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Abstract

We present a method for creating tree models with re-
alistically curved branches, useful in the portrayal of nat-
ural scenes. Instead of attempting to replicate a tree’s fi-
nal shape by observation, we obtain this shape as nature
does – by considering the tree’s development in the context
of its environment. The final shape of the branches results
from their growth in length, girth, weight and rigidity under
the influence of gravity and tropisms. Using the framework
of L-systems, we extend Jirasek’s biomechanical simulation
of a plant axis to correctly represent an entire tree. Our
model also simulates the reaction wood which actively re-
orients a leaning branch by differentiating the wood pro-
duction in angular portions of the branch cross-section. To
obtain realistic and controllable tree architectures, we reg-
ulate growth elements in the model using functions based
on botanical findings. We create a multi-year simulation
of tree growth under environmental influences, obtaining a
realistic tree shape at every stage of its development.

1. Introduction

Botanical trees are modelled extensively for the portrayal
of natural scenes in the animation industry. Obtaining real-
istically shaped trees is a common goal in this field as well
as in botanical research. An important shape characteristic
of many trees seen in nature is the bending and curving of
branches, as depicted in Figure 1. By simulating the botani-
cal and biomechanical processes of the tree’s development,
we arrive at branch shapes similar to those seen in nature.
In particular, the tree’s response to gravity during its growth
has a profound impact on the shape it develops.

Jirasek presented a biomechanical model of a growing
plant axis which responds to gravity [10]. This paper ex-
tends her method to properly handle branching structures
such as trees. Because complex and realistic models can
be represented, these results are made more relevant to the
Graphics community. Another important contribution of
our model is in the simulation of reaction wood production

Figure 1. Biomechanical tree model

to reorient a leaning branch.
In order to properly visualize the influence of biome-

chanics on tree growth, we need to begin with a realistic
tree architecture. In Section 3 we outline some botanical
findings relevant to tree structure and describe our function-
based approach for controlling tree architecture. In Section
4 we provide an in-depth description of the biomechani-
cal simulation, reviewing Jirasek’s method for single plant
axes. Our extension of her model to branching structures
and to trees in particular is presented in Section 5. The sim-
ulation of reaction wood is described in Section 6.

2 Previous work

General methods of modelling trees for computer graph-
ics have been reviewed in the past [19]. Here we focus on
the works related to biomechanics.

Several tree modeling systems in existence allow for
simplified simulations of tropisms. These systems include
Treemaker [2] and Xfrog [13], as well as L-studio’s L-
system modeling software [11]. However, none of these
systems provide a rigorous physically accurate solution to
the problem.

In [6], Fournier et al. present a biomechanical model
using beams to simulate the bending of a plant stem due
to loading and stresses. The authors describe the addition
of radial layers, and the resulting stem is characterized by
an "S" shape visible in many plant stems and depicted in
Figure 5.



Figure 2. Cross-sectional radii and deviation
angles of child branches

More recent advances make use of these results. Alméras
et al. model a two-dimensional stem using bending beams
[1]. Fourcaud et al. use the AMAP simulation software to
create a finite element model composed of multi-layer de-
formable beams [4]. Radial layers are added to simulate
thickening of the stem, and new beams are added to simu-
late stem lengthening.

Jirasek employs L-systems to create a biomechanical
model of a growing plant stem that bends due to external
forces [10]. Her model deals largely with single plant axes,
with only a superficial extension to branching structures.
This is because her approach relies on the assumption that
all rotations occurring in the model are infinitesimal – as
such the model cannot properly handle branching points.
Her work was also limited by the complexity of the model’s
representation in CPFG, at that time the only available mod-
elling framework for L-systems.

Recent progress in the realm of L-System languages has
enabled further development of this approach. The L+C
modelling language [12] makes two important improve-
ments to the workings of L-systems which are relevant to
modelling biomechanics. First, it allows user-defined struc-
tures to be passed as parameters to the L-system’s modules.
Also, L+C introduces fast information transfer, described
in Section 6.4, by which a signal originating at one end of
a structure can be propagated to the other end in a single
rewriting step. This results in a significant speedup in our
simulations, allowing for interactive frame rates and much
more complex models.

3 Botanical findings and tree architecture

We first define some botanical terms. The order of a
branch is the number of ancestors it has in the tree; a main
trunk has order 0. We refer to a branch of order 1 as the
daughter of the branch of order 0 from which it originated.
In a growing tree, primary growth refers to the lengthening
of branches as well as the production of buds, leaves and
fruit. Secondary growth is the radial thickening that occurs
so as to support the added load of new segments.

According to extensive measurements by Murray, the
girth of a parent branch depends on the girths of its daugh-
ters according to the equation

rP
0 = rP

1 + rP
2 (1)

where r is cross-sectional radius and P ranged between 2.49
for large trees and 3 for smaller trees [16]. Murray’s find-
ings were reinforced by theoretical reasoning with the pipe
model of Shinozaki et al. [21]. This theory states that the
number of leaves above any horizontal level on a tree is pro-
portional to the cross-sectional area of all branches at that
level.

Two angles are needed to describe lateral branching. The
deviation angle is the angle θ made by a lateral branch rel-
ative to its parent’s axis, as depicted in Figure 2. The diver-
gence angle, ρ, specifies the position around the parent axis
at which lateral growth occurs. In many trees, this angle ρ is
the familiar 137.5◦ associated with spiral phyllotaxis [19].
Each new terminal bud formed along a branch is produced
at a rotation of 137.5◦ beyond the previous bud.

Botanists refer to a section of branch grown in a single
year as the year growth increment. Within this increment,
many terminal buds are formed, some of which will become
new shoots in the next year. Wilson notes that the probabil-
ity of a bud becoming a shoot is higher for buds produced
later in the year, so that the largest branches occur near the
top of each growth increment [22]. He also notes that higher
order branches elongate more slowly than those of lower or-
der.

3.1 Functions specifying rules for architectural
development

Our method allows botanical observations such as the
above to be built into the model in the form of rules gov-
erning growth. We create a number of such rules using L-
studio’s graphically defined functions [12].

These functions can be called from within the model, us-
ing model parameters as input. The output of each function
will be used to set the value of another architectural ele-
ment. In this manner we can link two or more architectural
traits which influence each other. For instance, Wilson’s ob-
servation, above, links internode length to order of branch-
ing. Our model represents this rule as a function,

internode length = f(order)

which the user can manipulate graphically by moving con-
trol points on a curve. Often, more than one parameter con-
trols the output – for instance, the fate of a bud, or its prob-
ability of becoming a shoot, depends on several factors.

bud shoots = ( ( f1( height in year )
* f2( order ) * f3( parent length ) * R ) > 1)



Figure 3. Two trees of different architectures,
created by modifying graphical functions

Here, R is a random number incorporating randomness into
the model, so that many different individuals can be created
from the same tree species.

Functions such as these allow for user control over fea-
tures of tree architecture. Manipulating the graphical func-
tions allows users to represent many different tree architec-
tures using the same model, as shown in Figure 3.

This framework for creating realistic tree architecture is
used to describe the tree’s genotype, while its phenotype is
determined from the biomechanical simulation, as in [9].

4 Biomechanical model of a tree branch

First, we review the work of Jirasek on biomechanical
modelling of unbranched plant axes or stems. We then
present several extensions to her method.

Jirasek conceptualizes an individual plant axis as an elas-
tic rod which may bend but not stretch. She models the
bending of a stem by rotating a set of joints between small
straight segments as in Figure 4. This representation is in-
spired by the concept of a mechanical manipulator robot de-
scribed by Craig [3]. The model grows by appending new
segments to its free end.

By convention, we call the links li, with i from 0 to n; l0
is the root or proximal link, and ln is the distal link, which
is the tip of the stem. Link i is called the parent of link i+1.
For simplicity, and because the segments are very small, we
assume the mass mi of each segment is located at its dis-
tal end. Between each pair of segments is a rotational joint
with three degrees of freedom. In order to describe the rel-
ative properties of segments, we assign a three-dimensional
orthogonal reference frame ~H~L~U to each segment as de-
scribed in [20]. The long axis~l of each segment always lies
along its ~H vector. Thus, the ~H~L~U frame rotates along with
the link.

Though the stem model is made up of discrete segments,
these are small enough that we can conceptualize the stem
as a continuously curved rod [18]. Thus, instead of defining

Figure 4. A mechanical manipulator with
linked segments

angles of rotation between segments, the model uses a rate
of rotation per unit length, ~Ω = dθ

dl .
If the segment lengths are assumed to be very small,

the joint rotations will therefore be infinitesimal. Infinites-
imal rotations are known to commute, and as such can
be expressed as vectors [14]. Consequently, the rates of
these infinitesimal rotations can also be stored as vectors,
as they will be used only in combination with small seg-
ment lengths. Thus ~Ω may be expressed as a vector, whose
direction gives the axis of rotation for a joint, and whose
magnitude gives the angle of rotation, in radians per unit
length of the segment.

Along a single axis, the child segment’s orientation ~Hi
is determined from the parent’s orientation ~Hi−1 using the
rotational velocity vector ~Ωi−1 of the parent link. Jirasek
et al. perform this rotation using the vector cross-product
[18],

~H ′
i = ~Hi−1 +(~Ωi−1 ×~li−1) (2)

which is acceptable since her model assumes infinitesimal
rotations. Our model will perform all rotations using quater-
nions, so as to properly handle the non-infinitesimal rota-
tions at branching points. The details of our approach are
described in Section 5.

The approach of Jirasek et al. also defines a rest, or pre-
ferred, rotational velocity ~Ω [18]. This is the stem’s rate of
rotation in the unloaded state, when it is not experiencing
any torque due to gravity. It will be responsible for taking
into account the effects of negative geotropism, defined be-
low.

A tropism is a preferred direction of growth in a plant in
response to environmental stimuli [22]. Geotropism refers
to directed growth in reaction to gravity. In particular, nega-
tive geotropism accounts for the tendency of a new shoot to
orient itself in an erect position, against the pull of gravity.

Clearly, the effects of self-weight and negative
geotropism oppose each other: negative geotropism causes
new growth to curve upward, while gravity pulls the exist-
ing stem downward. The result of these competing influ-



Figure 5. "S" shape of a stem due to self-
weight and negative geotropism

ences is the sigmoidal shape predicted in [6]. A stem under
such conditions, produced by our model, is shown in Figure
5.

These two effects of self-weight and negative geotropism
are simulated by calculating the torques they exert on each
segment. The gravitational torque~τi acting on each segment
i is due to the total overhanging mass Mi it supports [10]:

~τi =~li+1 × (~g∗Mi+1) + ~τi+1 (3)

The second torque acting on segment i as a result of neg-
ative geotropism is determined using a force vector, ~F tropic

which indicates the direction (up) and the intensity of this
tropism:

~τtropic
i =~li−1 ×~F tropic (4)

These two torques~τi and~τtropic
i influence the rotational

velocity of each segment.~τi is used in computing an update
value for ~Ω.

~Ω′ =
~τ
<

(5)

and~τtropic
i is used to initialize the preferred rotational veloc-

ity ~Ω of a new segment:

~Ω =
~τtropic

i
<

(6)

Both of these equations depend on the rigidity < of a rod,
or its resistance to deformation. Flexural rigidity < f is re-
sistance to bending, and depends on the strength of the ma-
terial as specified by its Young’s modulus E and the shape
of the cross-section as determined by its moment of area I.
In general, flexural rigidity is dependent upon the direction
in which torque is applied, and as such it is a tensor quan-
tity. However, if we assume that the rod’s cross-section is
circular (so that I is constant along any direction of bend-
ing in the plane of the cross-section) and that its material is
isotropic and homogeneous (so that E is constant), flexural

rigidity may be represented as a scalar. These assumptions
simplify many calculations.

Therefore, the flexural rigidity of a segment is < f = E I.
To represent a tree stem, we use the values Ewood = 10 GPa
for green wood [17], and Icircle = πr4

4 for a circular cross-
section of radius r.

Torsional rigidity is an object’s resistance to twist. It is
calculated similarly, using the equivalent constants for the
case of torsion: <t = G J, where G is the shear modulus
and J is the polar moment of area, Jcircle = π

2 r4 for a circular
cross-section.

When dividing by rigidity < as in Equations 6 and 5, the
~H component is divided by the torsional rigidity <t and the
~L and ~U components are divided by the flexural rigidity < f .

4.1 Bidirectional propagation of information

Some of the model’s biomechanical properties are de-
pendent on values from neighbouring distal segments, and
some on values from proximal segments. For this reason,
the model requires both forward propagation (accumulating
information toward the distal end of the stem) and backward
propagation (toward the proximal end), to obtain informa-
tion from both directions. The model performs forward and
backward passes in alternation, so that values calculated in
one direction can immediately influence those in the other
direction. This relaxation cycle of forward and backward
passes continues until the state values converge to equilib-
rium.

Because the model uses a relaxation method, it does not
replace the value of ~Ω at each step. Rather, it uses ~Ω′ along
with the rest rotation rate ~Ω to update the existing value,
using the following update formula:

~Ω = (1−α)~Ω+α(~Ω+~Ω′). (7)

Here, ~Ω is updated to include a linear combination of the
old ~Ω value and a new value, which is the rest rotational
velocity plus displacement caused by torque. The parameter
α controls the speed of convergence to the new solution and
may be reduced to prevent numerical instability.

4.2 Adding a segment

Adding a new distal segment affects previous segments
in several ways. First, the weight of the new segment in-
creases the torque acting on all previous segments as in
Equation 3 . Secondly, all previous segments must grow
radially, or in girth, according to the pipe model. Radial
growth of a stem occurs by adding rings, or layers of wood,
around the existing rod [6]. These layers increase rigidity
and also reinforce the current shape of the stem. An older,
bulkier stem is therefore less likely to change its curvature



even if there were a sudden change in the external forces in
the system. This phenomenon is called branch shape mem-
ory [5].

Jirasek et al. calculate the new rest rotational velocity ~Ω
′

for the thickened stem by considering both the ~Ω value of
the current stem and that of the new outer ring being added
[18]:

~Ω
′
=

< ~Ω + <ring ~Ωring
<+<ring

(8)

Because new radial growth reinforces the current shape
of the stem, the rest curvature of the outer ring ~Ωring reflects
the existing curvature of the stem:

~Ωring = ~Ω (9)

The ring’s rigidity is calculated as <ring = E juv + Iring,
where Iring = π

4 (r4
out − r4

in) . The values rout and rin measure
the distance from the center of the circle to the inner and
outer edges of the ring, respectively. The stem’s new total
rigidity becomes the combined rigidity of the inner core and
outer layer, <+<ring.

5 Lateral branching

The problem of representing a curved plant stem be-
comes even more interesting when we allow for lateral
branching. In this section we describe the extension to Ji-
rasek’s model which correctly represents branching struc-
tures instead of only single stems. To correctly compound
these non-infinitesimal branching rotations with the rota-
tions due to biomechanics, we perform all rotations using
quaternions.

5.1 Branching points

Modifying a child segment’s orientation to account for
branching angles involves simulating phyllotaxis by spi-
ralling around the ~H axis by the divergence angle ρ and
then rotating by the deviation angle θ. Because these are
non-infinitesimal rotations, we perform them using quater-
nions.

qDivergence = new Quaternion(~Hi−1,ρ)

~N = qDivergence−1
∗~Ui−1 ∗qDivergence

qDeviation = new Quaternion(~N,θ)

qBranching = (qDivergence∗qDeviation)

~Hi = qBranching−1
∗ ~Hi−1 ∗qBending

Equation 2 assumed a continuously curved rod with in-
finitesimal rotations, and therefore used the vector cross-
product [18]. At branching points, however, our simulation
needs to compose these biomechanical rotations with the

above branching rotations, we must rephrase equation 2 in
terms of quaternions.

Recall from Section 4 that the rotational velocity ~Ω spec-
ifies a rotation per unit length. For each unit length of the
parent segment, we rotate around axis ~Ω

‖~Ω‖
by angle ‖~Ω‖.

Thus the total rotation due to a parent segment of length
|~li−1| is by angle ‖~Ω‖∗ |~li−1| around the same axis. We use
this axis and angle to define a quaternion qBending.

Quaternion qBending(
~Ωi−1

‖~Ωi−1‖
, ‖~Ωi−1‖∗ |~li−1|) (10)

Then, the reorientation due to the combined effects of
branching and biomechanics becomes

Quaternion qComplete = (qBranching ∗ qBending) (11)
~Hi = qComplete−1 ∗ ~Hi−1 ∗ qComplete (12)

A parent branch just before a bifurcation must accumu-
late the mass, girth, and torque information from both child
branches. This is accomplished using the following formu-
lae:

ri−1 =
P
√

rL
i

P
+ rR

i
P (13)

Mi−1 = mi−1 +
P
√

ML
i

P
+MR

i
P (14)

~τi−1 = (~τL
i +~τR

i ) (15)

where P is the pipe model constant, usually ranging be-
tween 2.49 for large trees to 3.0 for smaller trees [16]. Su-
perscripts L and R represent left and right children.

6 Accurate simulation of wood behaviour

In this section we discuss our model’s simulation of
wood’s behaviour. We improve our model’s biological real-
ism by simulating the evolution of wood’s mechanical prop-
erties as it ages, as well as its active reorientation due to the
formation of reaction wood.

6.1 Wood aging

Instead of using one value of Young’s modulus E uni-
formly in the model, a more realistic simulation accounts
for the stiffening of wood as it matures. Fournier describes
the younger sapwood, which forms new rings under the
bark, as being more supple than the heartwood at the centre
of an older branch [5]. We therefore use a lower value of
Young’s modulus for juvenile wood as compared to mature
wood. When a new shoot is formed, we use the lower juve-
nile wood stiffness E juv to describe the suppleness of new
sapwood. As the internal heartwood ages, it undergoes a
gradual stiffening as Young’s modulus approaches Emature.
The heartwood’s E value is computed using the appropriate
linear combination of E juv and Emature. The newly added
sapwood in the radial layer has a Young’s modulus of E juv .



Figure 6. Photograph of trunk straightening
due to reaction wood

6.2 Reaction wood

In the model described so far, a trunk which begins to
lean due to self-weight has no way to correct the imbalance
and return to an upright orientation. Yet, straightenings of
leaning trunks are indeed observed in nature, as shown in
Figure 6. This is due to active reorientation via secondary
growth in the form of reaction wood.

Botanical studies have shown that reaction wood forms
when a growing shoot deviates too far from an equilib-
rium position EP [17, 6]. To create reaction wood, lean-
ing branches differentiate their wood production to create
angular dissymmetry in the cross-section, both in the new
wood’s growth speed and in its material properties. Reac-
tion wood also introduces growth strains which work to re-
orient an inclined branch.

Reaction wood grows faster than regular wood, forming
thicker portions of new rings on the upper side of a branch in
broad-leafed trees and on the lower side in conifers [15]. By
thickening the appropriate angular section of the branch’s
new rings, reaction wood ovalizes the branch cross-section,
as seen in Figure 7(a). This dissymmetry shifts the geo-
metric center of the branch, and reduces the stress felt in
the reaction wood zone by spreading the stress over a larger
area.

Reaction wood also exhibits different mechanical prop-
erties than regular wood: it is optimized to resist compres-
sion in conifers, and to resist tension in broad-leafed trees
[15]. In both cases, the result is that reaction wood is better
able to resist further bending in the branch.

This differentiated growth produces growth stresses in
the branch. These lead to growth strains which supply the
moment needed to correct a lean by counteracting existing
strains due to loading [17].

Hart et al. have simulated reaction wood by uniformly
increasing girth at branching points, to resist a rotational
force [9]. The authors have also modelled the effect of reac-

Figure 7. (a) Asymmetrical thickening of rings due
to reaction wood, with permission from [7] (b) Circu-
lar inner core with new elliptical reaction wood ring

tion wood on tree shape at branching points, using implicit
surfaces [8]. The dissymmetry of material properties is not
simulated in their biomechanical model, however, nor are
the growth strains which cause righting of the branch.

Our model simulates each of the above-described prop-
erties of reaction wood. First, we detect a lean by recog-
nizing a large deviation from EP. We consider a segment’s
EP to be its ~Ω value, and compare this with its current ~Ω
value to determine the magnitude of the deviation from EP.
If the deviation exceeds a user-controllable threshold ξ, the
production of reaction wood is triggered. All changes to
the wood production intended to correct a lean must occur
only in the new layers formed after the detection of the lean.
The cross-section of the radial ring produced by reaction
wood is thickened along the direction of bending. Since the
ring, and consequently the entire branch, is no longer circu-
lar in cross-section, we replace the moments of area Icircle
and Iring with their counterparts for elliptical shapes:

Iellipsea =
π
4 a3b (16)

IellipticalRinga =
π
4 (a3

outbout −a3
inbin) (17)

In these equations, a is the longer semi-axis of the ellipse,
which lies in the direction of bending, and b is the shorter
semi-axis. For simplicity, we assume that the longer semi-
axis of the inner core ain lies in the same direction as aout ,
as in Figure 7(b). In other words, we assume that the axis of
bending in the branch has not changed while reaction wood
was being produced.

Note that, since the cross-section is no longer circular,
flexural rigidity now differs along directions a and b. Equa-
tions 16 and 17 are used to calculate rigidity in the direction
of bending, along a. The moment of area values used to
calculate rigidity in the direction perpendicular to bending,



along b, are obtained by cubing the b term instead of the a
term in these equations. The torsional rigidity also changes
to use the J value for an elliptical cross-section, J = π a3 b3

a2+b2 .
To simulate the different mechanical properties of reac-

tion wood, we use a larger Young’s modulus Erw in reaction
wood than that which is used for regular secondary growth.
To set the E value for the new ring, we estimate from Figure
7 that half of the new ring’s wood is reaction wood:

Ering =
1
2Erw +

1
2E juv (18)

These alterations to the shape and stiffness of reaction
wood serve to slow or even stop bending. Yet they cannot
actually reverse the direction of bending to correct a lean.
The third aspect of the reaction wood model simulates the
growth strains which, in nature, provide rotational moment
for the righting of a branch. We accomplish this by adjust-
ing the rest curvature ~Ωring of the new ring in the direction
opposite to the lean. The ~Ω value of the inner core of the
branch tells us its desired curvature in the absence of load,
so an adjustment toward ~Ω will act counter to the lean. The
higher the proportion of reaction wood, β ∈ [0,1], the more
heavily we use ~Ω in setting the rest curvature of the ring:

~Ωring = (1−β) ~Ω+β ~Ω. (19)

This method captures reaction wood’s tendency to reorient
a leaning branch. The value of ~Ωring will influence the rest
curvature of the entire segment, as expressed in Equation 8.

6.3 Seasons, leaves and fruit

To better replicate a tree’s real environment, our simu-
lation undergoes seasonal changes. Each year contains a
summer, a winter and a spring. In summer, both primary
and secondary growth occur. Newly created buds may host
leaves and fruit, whose masses add to the supported weight
of the parent internode. In winter, leaves and fruit are shed,
and the tree branches are observed to spring back up slightly
because of the reduced load, as seen in Figure 8. In the
spring, the fate of the previous year’s buds is determined;
they will either abort or become new shoots according to
architectural rules such as those described in Section 3.1.

6.4 L-System expression

L-systems are well-suited to express the problem of
biomechanical plant growth. An in-depth description of L-
systems can be found in [19]. An L-system represents a
growing structure as a string of modules. Each module con-
tains parameters which store information and allow for its
communication to neighbor modules as context. At every
rewriting step, each module is transformed according to a

Figure 8. (a) A fruit tree in summer, bearing the load
of fruit and leaves (b) In winter, under reduced load

matching production rule. This process serves to expand
the string of modules, resulting in the growth of the model
when the modules are interpreted visually.

In our simulation, we use a module’s parameters to store
the list of physical properties described above. These will
be available to the proximal or distal neighbors through left
or right context. This allows us to propagate information
forward or backward across the branch.

Normally, the context in a production comes from the
state of the module at the previous step. This information
is, by nature, one step out of date. Thus, to propagate a
signal across a branch of length n would require n rewriting
steps. This results in very slow signal propagation, and slow
convergence to the static equilibrium state.

However, the new L-system framework LPFG now al-
lows for fast information transfer [12], which can propa-
gate this same signal in a single rewriting step. Instead of
using context from the previous rewriting step, we can ac-
cess already-interpreted modules for the current step to ob-
tain up-to-date information. Using this new context allows
us to propagate a signal across the entire branch, regardless
of its length, in a single rewriting step. This makes for a
very efficient simulation; in fact, we obtain interactive rates
for this simulation until the tree structure reaches a certain
complexity.

7 Results and conclusions

The importance of biomechanics in determining tree
shape is made evident in Figure 9. Image (a) provides the
inspiration for the model. The effect of the biomechanics
simulation is seen by comparing image (c) with image (b),
which is the same architectural model without the biome-
chanics.

In this paper, we have extended Jirasek’s biomechani-
cal model of plant axes to branching structures so that we
may accurately model growing trees. We have presented
a botanically-based simulation of reaction wood and wood
aging, as well as a mechanism to control tree architecture



(a)

(b) (c)

Figure 9. (a) Inspiration from nature (b) Model without biomechanics (c) Model with biomechanics

with user-definable functions. The result is a sophisticated
and controllable tree model which behaves realistically on
both a physical and a botanical level.

The author thanks Dr. Przemyslaw Prusinkiewicz for his
guidance with this project, as well as the National Sciences
and Engineering Research Council of Canada.
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