture resolution must be at least twice that of geometry. In
our experiments, it is more than twice. The texture image
provides visual features to be explored whereas geometry
provides geometrical (shape) features about the objects in
the scene. Both are explored in a complementary way.

The 3D video capture system involves 3 different coor-
dinate systems:

• 2D image coordinate system: it is the parametric do-



main of the texture image, as well as for the range
image (i.e. geometry). For each point (u, v) in the
image, it is associated a color function c(u, v) =
(R(u, v), G(u, v), B(u, v)), as well as a depth (range)
information d(u, v). As explained in Section 4, the
depth information is not calculated by the system for
all points (u, v), but it may be obtained by interpo-
lation from the sample points. We use the notation
c(u, v, t) and d(u, v, t) to denote the texture and range
images of the frame at time t, respectively;

• Camera coordinate system: this coordinate system
is given by the intrinsic (e.g. focal distance, aspect
ratio and center of projection) and extrinsic (transla-
tion and rotation) parameters of the camera. Based on
the image parameterization (u, v), it is possible to cal-
culate the position of a scene point seen by the cam-
era: lets consider a point P sampled on the range im-
age, associated with pixel p = (u, v) and with depth
wp = d(u, v). We can calculate the direction vector of
P as �v = (P − O)/||P − O||, where O is the origin
of the center of projection. All the points belonging to
the view ray determined by O and P are of the form
r(w) = O + w�v, where the parameter w indicates the
distance from origin O on the direction of �v. Then, the
coordinate of surface point P is given, in the camera
coordinates, by P = r(wp) = O + wp�v;

• World coordinate system: it is the global coordinate
system of the scene, where both camera and scene el-
ements are embedded. Since both the camera and the
scene elements may move, their position and orienta-
tion are time-dependent.

All these coordinate systems are explored in our ap-
proach, each one being chosen according to its suitability to
allow the creation of a more efficient solution. CC tracking
is carried out in the image coordinate system. Visual fea-
ture detection and texture alignment for the identification of
salient points and their correspondents in the across differ-
ent frames are carried out in the image coordinate system
and allow mapping the information between the camera co-
ordinates of different frames. Finally, shape feature detec-
tion and geometry alignment are carried out in the camera
coordinate system and allow mapping position information
on the global coordinate system.

4 Real-time 3D Video Acquisition

To detect geometrically connected components in a
scene, the 3D capture system should provide high quality
images and geometry in real-time. Quality is crucial
for achieving precise analysis and synthesis. Real-time
is required to exploit time coherence and capture subtle

connected component motion as well as to reduce matching
problems during spatiotemporal analysis.

The system used for obtaining 3D data is based on a cam-
era/projector pair and active stereo [10]. It is built with off-
the-shelf NTSC video equipment. The key of this system
is the combination of the color code (b,s)-BCSL [8] with a
synchronized video stream.

The (b,s)-BCSL code provides an efficient cam-
era/projector correspondence scheme. Parameter b is the
number of colors and s is the number of patterns to be
projected. Two patterns is the minimum, giving the best
time coherence compromise. The use of complementary
patterns is required to robustly detect stripe transitions and
colors. Our system applies six colors that can be unam-
biguously detected through zero-crossings: RGBCMY. In
our experiments, we use a (6,2)-BCSL code that features
two patterns of more than 900 stripes.

To build camera/projector correspondence, we project a
subsequence of these two patterns onto the scene and detect
the projected stripe colors and boundaries from the image
obtained by a high-speed camera. The four projected col-
ors, two for each pattern, detected close to any boundary,
are uniquely decoded to the projected stripe index p (Fig-
ure 2). The correspondent column in the projector space
is detected in O(1) by using (6,2)-BCSL decoding process.
The depth is then computed by the camera/projector intrin-
sic parameters and the rigid transform between their refer-
ence systems.

Pattern 2
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Figure 2. Decoding stripe transitions.

We project every color stripe followed by its comple-
mentary color to facilitate the detection of stripe bound-
aries from the difference of the two resulting images ro-
bustly. The stripe boundaries become zero-crossings in the
consecutive images and can be robustly detected with sub-
pixel precision. One complete geometry reconstruction is
obtained after the projection of the pattern 1 and its com-
plement followed by pattern 2 and its complement.

The (6,2)-BCSL can be easily combined with video



streams. Each 640x480 video frame in the NTSC standard
is composed of two interlaced 640x240 fields. Each field is
exposed/captured in 1/60 of a second. The camera and pro-
jector are synchronized using genlock. For projection, we
generate a frame stream interleaving the two patterns that
are coded with their corresponding complements as fields
in a single frame. This video signal is sent to the projector
and connected to the camera’s genlock input. The sum of
the two fields gives a texture image and their difference pro-
vides projected stripe colors and boundaries. The complete
geometry and texture acquisition is illustrated in Figure 3.

Figure 3. Input video frames, and the texture
and geometry output streams with 30 fps rate.

This system is suitable for tracking components because
it maintains good balance between texture, geometry and
motion detection. Our videos were obtained by projecting
70-90 stripes over scenes with different scales. We have
used a Sony HyperHAD camera and an Infocus LP-70 pro-
jector.

Further information and video examples can be down-
loaded, together with a special purpose viewer, from
http://www.impa.br/˜mbvieira/video4d.

5 Identifying and Tracking
the Connected Components

5.1 Connected Components Detection

The first step for connected components detection is to
construct a 3D point connection graph. In a simple scheme,
points closer than a threshold l are said to be connected.
A connected component is an isolated graph of connected
points. Naive approaches for constructing such graph can
have a high time complexity.

The decoding methods used in active stereo systems au-
tomatically provide local information that can be used for
detecting connected components. The j (line in camera

space) and p (projected plane number) coordinates of a 3D
point define an intrinsic topology.

Indeed, points which are near in (j, p) discrete space are
likely to be near in the 3D space. This is not always true
because of depth discontinuities in the scene. On the other
hand, distant points in (j, p) space are also distant in 3D
space. Thus, using a (j, p) table reduces significantly the
search space for computing the connection graph and the
distinct components.

In this scheme, two points are connected if they are k-
neighbors in the (j, p) table and their 3D space distance is
smaller than a threshold l. One must be careful because j
resolution is typically much greater than p resolution and,
consequently, their unities are different.

5.2 Connected Components Tracking

Because the CCs are independently segmented frame by
frame, it is necessary to implement a tracking procedure to
identify which CC in frame t − 1 corresponds to which in
frame t. Different important events must be held by the
tracking procedure, namely: moving CCs that change the
shape; new CCs that appear in the scene; old CCs that dis-
appear (e.g. by moving out of the imaged scene); CCs that
merge (e.g. two different objects that touch each other in
some instant); CCs that split (e.g. touching objects that
move apart each other).

The proposed tracking procedure considers consecutive
frames so that we may explore the fact that each CC under-
goes small movements between subsequent frames because
of the high acquisition rate (30 fps). In such cases, the inter-
section of a CC c on frame t with its corresponding CC on
frame t−1 is expected to be large. The intersection between
the CCs in subsequent frames is used to track the CCs (see
Figure 4).

Let L = {l1, l2, . . . , l|L|} be a set of labels of the CCs in
each frame. Tracking a connected component can be seen as
the determination of a mapping M : L → L such that, for

(a) (b) (c)

Figure 4. (a) and (b) show two corre-
sponding connected components in
subsequent frames. Because of the
high acquisition rate, the two CCs
tend to have a large superposition
area, as illustrated in (c).



each frame at time t, if a CC has label lx on frame at time t−
1, and label ly in the frame at time t, then M(ly) = lx. The
range image d(u, v, t) is used to build M . For each CC c at
time t, the intersection between c and all CCs at time t−1 is
calculated. Only those connected components at time t − 1
with an intersection larger than a priori defined threshold
are considered as candidates. Let c1, c2, . . . , cn be these
candidate CCs at frame t−1. The mean difference between
the range coordinates of c and c1, c2, . . . , cn is calculated
and the CC in t− 1 that minimizes this difference is chosen
as the final candidate:

m(c, ci) =
1

|c ∩ ci|
∑

(u,v)∈c∩ci

|d(u, v, t) − d(u, v, t − 1)|

i = 1, 2, . . . , n. A maximum distance threshold dmax is set
so that, if mini m(c, ci) > dmax, then no mapping between
frames t − 1 and t is created for c. In this case, c is consid-
ered to be a new CC that appeared in frame t, i.e. it was not
present in frame t− 1. A new label is then assigned to c. In
our experiments, we used dmax = 1.5 and the minimum ac-
ceptable intersection was 30% of the area of the connected
component being analyzed.

It is important to note that this algorithm also correctly
deals with the case where a single connected component is
split from one frame to the next: the two newly created CCs
in frame t are expected to be mapped onto the same CC in
frame t − 1. An example is shown in Figure 5.

(a) Frame t − 1 (b) Frame t

Figure 5. (a) and (b) illustrate two subse-
quent frames, t − 1 and t. Frame t − 1 con-
tains three objects and the background,
which are taken as 4 CCs. The background
CC is indicated as A. As the middle CC
moves and reaches the image edge, the
background is divided into two CCs, as
shown in (b). The CC tracking procedure
is able to deal with such situation by iden-
tifying that both CCs B and C in frame t
correspond to the CC A in frame t − 1.

6 Matching the Connected Components
using Texture and Geometry Information

Once the CCs are tracked, each pair of corresponding
CCs in subsequent frames should be aligned. This is done
by applying the iterative closest point (ICP) algorithm [1]
to a set of selected salient points of the CCs. The ICP al-
gorithm is widely used for aligning three-dimensional mod-
els based purely on the geometry, and sometimes color, of
the meshes. Three steps are followed in order to select the
points that feed the ICP algorithm:

• Texture alignment: The texture portions correspond-
ing to the considered CCs are extracted and matched
through correlation. The maxima point of the correla-
tion of the two texture portions c(u, v, t)◦c(u, v, t−1)
indicates the translation that one portion should un-
dergo in order to match the other. A pointwise cor-
respondence between the two portions of c(u, v, t) and
c(u, v, t − 1) is then established. The main advantage
of using texture to create this correspondence between
the two frames, instead of geometry, is the higher res-
olution presented by the former;

• Identification of salient points in the geometry data
(frame t): The geometry data d(u, v) represents range
information measured along the light patterns pro-
jected onto the scene. The set of local maxima and
minima points along each light stripe in frame t are
taken as the salient points. These points are identified
by numerical differentiation of d(u, v, t) along each
light stripe;

• Identification of corresponding salient points in the
geometry data (frame t− 1): The position in the tex-
ture c(u, v, t) of each salient point of d(u, v, t) is iden-
tified. Because of the above texture correlation align-
ment procedure, this is also the position of the salient
point at the aligned texture image c(u, v, t − 1). It is
important to note that, because of the texture image
higher resolution, this salient point position in frame
t−1 may not have a corresponding sample point at the
geometry data of frame t − 1. Therefore, the salient
point at frame t − 1 is obtained by interpolation of the
geometry points.

The above procedure leads to two sets of corresponding
salient points of the geometry data of frames t and t − 1.
These two sets of points are then registered using the well-
known ICP algorithm [1], thus producing the desired result.

7 Experimental Results

In this section, we present experimental results using 3D
video sequences. Figure 6 shows the texture information of



Figure 6. Example of some frames of video with its corresponding con-
nected components being tracked. Texture information is shown in the
left column while geometry (tracked CCs) are shown in the right column.
These are not subsequent frames in the sequence.

3 frames of a video sequence (left column) together with the
corresponding segmented geometry data (right column). In
the first frame (top row) there is a person in front of a flat
background, thus defining two connected components in the
geometry space. The CCs are coded as different colors. As
the person moves, the corresponding CCs are tracked as ex-
pected. The background structure that is behind the person
in the first frame appears as a third CC, as shown in the
second row. It is important to note that this third CC is
not identified as the first background CC because it was not
initially seen as a CC in the geometry data (first row) and
because the person CC completely divides the background
from bottom to top. This third CC that appears is also cor-
rectly tracked, as shown in the third row.

An example of the texture information and the corre-

sponding segmentation using the geometry CC is shown
in Figure 7. This segmented texture is used by the tex-
ture alignment procedure to create a mapping between
the textures of subsequent frames, as shown in Figure 8.
The salient points calculated for the frame in Figure 9(a)
are shown in Figure 9(c), together with its correspond-
ing interpolated salient points in the previous frame (Fig-
ures 9(b) and 9(d)). The resulting matched salient points
using ICP (the Scanalyze software has been used in our
experiments - http://graphics.stanford.edu/
software/scanalyze/) are shown as the image (e) of
Figure 9, thus corroborating the introduced method.

The identification and tracking of connected components
procedures were developed with real-time constraints in
mind, so they execute at video rate time. The texture align-



(a) (b)

Figure 7. (a) Complete texture of a frame. (b) Texture of just one
connected component, used to calculate the texture matching.

(a) (b) (c)

Figure 8. (a) Texture of a connected component in a frame t−10. (b) Texture of the
same connected component in the frame t. (c) Frame t translated in (u, v) = (1, 71)
relative to frame t−10 and superimposed to this last. Frame t is shown with 50% of
transparency. We used a difference of 10 frames just for visualization purposes.
On consecutive frames, the translation is usually small.

ment was written in a different programming language and
not integrated with the remainder code yet. Thus, the entire
process is almost fully automatic, needing just a few user
interactions.

8 Conclusion

The presented method for tracking and matching con-
nected components has shown to be effective in our exper-
iments, being suitable to integrate 3D video streams. This
is an important step for building 4D video by accumulating
geometry in time. The method correctly deals with different
events that may occur during the video flow, such as when
CCs appear, disappear or split. Our ongoing work focus on
improving the implementation of the ICP to allow real-time
CC registration. Kalman filters [9] will be applied in or-
der to speed up the whole 4D video process by combining
the different available data sources to predict CCs position
and pose as new frames are acquired. Although the adopted
ICP software lead to satisfactory results, we are working on

improving the ICP implementation to improve the match.
Finally, a procedure for shape merging using the CC regis-
tration information is currently under development and will
be reported in due time.
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(a) (c) (e)

(b) (d) (f)

Figure 9. Two consecutive frames containing just one connected component are
shown in the left column. Each frame is accompanied with its corresponding
range data in the middle column. The salient points (local maxima and local
minima) are the white ones. The image (e) shows the resulting matched points
using ICP. The image (f) shows another set of aligned points regarding Figure 8.
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