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Abstract

In this paper, we propose a new model for lane tracking
and curve detection. We use a linear-parabolic model for
each lane boundary, and apply constraints to link both lane
boundaries based on the expected geometry of the road. The
parabolic part of the model, which fits the far field, is then
used to analyze the geometry of the road ahead (straight,
right curve or left curve), with applications in driver’s as-
sistance systems and road inspection. Experimental re-
sults indicate that introduced geometric constraints result
in a more consistent fit if compared to the individual fitting
of each lane boundary, and that the parabolic part of the
model can be effectively used to keep the driver informed
about the geometry of the road in front of him/her.

1 Introduction

Traffic related accidents pose severe social and economic
problems. A report by the United Nations [9] indicated that
1.26 million people died worldwide due to traffic accidents
in 2000, corresponding to an average toll of 3,000 fatalities
a day.

Several researchers are developing new techniques for
intelligent vehicles and/or intelligent roads, aiming to in-
crease the safety of drivers and pedestrians [11]. A po-
tentially low-cost solution relies on computer vision algo-
rithms, through the installation of a video camera in the in-
terior of the vehicle. In fact, the use of on-board cameras
can be used for several driver’s assistance functions, such as
lane departure warning systems and obstacle detection [4].

In particular, this work deals with lane following, which
is a fundamental problem in the development of driver’s
assistance systems. We propose an improvement to our
linear-parabolic lane model [10], by imposing geometric
constraints that relate left and right lane boundaries (in the
original work, both lane boundaries are computed indepen-
dently). We also use the second derivative of the parabolic

part of the model to estimate incoming curves in the far
field, indicating the driver if the road ahead is approximately
straight, right-curved or left-curved.

The remainder of this paper is organized as follows. In
Section 2, some existing lane detection and following tech-
niques are reviewed. Section 3 briefly revises the linear-
parabolic model, and also describes the proposed improve-
ment to the model. Section 4 presents our approach for
curve detection, and Section 5 contains experimental re-
sults. Finally, conclusions and ideas for future work are
drawn in the last Section.

2 Related Work

Many methods for road segmentation and lane following
have been proposed in the past years. Different approaches,
such as watersheds, deformable models and particle filter-
ing were used to tackle these problems.

Kluge [12] proposed a method for estimating road curva-
ture and orientation based on isolated edge points, without
the need of grouping them. This system works if at most
50% of input edge points are noisy, which may not happen
in practical situations (due to weak road markings, shadows,
etc.).

Beucher and his colleagues [19, 5] worked on road
segmentation and obstacle detection based on watersheds.
Their techniques consist of applying a temporal filter for
noise reduction (and connection of ground markings), fol-
lowed by edge detection and watershed segmentation. Such
methods demand a relatively high computational cost and
the resulting road boundaries are typically jagged (due to
the watershed transform).

Another class of lane detection methods [15, 2, 3] relies
on top-view (birds eye) images computed from images ac-
quired by the camera. These methods are reliable in obtain-
ing lane orientation in world coordinates, but require online
computation of the top-view images.

Apostoloff and Zelinsky [1] proposed a lane tracking
system based on particle filtering and multiple cues. In
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fact, this method does not track the lanes explicitly, but it
computes parameters such as lateral offset and yaw of the
vehicle with respect to the center of the road. Although
the method appears to be robust under a variety of condi-
tions (shadows, different lighting conditions, etc.), it cannot
be used to estimate curvature or detect if the vehicle is ap-
proaching a curved part of the road.

Deformable road models have been widely used for lane
detection [17, 16, 14, 18]. These techniques attempt to de-
termine mathematical models for road boundaries. In gen-
eral, simpler models (e.g. linear functions) do not provide
an accurate fit, but they are more robust with respect to
image artifacts. On the other hand, more complex models
(such as parabolic functions and splines) are more flexible,
but also more sensitive to noise. Hence, there is a tradeoff
between accuracy of the fit and robustness with respect to
image artifacts.

Guichard and Tarel [6] proposed a robust method for
curve detection by combining perceptual grouping and a
filter similar to Kalman’s, with applications in autonomous
driving. However, their technique does not explore tempo-
ral continuity, and presents a relatively high computational
cost.

Jung and Kelber [10] used a linear-parabolic model for
lane tracking. The linear part is used to fit lane borders
in the near vision field, while the parabolic part fits the far
field. Despite the good results obtained by this technique,
lane boundaries are computed independently, and inconsis-
tencies could arise (such as one lane indicating a positive
curvature and the other indicating a negative one).

In this work, we improve the linear-parabolic model by
imposing constraints based on the geometry of the road, and
explore the curvature of the parabolic part of the model to
detect incoming curves. Next, the original and improved
versions of the linear-parabolic model are explained.

3 The Linear-Parabolic Model

3.1 Original Formulation

Let us assume that we have a camera installed in the in-
terior of the vehicle, aligned with the central axis of the ve-
hicle. The viewing area of the camera is divided in two re-
gions (near and far fields), which are separated by a thresh-
old xm, as shown in Figure 1.

In [10], both lane boundaries (left and right) are approx-
imated by independent linear-parabolic functions, that are
composed by linear functions in the near field, and parabolic
functions in the far field. The expression for the linear-
parabolic model fk(x) can be written as1 :

1In this work, we changed notation if compared to the original formu-
lation in [10]
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Figure 1. The initial frame of a video se-
quence, with our coordinate system and the
definition of the near and far fields.

fk(x) =
{

ak + bk(x − xm), if x > xm

ak + bk(x − xm) + ck(x − xm)2, if x ≤ xm
,

(1)
where k ∈ {r, l} denotes which lane boundary we are re-
ferring to (right or left). It should be noticed that fk is a
continuous and differentiable function, bk represents the lo-
cal orientation of the lane boundary, and ck is related to its
curvature in the far field of the image domain. To determine
parameters (ak, bk and ck) for the current frame, we com-
pute image edges in a neighborhood of detected lanes in the
prior frame, and minimize the following weighted square
error:
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where (xk
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, yk

ni
), for i = 1, ..., m, denote the m coordi-

nates of the non-zero pixels of the thresholded edge im-
age in the near field, and Mk
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for k ∈ {r, l}. Analogously, (xk
fj

, yk
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) and Mk
fj

, for
j = 1, ..., n, represent the same characteristics for the n
edge pixels in the far field.

It is easy to show that Ek is minimized when the follow-
ing 3 × 3 linear system is solved:

(Ak)TWkAkck = (Ak)TWkbk, (3)
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In the original formulation, the procedure above is ap-
plied independently for each lane boundary (i.e. k = l and
k = r lead to uncoupled linear systems). Next, we extend
this approach and impose constraints based on the expected
geometry of the road.

3.2 Improved Linear-Parabolic Model

It is clear that left and right lane boundaries must present
some kind of coherence. For example, it is expected that
the orthogonal distance between them at each point should
be constant (in world coordinates). However, if camera pa-
rameters are not known, it is not easy to use this condition
in image coordinates. In this work, we explore vanishing
points to provide coherence between both lane boundaries,
as explained next.

Guiducci [7, 8] worked on road models and automatic
camera calibration. He assumed that for planar high speed
roads (radius of curvature typically larger than 1000 m) and
for vehicle heading directions forming a small angle with
the road direction (typically smaller than 5◦), then the x-
coordinate of the vanishing points of the tangents to road
borders in the near and far fields are the same, as shown in
Figure 2.

x

yy0

x0

Figure 2. Projection of a road in image coor-
dinates.

If x0 denotes the common x-coordinate of the vanishing
points, then the linear part of the left and right lane bound-
aries should meet at x = x0, and the parabolic part of both

lane boundaries should also meet at x = x0. These condi-
tions imply that:

{
(ar − al) + (br − bl)∆x = 0
(ar − al) + (br − bl)∆x + (cr − cl)∆x2 = 0 , (4)

where ∆x = x0 − xm. We estimate x0 dynamically, by
finding the intersection between the linear parts of both lane
boundaries at each frame. Our experimental results show
that estimated values for x0 typically vary within a range of
2 or 3 pixels. It should be noticed that Guiducci’s assump-
tions were made for planar roads only. Hence, estimated
vanishing points may present significant variations for non-
planar roads.

Then, we include the restrictions of Equation (4) in the
minimization errors Ek (given by Equation (2)), obtaining
a new global error Eg:

Eg = El + Er + wlin
(
ar − al + (br − bl)∆x

)2 +
wpar(ar − al + (br − bl)∆x + (cr − cl)∆x2)2,

(5)

where wlin and wpar are weights associated with the first
and second lines of Equation (4), respectively (when wlin =
wpar = 0, minimizing Eg is equivalent to detecting right and
left lane boundaries independently). To minimize the global
error Eg, we need to solve the following 6 × 6 system:

ATWAc = ATWb, (6)

where A, W, c and b can be represented as block matrices:

A =


 Ar

Al

L −L


 , L =

[
1 ∆x 0
1 ∆x ∆x2

]
, (7)

W =


 Wr

Wl

Wg


 , Wg =

[
wlin 0
0 wpar

]
,

(8)

c =
[

cr

cl

]
, and b =




br

bl

0
0


 . (9)

Furthermore, it is easy to show that matrix AT WA can be
written as:[

(Ar)T WrAr + LT WgL −LTWgL
−LT WgL (Al)TWlAl + LT WgL

]
.

The computation of LTWgL is extremely fast (L is a 2× 3
matrix and Wg is a 2 × 2 matrix), and consequently the
computational burden of solving the coupled system given
by Equation (6) is practically the same as solving the two
uncoupled systems given by Equation (3). It should be
noticed that the proposed geometric constraints result in a



trade-off between the individual fitting of each lane bound-
ary and the consistency of lane boundaries (i.e. the individ-
ual fitting of both lane boundaries may not seem as accurate
as if they were applied independently, but they are consis-
tent). Larger values of wlin and wpar result in more lane de-
pendency, while smaller values lead to independency. This
behavior was expected, since other authors [4] had already
noticed this trade-off between consistency and flexibility of
lane models.

In this work, wlin and wpar are chosen adaptively. If
nlin represents the total number of edge points and Mlin

represent the mean edge magnitude in the near field (and
npar, Mpar represent the same characteristics in the far field),
then:

wlin = 0.05Mlinnlin,
wpar = 0.05Mparnpar,

(10)

meaning that these weights are 5% of the number of edge
pixels in the respective viewing area (near or far) multiplied
by the mean edge magnitude in the corresponding region.

An example of the proposed improvement is illustrated
in Figure 3. The result of the original formulation of the
linear-parabolic model is shown in Figure 3(a), while the
results of the modified model is shown in Figure 3(b). It can
be noticed that edges produced by the vehicle in front of the
camera affects the fitting process in the original formula-
tion. On the other hand, the geometric constraints imposed
in the modified version of the model provide consistent lane
boundaries.

(a) (b)

Figure 3. (a) Original formulation of the model.
(b) Improved version.

Another situation that could result in wrong fitting re-
sults for the original formulation is shown in Figure 4. This
Figure illustrates an exit to the road, which is indicated by a
solid lane marking (while the right lane border is indicated
by a dotted marking). Figures 4(a)-(b) show two frames of
the video sequence near the exit, and detected lane bound-
aries using the original linear-parabolic model. It can be
noticed that this model tends to follow the solid line, pro-
viding a misleading result. Figures 4(c)-(d) show the same
two frames, but with the improved version of the model.

The geometric consistency between both lane boundaries
guarantees consistent lane boundaries.

4 Curve Detection

After applying the improved linear-parabolic model for
lane following, we have the functions f r(x) and f l(x) at
each frame of the video sequence. As mentioned before,
coefficients cr and cl are related to the curvature of right
and left lane boundaries in image coordinates (these infor-
mation could be used to obtain actual curvature in world co-
ordinates, if camera parameters were known). If cr(t) and
cl(t) denote the curvature parameters of both lane bound-
aries at frame t, we compute a global curvature measure
given by:

c(t) = cr(t) + cl(t). (11)

In practice, measured curvatures cr and cl (and hence, c(t))
present high-frequency noise, due to irregularities of the
pavement or bad conditions of road painting. On the other
hand, changes in c(t) due to the actual curvature of the road
should occur progressively, indicating the use of a low-pass
filter. For noise removal, we use a first order Chebyshev
type I causal filter [13], with 15 dB of peak-to-peak ripple in
the passband, and cutoff frequency wc = 0.1, where w = 1
corresponds to half of the sample rate (in most cases, video
sequences are acquired at 15 or 30 frames per seconds). The
resulting filtered curvature cf (t) can be obtained by solving
the following recursive equation:

cf (t) − 0.9444cf(t − 1) = 0.0278 (c(t) + c(t − 1)) (12)

When the road in the far field is approximately straight,
cf (t) should be close to zero; if there is a left turn in the far
field, cf (t) should be negative; in a right turn, cf (t) should
be positive. To detect such patterns, we define a threshold
T > 0, and for each frame t the road ahead is classified as:




straight, if |cf (t)| < T
left turn, if cf (t) < −T
right turn, if cf (t) > T

(13)

The choice of T clearly depends on camera parameters.
However, for the camera setups used in this work, the value
T = 0.1 produced good results for all experiments.

5 Experimental Results

In this section, we evaluate the performance of the im-
proved linear-parabolic model for lane following and curve
detection. All video sequences were captured/digitized with
a resolution of 240 × 320 pixels.
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Figure 4. (a)-(b) Original formulation of the model. (c)-(d) Improved version.

Figure 5 illustrates some frames of a video sequence
acquired close to sunset time with a digital camera set
at video mode. This camera offers very poor illumina-
tion control, and some frames are over-illuminated while
others are under-illuminated, as it can be noticed in Fig-
ures 5(a) and 5(b). Furthermore, this video sequence alter-
nates frames in which the road is filled with shadows with
frames in which the road was illuminated by direct sunlight.
Despite all these image artifacts, our model correctly fits
both lane boundaries.

In the second example, we consider a video sequence
with 1450 frames illustrating a curvy road, acquired at 30
FPS. Figure 6(a) shows the filtered curvature cf (t) across
time, and the regions of straight road, left curve and right
curve2. According to Equation (13), the road was identified
as an alternated sequence of left and right turns, connected
by short segments of straight road. More specifically, the
road is classified as a right turn in the following range of
frames: 34-126, 505-629 and 915-1102; it is classified as
left turn during frames: 238-433, 691-885 and 1140-1297;
straight road in frames: 1-34, 126-238, 433-505, 629-691,
885-915, 1112-1140, and 1297-1450. Figure 6(b) illustrates
some key frames of this video sequence, and visual inspec-
tion indicates that the method correctly indicated all road
conditions. Furthermore, these frames illustrate that the im-
proved linear-parabolic lane model is robust with respect to
considerable illumination changes (for example, frame 629
is much darker than frame 915).

The third example consists of a video sequence with
1890 frames, also illustrating a curvy road and acquired at
30 FPS. Figure 7(a) shows cf (t) across time, and the geom-
etry of the road ahead (straight,left or right)3. According to
the proposed metric, a straight portion of the road is initially
detected, followed by a left curve (frames 104-277), then a

2Ticks in the x-axis correspond to frames 34, 126, 238, 433, 505, 629,
691, 885, 915, 1102, 1140 and 1297, and were not included in the graphic
due to lack of space

3Ticks in the x-axis correspond to frames 104, 277, 353, 512, 850,
1067, 1181, 1227, 1362, 1506, 1546, 1700, 1794 and 1812, and were not
included in the graphic due to lack of space

small straight portion (frames 277-353) connecting a right
turn (frames 353-512). Frames 512-850 relate to a long por-
tion of straight road, followed by a left turn (frames 850-
1067) and a straight portion (frames 1067-1181). Frames
1362-1700 indicate a long right turn with a small linear seg-
ment in the middle (frames 1506-1546), and the road during
frames 1700-1890 is identified as straight (with a very small
right curve in frames 1794-1812). Some key frames of this
video sequence are illustrated in Figure 7(b), and it can be
observed that the estimated geometry of the road matches
the actual video sequence. However, the small right curve
detected in frames 1794-1812 can barely be noticed in the
video sequence.

The computational burden of the proposed technique de-
pends on the number of thresholded edge pixels needed to
form matrices A and W. However, an implementation of
our technique in C++, running in a portable computer pow-
ered by a Pentium Centrino 1.7MHz processor and 1GB
RAM memory, can process up to 80 frames per second of
typical video sequences with resolution 320 × 240.

6 Discussion and Conclusions

In this work, we presented an improved linear-parabolic
model for lane boundaries, by including constraints related
to the geometry of the road. We also used the second deriva-
tive of the parabolic portion of the model (far field) to esti-
mate the conditions of the road ahead (in terms of straight,
left-curved or right-curved).

The geometric constraints introduced in this work gener-
ate more consistency between lane boundaries if compared
to the original formulation [10]; on the other hand, detected
lane boundaries may not be as accurate as if they were
treated independently (specially in high-curvature turns).
For curve detection, consistency is more important than lo-
cal accuracy (it is important that both lane boundaries in-
dicate the same curvature signal), and then the improved
model is more adequate. In fact, the filtered curvature mea-
sure cf (t) can be effectively used to predict right or left
portions of the road in the far field, and could be included in
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Figure 5. Some frames of video sequence 1 and fitted lane boundaries.

a driver’s assistance system. Other possible applications of
our curve detection algorithm regard road inspection (e.g. to
verify if traffic signs indicating curves are correctly placed
along the road), or to forward feed a control system for au-
tonomous guidance.

Future work will include a study on camera calibration
to can obtain the actual road curvature in world coordi-
nates, and comparisons of our curve detection procedure
with ground truth (roads with known geometry). We also
plan to discuss questions related to driving assistance, such
as: How early must a curve be detected to inform the driver?
Should the driver be warned about low-curvature incoming
turns?
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(b)

f. 915, right f. 1102, straight f. 1140, left f. 1297, straight

f. 505, right f. 629, straight f. 691, left f. 885, straight

f. 34, right f. 126, straight f. 238, left f. 433, straight

Figure 6. (a) Curvature measure for video sequence 2. (b) A selection of frames from this sequence.
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(b)

f. 1700, straight f. 1800, right f. 1870, straight f. 1890, straight

f. 1227, straight f. 1362, right f. 1506, straight f. 1546, right

f. 860, left f. 950, left f. 1067, straight f. 1181, left

Figure 7. (a) Curvature measure for video sequence 3. (b) A selection of frames from this sequence.


