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Abstract

Tracking moving objects in video sequence is an impor-
tant problem in computer vision, with applications several
fields, such as video surveillance and target tracking. Most
techniques reported in the literature use background sub-
traction techniques to obtain foreground objects, and ap-
ply shadow detection algorithms exploring spectral infor-
mation of the images to retrieve only valid moving objects.
In this paper, we propose a small improvement to an existing
background model, and incorporate a novel technique for
shadow detection in grayscale video sequences. The pro-
posed algorithm works well for both indoor and outdoor
sequences, and does not require the use of color cameras.

1 Introduction

A relevant problem in computer vision is the detection
and tracking of moving objects in video sequences. Possible
applications include surveillance [6, 7, 12], traffic monitor-
ing [8] and athletic performance analysis [1], among others.

In applications using fixed cameras with respect to the
static background (e.g. stationary surveillance cameras),
a very common approach is to use background subtrac-
tion to obtain an initial estimate of moving objects. Basi-
cally, background subtraction consists of comparing each
new frame with a representation of the scene background:
significative differences usually correspond to foreground
objects. Ideally, background subtraction should detect real
moving objects with high accuracy, limiting false negatives
(objects pixels that are not detected) as much as possible;
at the same time, it should extract pixels of moving objects
with the maximum responsiveness possible, avoiding de-
tection of transient spurious objects, such as cast shadows,

static objects, or noise.
In particular, the detection of cast shadows as fore-

ground objects is very common, producing undesirable con-
sequences. For example, shadows can connect different
people walking in a group, generating a single object (typ-
ically called blob) as output of background subtraction. In
such cases, it is more difficult to isolate and track each per-
son in the group.

There are several techniques for shadow detection in
video sequences [2–4, 10, 13, 15–17], and the vast major-
ity of them are based on color video sequences. Although
color images indeed provide more information for shadow
detection, there are still several scenarios where monochro-
matic video cameras are utilized In this paper, we improve
the background subtraction technique described in [6], and
propose a new shadow detection algorithm for grayscale im-
ages.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work concerning background sub-
traction and shadow detection. The proposed technique is
described in Section 3, and some experimental results are
provided in Section 4. Finally, conclusions are given in Sec-
tion 5.

2 Related Work

Several techniques for background subtraction and
shadow detection have been proposed in the past years.
Background detection techniques may use grayscale or
color images, while most shadow detection methods make
use of chromaticity information. Next, some of these tech-
niques are described.

The car tracking system of Koller et al. [9] used an adap-
tive background model based on monochromatic images fil-
tered with Gaussian and Gaussian derivative (vertical and



horizontal) kernels. McKenna et al. [11] proposed a back-
ground model that combines pixel RGB and chromaticity
values with local image gradients. In their W4 system, Har-
itaoglu and collaborators [6] used grayscale images to build
a background model, representing each pixel by three val-
ues; its minimum intensity value, its maximum intensity
value and the maximum intensity difference between con-
secutive frames observed during the training period. Elgam-
mal et al. [4] used a nonparametric background model based
on kernel based estimators, that can be applied to both color
or grayscale images. KaewTrakulPong and Bowden [7]
used color images for background representation. In their
method, each pixel in the scene is modelled by a mixture
of Gaussian distributions (and different Gaussians are as-
sumed to represent different colors). Cucchiara’s group [3]
used a temporal median filtering in the RGB color space to
produce a background model.

Shadow detection algorithms have also been widely ex-
plored by several authors, mostly based on invariant color
features, that are not significatively affected by illumination
conditions. McKenna et al. [11] used pixel and edge infor-
mation of each channel of the normalized RGB color space
(or rgb) to detect shadowed pixels. Elgammal et al. [4]
also used the normalized rgb color space, but included a
lightness measure to detect cast shadows. Prati’s and Cuc-
chiara’s groups [3,13] used the HSV color space, classifying
as shadows those pixels having the approximately the same
hue and saturation values compared to the background, but
lower luminosity. KaewTrakulPong and Bowden [7] used
a chromatic distortion measure and a brightness threshold
in the RGB space to determine foreground pixels affected
by shadows. Salvador et al. [15] adopted the c1c2c3 photo-
metric invariant color model, and explored geometric fea-
tures of shadows. A few authors [2, 14, 17, 20] have studied
shadow detection in monochromatic video sequences, hav-
ing in mind applications such as indoor video surveillance
and conferencing. Basically, they detect the penumbra of
the shadow, assuming that edge intensity within the penum-
bra is much smaller that edge intensity of actual moving
objects. Clearly, such hypothesis does not hold for video
sequences containing low-contrast foreground objects (spe-
cially in outdoors applications). More about background
subtraction and shadow removal can be found in [18, 19].

A revision of the literature indicates that several back-
ground models are available, applicable for color and/or
grayscale video sequences. Also, there are several shadow
detection algorithms to remove undesired segmentation of
cast shadows in video sequences. However, in accordance
with other authors [3, 6], we chose to use a background
model based on median filtering, because it is effective
and requires less computational cost than the Gaussian or
other complex statistics. More specifically, we improved
the background model proposed in [6], and included a novel

shadow detection algorithm that is effective for both indoor
and outdoor applications.

3 The proposed algorithm

In this Section, we describe the background model of
W4 [6] and propose a small improvement to the model. We
also propose a novel method for shadow segmentation of
foreground pixels, based on normalized cross-correlations
and pixel ratios.

3.1 Background Scene Modeling

W4 uses a model of background variation that is a bi-
modal distribution constructed from order statistics of back-
ground values during a training period, obtaining robust
background model even if there are moving foreground ob-
jects in the field of view, such as walking people, moving
cars, etc. It uses a two stage method based on excluding
moving pixels from background model computation. In the
first stage, a pixel wise median filter over time is applied to
several seconds of video (typically 20-40 seconds) to dis-
tinguish moving pixels from stationary pixels (however, our
experiments showed that 100 frames ≈ 3.3 seconds are typ-
ically enough for the training period, if not too many mov-
ing objects are present). In the second stage, only those
stationary pixels are processed to construct the initial back-
ground model. Let V be an array containing N consecu-
tive images, V k(i, j) be the intensity of a pixel (i, j) in the
k-th image of V , σ(i, j) and λ (i, j) be the standard devi-
ation and median value of intensities at pixel (i, j) in all
images in V , respectively. The initial background model for
a pixel (i, j) is formed by a three-dimensional vector: the
minimum m(i, j) and maximum n(i, j) intensity values and
the maximum intensity difference d(i, j) between consecu-
tive frames observed during this training period. The back-
ground model B(i, j) = [m(i, j),n(i, j),d(i, j)], is obtained
as follows:


 m(i, j)

n(i, j)
d(i, j)


 =




min
z

V z(i, j)

max
z

V z(i, j)

max
z

|V z(i, j)−V z−1(i, j)|


 , (1)

where z are frames satisfying |V z(i, j)−λ (i, j)| ≤ 2σ(i, j).
According to [6] This condition guarantees that only sta-
tionary pixels are computed in the background model, i.e.,
V z(i, j) is classified as a stationary pixel.

After the training period, an initial background model
B(i, j) is obtained. Then, each input image It(i, j) of the
video sequence is compared to B(i, j), and a pixel (i, j) is
classified as a background pixel if:

It(i, j)−m(i, j) ≤ kµ or It(i, j)−n(i, j) ≤ kµ , (2)



where µ is the median of the largest interframe absolute dif-
ference image d(i, j), and k is a fixed parameter (the authors
suggested the value k = 2). It can be noted that, if a certain
pixel (i, j) has an intensity m(i, j) < It(i, j) < n(i, j) at a cer-
tain frame t, it should be classified as background (because
it lies between the minimum and maximum values of the
background model). However, Equation (2) may wrongly
classify such pixel as foreground, depending on k, µ , m(i, j)
and n(i, j). For example, if µ = 5, k = 2, m(i, j) = 40,
n(i, j) = 65 and It(i, j) = 52, Equation (2) would classify
It(i, j) as foreground, even though it lies between m(i, j)
and n(i, j). To solve this problem, we propose an alterna-
tive test for foreground detection, and classify It(i, j) as a
foreground pixel if:

It(i, j) > (m(i, j)−kµ) and It(i, j) < (n(i, j)+kµ) (3)

Figure 1 illustrates an example of background subtrac-
tion (using k = 2, as in all other examples in this paper).
The background image (median of frames across time) is
shown in Figure 1(a), a certain frame of the video sequence
is shown in Figure 1(b), and detected foreground objects
are shown in Figure 1(c). It can be noticed that two kinds
of shadows were detected: on the left, shadow was caused
by obstruction of indirect light; on the right, shadow was
produced by direct sunlight blocking.

3.2 Shadow identification

In shadowed regions, it is expected that a certain frac-
tion α of incoming light is blocked [4]. Although there are
several factors that may influence the intensity of a pixel
in shadow [15], we assume that the observed intensity of
shadow pixels is directly proportional to incident light; con-
sequently, shadowed pixels are scaled versions (darker) of
corresponding pixels in the background model.

As noticed by other authors [5], the normalized cross-
correlation (NCC) can be useful to detect shadow pixel can-
didates, since it can identify scaled versions of the same
signal. In this work, we use the NCC as an initial step for
shadow detection, and refine the process using local statis-
tics of pixel ratios, as explained next.

3.2.1 Detection of shadow pixel candidates

Let B(i, j) be the background image formed by temporal
median filtering, and I(i, j) be an image of the video se-
quence. For each pixel (i, j) belonging to the foreground,
consider a (2N + 1) × (2N + 1) template Ti j such that
Ti j(n,m) = I(i + n, j + m), for −N ≤ n ≤ N, −N ≤ m ≤ N
(i.e. Ti j corresponds to a neighborhood of pixel (i, j)).
Then, the NCC between template Ti j and image B at pixel

(i, j) is given by:

NCC(i, j) =
ER(i, j)

EB(i, j)ETi j

, (4)

where

ER(i, j) =
N

∑
n=−N

N

∑
m=−N

B(i+ n, j + m)Ti j(n,m),

EB(i, j) =

√√√√ N

∑
n=−N

N

∑
m=−N

B(i+ n, j + m)2, and (5)

ETi j =

√√√√ N

∑
n=−N

N

∑
m=−N

Ti j(n,m)2.

For a pixel (i, j) in a shadowed region, the NCC in a neigh-
boring region Ti j should be large (close to one), and the
energy ETi j of this region should be lower than the energy
EB(i, j) of the corresponding region in the background im-
age. Thus, a pixel (i, j) is pre-classified as shadow if:

NCC(i, j) ≥ Lncc and ETi j < EB(i, j), (6)

where Lncc is a fixed threshold. If Lncc is low, several fore-
ground pixels corresponding to moving objects may be mis-
classified as shadows. On the other hand, selecting a larger
value for Lncc results in less false positives, but pixels re-
lated to actual shadows may not be detected. In fact, the
influence of the threshold Lncc for shadow detection can
be observed in Figure 2. This Figure illustrates the ap-
plication of our shadow detector in the foreground image
of Figure 1(c) using N = 4, for different thresholds Lncc.
Black pixels are foreground pixels, and gray pixels corre-
spond to shadowed pixels according to Equation (6). Our
experiments indicated that choosing Lncc = 0.95 results in
a good compromise between false positives and false nega-
tives, and that N = 4 is a good neighborhood size.

3.2.2 Shadow refinement

The NCC provides a good initial estimate about the loca-
tion of shadowed pixels, by detecting pixels for which the
surrounding neighborhood is approximately scaled with re-
spect to the reference background. However, some back-
ground pixels related to valid moving objects may be
wrongly classified as shadow pixels. To remove such false
positives, a refinement stage is applied to all pixels that sat-
isfy Equation (6).

The proposed refinement stage consists of verifying
if the ratio I(i, j)/B(i, j) in a neighborhood around each
shadow pixel candidate is approximately constant, by com-
puting the standard deviation of I(i, j)/B(i, j) within this
neighborhood. More specifically, we consider a region R



(a) (b) (c)

Figure 1. (a) Background image. (b) A certain frame of the video sequence. (c) Detected foreground
objects.

(a) (b) (c)

Figure 2. Shadow detection using different thresholds Lncc. (a) Lncc = 0.90 (b) Lncc = 0.95 (c) Lncc = 0.98

with (2M + 1)× (2M + 1) pixels (we used M = 1 in all ex-
periments) centered at each shadow pixel candidate (i, j),
and classify it as a shadow pixel if:

stdR

(
I(i, j)
B(i, j)

)
< Lstd and Llow ≤

(
I(i, j)
B(i, j)

)
< 1, (7)

where stdR

(
I(i, j)
B(i, j)

)
is the standard deviation of quantities

I(i, j)/B(i, j) over the region R, and Lstd,Llow are thresh-
olds. More precisely, Lstd controls the maximum devia-
tion within the neighborhood being analyzed, and Llow pre-
vents the misclassification of dark objects with very low
pixel intensities as shadowed pixels. To determine values
for Lstd and Llow, we conducted the following experiment.
We printed a chart with several graytones and analyzed its
pixel values under direct sunlight, building a background
model. We evaluated these pixels across time, when a mov-
ing cloud caused progressive light occlusion, and computed

values stdR

(
I(i, j)
B(i, j)

)
. Experimentally obtained values were

Lstd = 0.05 and Llow = 0.5 (however, we believe that fur-
ther studies on the selection of Lstd and Llow are needed). It

should be noticed that in sunny days shadows may be very
strong, and information about pixel intensity in the umbra
may be completely lost. Is such cases, I(i, j)/B(i, j) is usu-
ally very small, and shadows may be misclassified as valid
foreground objects. Also, we apply morphological oper-
ators to foreground pixels after shadow removal, to com-
plete empty spaces and remove isolated pixels. We apply
sequentially a closing and an opening operator with a 5×5
diamond-shaped structuring element.

Stauder and colleagues [17] also used the local variance
for shadow detection. However, they did not compare each
frame of the video sequence with a background model; in
their approach, pixel ratios were computed for consecutive
frames, which may cause erroneous detection in rotating
objects.

An example of the shadow refinement technique applied
to the initial shadow detection of Figure 2 is depicted in Fig-
ure 3(a). In this Figure, darker gray pixels correspond to the
initial shadow detection, and lighter gray pixels correspond
to the final shadow detection. Figure 3(b) shows all fore-
ground pixels after shadow removal, and Figure 3(c) shows



(a) (b) (c)

Figure 3. (a) Final shadow detection (shadow pixels are represented by light gray). (b) Foreground
objects after shadow removal. (c) Elimination of gaps and isolated pixels through morphological
operators .

the final result after applying morphological operators.

4 Experimental Results

In this Section, we analyze the performance of our back-
ground subtraction and shadow detection algorithms for in-
door and outdoor grayscale video sequences. For example,
Figure 4 shows four frames of an outdoor video sequence,
in which some parts of the image are illuminated by direct
sunlight, while in other parts there is only indirect light in-
cidence. As a consequence, different kinds of shadows are
produced (weak and strong shadows). In the first row, orig-
inal grayscale images are displayed; the second and third
rows show, respectively, foreground pixels before and af-
ter shadow removal; foreground objects after morphologi-
cal operators are shown in the fourth row. It can be noticed
that shadows were effectively detected and removed in both
weak and strong shadow regions.

Another example in an outdoor environment is shown in
Figure 5, corresponding to a video sequence acquired in a
cloudy day, producing weak shadows. Figure 5(a) shows a
certain frame, and Figure 5(b) shows detected foreground
objects. It can be observed that a large foreground blob was
produced, and it is very difficult to identify the person on
the lower part of the image. Figures 5(c) and 5(d) illustrate
the result of our shadow removal technique, before and after
applying morphological operators. In Figure 5(d), all three
persons are completely identifiable.

Figure 6 shows the performance of the proposed tech-
nique for the Hall video sequence1. Although this was
originally a color video sequence, it was transformed to
grayscale using MATLAB’s command rgb2gray at each
frame. Shadows were also correctly detected and removed

1available for download at http://www.ics.forth.gr/cvrl/
demos/NEMESIS/hall monitor.mpg

in this indoor footage, and valid foreground moving objects
were correctly segmented.

One drawback of the proposed technique is the misclas-
sified of valid foreground objects as shadows in video se-
quences containing a homogeneous background with ho-
mogeneous (and darker) foreground objects. Such prob-
lem may happen because the NCC can be very high within
such objects, and the standard deviation low. An example of
misclassification is shown in Figure 7, that illustrates a per-
son with a homogeneous shirt in front of a homogeneous
white wall (the background). Cast shadows were correctly
identified around the person, but the shirt and some parts
of the skin were misclassified as shadows. Fortunately, the
background presents some texture in most applications, and
shadow misclassification is not common.

5 Conclusions

In this work, we improved an existing method for back-
ground subtraction and proposed a novel technique for
shadow detection in grayscale video sequences. In our ap-
proach, the normalized cross-correlation is applied to fore-
ground pixels, and candidate shadow pixels are obtained.
A refinement process is then applied to further improve
shadow segmentation.

Experimental results showed that the proposed technique
performs well in video sequences containing strong shad-
ows (occlusion of direct sunlight) and weak shadows (oc-
clusion of indirect light), being suited for both indoor and
outdoor applications. Other shadow detection techniques
based on grayscale images [2,17,20] assume smooth gradi-
ent variation in shadowed regions, and are more appropriate
to indoor applications only. With the proposed technique,
persons walking close to each other connected by shadows
can be successfully tracked individually.



(a) (b) (c) (d)

Figure 4. Top row: frames of a video sequence. Second row: detected foreground objects. Third row:
foreground objects with shadow removal. Bottom row: result after morphological post-processing.

(a) (b) (c) (d)

Figure 5. (a) Grayscale image. (b) Foreground pixels. (c) Shadow removal. (d) Morphological post-
processing.



(a) (b) (c)

Figure 6. Top row: frames of a video sequence. Second row: detected foreground objects. Third row:
foreground objects with shadow removal. Bottom row: result after morphological post-processing.



(a) (b) (c) (d)

Figure 7. Example of unsuccessful shadow detection. (a) Grayscale image. (b) Foreground pixels.
(c) Shadow removal. (d) Morphological post-processing.

Future work will concentrate on extending our approach
for robust shadow detection in color sequences. We also
intend to further investigate the selection of thresholds Lncc,
Lstd and Llow, and to impose spatio-temporal constraints to
improve shadow detection.
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