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Abstract 

 
We present in this work a new method for the 

tomographic reconstruction with Poisson noise 
corrupted projections. The reconstruction method is a 
hybrid estimation theoretic-POCS (Projection Onto 
Convex Sets) method performed by first estimating the 
noisy projections using Anscombe Transformation, 
Discrete Wavelet Transform and pointwise Wiener 
filter and subsequently reconstructing the images 
through a  parallel POCS method. The use of a 
previous filtering of the projections imposes a tighter 
restriction on the observation of the POCS method, 
allowing a better reconstruction, with a very little 
increase in computational cost. 
 

1. Introduction 
 

In several problems in image processing, as 
tomographic reconstruction, observations are often 
modeled as a noisy signal. The most common 
assumption in these models is that the noise is modeled 
as conditionally independent Gaussian random 
variables. The noise is also usually modeled as 
stationary independent zero-mean Gaussian process. 
However, in many problems of physics, the recorded 
data are not modeled by Gaussian noise but as the 
realization of a Poisson process. 

In tomographic reconstruction of images, the 
corruption of the measurements by Poisson noise 
occurs very often with nuclear radiation low level of 
the counting process that is involved. The exposure 
time of a body to the radiation is directly linked to the 
photons count obtained by the tomograph scanner. 
With low photons count, very noisy projections are 
produced, that can result in reconstructed images with 
unacceptable amount of noise. In previous works, 
Mascarenhas et al [1,2] have proposed a method that 
kept a compromisse between purely statistical methods 
and convolution-backprojection techniques. These 
methods are implemented by first filtering the Poisson 
noise of the projections, followed by the use of 

algorithms associated with convolution-back-
projection. 

Methods of tomographic reconstruction based on 
POCS (Projections onto Convex Sets) consider 
restrictions over the set of possible solutions. Besides 
allowing the incorporation of a priori knowlegde, 
through convex restrictions, the method of projections 
allows the tomographic reconstruction to be  
independent of the source-detector geometry used by 
the tomograph scanner. These methods are presented 
and discussed in [3]. The parallel POCS method 
obtains better results than the sequential POCS in the 
presence of noise because in the case where there is no 
intersection of the restriction sets, the parallel method 
provides a solution while the sequential methods cycle 
through the solutions [3]. 

The objective of this work is to compare the method 
of reconstruction based on parallel POCS by first 
filtering the projections with that based on a pure 
POCS approach. 

The paper is organized as follows. In Section 2 we 
present a brief introduction to the theory of POCS 
methods and describe sequential and parallel POCS 
algorithms. In Section 3 a method for wavelet 
denoising and local Wiener filtering is presented. The 
tomographic reconstruction method is presented in 
Section 4 and Section 5 provides results on 
experimental data. The results are discussed in Section 
6. 
 

2. POCS Algorithm 
 

Many problems can be described under the convex 
restriction sets form [4]. The solution for these 
problems satisfies all the imposed restrictions, that is, 
the search of the wanted solution consists in finding a 
point belonging to the intersection of all the sets. 

If we suppose that there exist n restriction sets, 
represented by Ci (i=1,2,...,n),  the solution  to  the 
problem is in  the intersection of the sets, represented 
by Eq. (1). 
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If the sets Ci (i=1,2,...,n) are closed and convex and 

their intersection C0 is non-empty, the successive 
projections on the sets will converge to a vector which 
belongs to C0. Equation (2) represents the algorithm, 
assuming that x0 is any point and represents the initial  
estimate, and CP  is a projection operator in C. 
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Youla [9] demonstrated that, if C0 is non empty, for 

each x ∈ H, where H represents a Hilbert space, the 
sequence given by (2) converges weakly to a point in 
C0. Although, theoretically, this convergence is weak, 
in practice the convergence to C0 is strong. Figure 1 
shows the graphic representation of that convergence. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Geometrical representation of the POCS 

sequential method convergence  
 
When there is not an intersection of the restriction 

sets, the POCS sequential algorithm does not converge 
to a point and remains oscillating among the 
restrictions sets, as shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 

Figure 2:  Algorithm behavior of a sequential POCS 
when there is no intersection of the convex sets  

 
2.1. Parallel POCS Algorithm 
 

The POCS algorithm can be implemented in 
parallel. In this implementation, the vector is projected 
on all sets simultaneously and to each projection on a 

set a weight is assigned. Eq. (3) describes the parallel 
POCS algorithm. 
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Observe that the summation of all weights is equal 

to one, according to Eq. (4). 
If there is not intersection of the restriction sets, the 

algorithm POCS parallel wil converge to a point such 
that the sum of the squares of the distances to the sets 
is minimized. This case is geometrically represented by 
Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
Figure 3:  Algorithm behavior of a parallel POCS 
when there is no intersection of  the convex sets  

 
2.2. Convex Restriction Sets 
 

The image reconstruction linear model can be 
described by Eq (5), where y represents the projection 
vector data, f is the original image vector, H is the 
projection matrix, and n is the noise vector. 

 
y=Hf+n                         (5) 
 

Eq. (5) describes a linear system of equations, 
where each component of y describes a linear equation, 
which can be represented by a hyperplane. Each 
hyperplane is a convex set which represents a 
restriction of the POCS method, and the solution of the 
linear system can be found through the POCS method. 
The projector for ith component of y is given by Eq. 

(6), where f̂  is any estimation of f. 
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Besides the restrictions sets expressed by Eq. (5), it 

is possible to consider the a priori knowledge about the 
image to be reconstructed. Such restrictions must be 
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expressed in a set form. Eq. (7) describes the finite 
support set, where S is a Hibert Space, h is the obtained 
image and Ω is the region that describes the support. 

 
{ }Ω∉=∈= ),(0),(: yxforyxhandShhCFS   (7) 

 
The projection operator of the set defined by Eq. (7) 

is shown in Eq. (8). 
 

( )




Ω∉
Ω∈

=
iif
iifih

PFS ,0
,  (8) 

 
Eq. (9) describes the non-negative set. 
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The rule projection on the C+ is described by Eq. 

(10). 
 
3. Poisson Noise Filtering 
 

The Poisson noise comes from the discrete nature of 
radiation that characterizes the counting process of 
particles in the projections set. The reconstruction 
method is performed by first filtering the noisy 
projection and subsequently reconstructing the image 
through parallel POCS method. 
 
3.1. The Anscombe Transform 
 

The Anscombe Transform (AT) [5] transforms the 
signal-dependent Poisson noise into an approximately 
Gaussian, additive, signal-independent noise with zero 
mean and unit variance. 

The AT on yi is given by Eq. (11), where zi can be 
represented by an additive model as described by Eq. 
(12). 
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In Eq. (12) vi is an additive noise that is 

approximately independent of si, and gi is the signal 
without Poisson noise. 

The inverse AT on zi is given by Eq. (13). 
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3.2. Wavelets and Denoising 
 

The joint time-frequency analysis of the wavelet 
basis efficiently captures non-stationary signal 
features. The discrete wavelet transform (DWT) 
represents a signal in terms of shifted versions of a 
low-pass scaling function φ  and shifted and dilated 
versions of a prototype band pass wavelet function ψ. 

 

( ) ( )ktt j
j

kj −= 22 2
, ψψ  (14) 

( ) ( )ktt j
j

kj −= 22 2
, φφ  (15) 

 
Eqs. (14) and. (15) form an orthonormal basis for 

special choices of φ  and ψ, where j, k ∈Z. 
The signal y(t) can be represented by  Eq (16), and 

the components uj,k and wj,k  represented by  Eqs. (17) 
and Eq (18). 
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The parameter J in Eq. (16) controls the resolution 
in the wavelet representation. 

The noise can be filtered in different wavelets 
scales, through a threshold that can be chosen 
depending of the wavelet scale. 

Another possibility is to filter the noise in the 
wavelet domain by using a pointwise Wiener filter, 
considering a window in a given scale. This is the 
approach that was used in this paper. 

 
3.3. Local Wiener Filter 
 

Assuming that the signal components in a wavelet 
space are not correlated, and the noise is white, with 
zero mean and unitary variance, the pointwise Wiener 
filter can be represented by Eq. (19).  
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The expected value { }isE  and the variance 2
isσ  are 

estimated on the neighborhood of coefficient zi. Taking 
into account the zero mean of  the noise, the  expected 
value of the signal  can be estimated by the sample 
mean of the noisy signal over the neighborhood. The 
variance is also estimated by the sample variance of the 
noisy signal and subtracted by one (the variance of the 
additive noise). If the result is negative, the estimated 
signal is given by the sample mean. 
 
 
4. Tomographic Reconstruction Method 
 

The method consists, initially, of filtering the noisy 
projections. Since the noise can be modeled as Poisson 
noise under low counts, the AT can be used, and an 
additive noise model is obtained. Following it, the 
DWT is performed, allowing noise suppression that 
can be performed in different scales. The mean value is 
null and the variance is the same in every scale. By 
using the pointwise Wiener filter we obtain an estimate 
of the signal and, by performing an Inverse Discrete 
Wavelet Transform (IDWT) followed by the Inverse 
Anscombe Transformation, we obtain an estimation of 
the noise free projections. This previous estimation 
procedure tighten the observations restrictions of the 
POCS tomographic  reconstruction method, improving 
the quality of  the solution [6, 7, 8]. 

After the estimation of the projections, the parallel 
POCS algorithm is applied for the tomographic 
reconstruction of the image, in accordance with  Eq. 
(3) and by  using  the restriction sets described by Eq. 
(5), and Eq. (7), and Eq. (9).  
 
5. Numerical Results 
 

The reconstruction of three phantoms (see Figure 1) 
was performed. The images reconstructed with the 
highest exposure (twenty seconds per ray) of gamma-
ray were considered the ideal image and the images 
reconstructed with three seconds per ray are the noisy 
images that we want to reconstruct. 

The ideal reconstructed images are shown in Figure 
4. In this case the reconstruction was performed with 
the parallel POCS algorithm. 

 
(a)             (b)               (c) 

   
Figure 4:  Ideal Phantom Images: (a)  homogeneous;  

(b) asymmetrical; (c) symmetrical 

 
Figure 5 shows the reconstructed phantoms without 

filtering the projections. 
 

(a)                 (b)                  (c) 

   
Figure 5:  Non-Filtered Images: (a)  homogeneous;  

(b) asymmetrical; (c) symmetrical 
 
Figure 6 shows the phantoms reconstructed by the 

hybrid estimation theoretic – POCS method that was 
proposed. 

 
(a)                 (b)                  (c) 

   
Figure 6:  Filtered  Images:  

(a)  homogeneous; (b) asymmetrical; (c) symmetrical 
 
A performance measure was computed based on the 

improvement in signal-to-noise ratio (ISNR) in decibel 
(dB) which is defined by  Eq. (20), where fj is the jth 
element of the ideal image, 

jf̂ is the jth element of the 
image reconstructed  by the method proposed, and gj is 
the jth element of the image reconstructed without 
filtering the projections. 
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For the reconstruction of the asymmetrical 
phantom, the ISNR was 5.57 dB. For the homogeneous 
phantom the ISNR was 2.38 dB, and for the 
symmetrical phantom the ISNR was 3.14 dB. 

 
6. Conclusions 
 

The hybrid estimation-theoretic-POCS technique 
using Anscombe Transformation, Discrete Wavelet 
Transform and pointwise Wiener Filter for the filtering 
of the projections and parallel POCS for the image 
reconstruction displayed a better result than a pure 
parallel POCS approach in ISNR and visual terms. 
This is due to the fact that the previous method uses an 



estimation procedure that further reduces the restriction 
sets of the POCS procedure that describe the 
measurements under noisy conditions. 

The addition of the estimation-theoretic procedure 
on the projections represents a very low computational 
cost, compared to the parallel POCS reconstruction 
technique, which is an iterative procedure. Therefore, 
the proposed method has a lower cost-benefit measure, 
compared to the pure POCS procedure. 

The proposed method can be improved, since we 
used the Haar basis for the Discrete Wavelet 
Transform. We believe that a better result can be 
obtained by trying other wavelet bases. 
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