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Abstract

Oriented feature detectors are fundamental tools in image

understanding, as many images display relevant informa-

tion in the form of oriented features. Several oriented fea-

ture detectors have been developed; some of the impor-

tant families of oriented feature detectors are steerable fil-

ters and Gabor filters. In this work, a performance anal-

ysis is presented of the following oriented feature detec-

tors: the Gaussian second-derivative steerable filter, the

quadrature-pair Gaussian second-derivative steerable fil-

ter, the real Gabor filter, the complex Gabor filter, and a line

operator that has been shown to outperform the Gaussian

second-derivative steerable filter in the detection of linear

structures in mammograms. The detectors are assessed in

terms of their capability to detect the presence of oriented

features, as well as their accuracy in the estimation of the

angle of the oriented features present in the image. It is

shown that the Gabor filters yield the best detection perfor-

mance and angular accuracy, whereas the steerable filters

have the best performance in terms of computational speed.

1. Detection of oriented features

The presence of oriented features in images often con-

veys important information about the scene or the objects

contained; the analysis of oriented patterns is an important

task in the general framework of image understanding. Ap-

plications of oriented feature analysis include the analysis

of satellite images [1], cereal grain inspection [2], finger-

print recognition [3], counting of asbestos fibers [4], and

mammographic image analysis [5, 6, 7, 8].

The detection of oriented features is often influenced by

the characteristic width of the feature under investigation,

and the presence of noise. Individual oriented features are

associated with a particular spatial width, such as the width

of a spicule in a mammographic image, or that of a road

seen in an aerial image. Hence, the ability of a technique

to detect oriented features often depends on the proper cal-

ibration of some scale parameter that regulates the intrin-

sic width of the oriented feature detector, according to the

width of the oriented feature of interest. Noise is another

factor that may impair the performance of an oriented fea-

ture detector, because noise can mask the presence of ori-

ented structures and may form spurious oriented structures

in the image.

The purpose of the present work is to compare the detec-

tion performance and orientation accuracy of five selected

oriented feature detectors: the Gaussian second-derivative

steerable filter [9], the quadrature-pair Gaussian second-

derivative steerable filter [9], the real Gabor filter [10], the

complex Gabor filter [10], and the line operator of Dixon

and Taylor [4]. The detection performance is defined in

terms of the ability of each filter to detect linear structures

in the presence of noise and imprecision in the specifica-

tion of scale. The orientation accuracy is given in terms of

the cumulative angle error for the pixels belonging to the

oriented features in a test pattern.

1.1. Steerable filters

The concept of steerable filters was presented by Free-

man and Adelson [9]. Steerable filters are a class of fil-

ters with the “steering property”: the impulse response of

a filter, rotated at an arbitrary angle, can be synthesized

from a linear combination of rotated versions of the same

filter’s impulse response, for a set of pre-specified rotation

parameters. Let f (x,y) be the filter’s impulse response, and

fθ (x,y) be the rotated impulse response at an angle θ . The

steering property can be written as

fθ (x,y) =
M

∑
j=1

k j(θ ) fθ j
(x,y),

where θ j is the jth basis angle, j ∈ 1,2, · · · ,M, and k j(θ ) is

the jth interpolating function.

1.1.1. Gaussian-derivative-based steerable filters. The

partial derivatives of the Gaussian function provide a fam-

ily of steerable filters [9]. In particular, the second deriva-

tive of the Gaussian has been used as a detector of linear

structures in mammograms [7]. In this work, we imple-

mented the second derivative of the Gaussian as follows:
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ing property: θ s
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Let I(x,y) be the given image, and W s
θ (x,y) be the result

of filtering I(x,y) with the filter sθ (x,y), for a given value

of θ . The squared magnitude function |W s
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odic in θ ; hence, it can be decomposed into a Fourier se-
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The coordinates (x,y) have been dropped for clarity. The

magnitude component of the orientation field is given by

Es(x,y) = |W s
θopt

(x,y)|. The magnitude Es(x,y) and the

local orientation φ s(x,y) compose the orientation field ex-

tracted with the steerable Gaussian second-derivative filter.

1.1.2. Quadrature-pair Gaussian-derivative-based

steerable filters. The Gaussian second-derivative steer-

able filter forms a quadrature pair with its Hilbert

transform. Freeman and Adelson [9] present an approxi-

mation sh(x,y) of the Hilbert-transformed filter composed

of a polynomial times a Gaussian function in (x,y). With

the inclusion of the scale factor σ , the Hilbert-transformed

steerable kernel implemented in our work is as follows:
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−2.205x + 0.9780x3
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The integral of |sh(x,y)|2 over the R
2 plane is normalized

to unity. This function requires four basis angles to steer:

θ h
1 = 0, θ h

2 = π/4, θ h
3 = π/2, and θ h

4 = 3π/4. The corre-

sponding interpolation functions are given by
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Analogous to the steerable Gaussian second-derivative

filter in the preceding section, we define W h
θ (x,y) as the

output of filtering the given image I(x,y) with the filter

sh
θ (x,y). The combined energy of the quadrature pair is

given by |W sh
θ (x,y)|2 = |W s

θ (x,y)|2 + |Wh
θ (x,y)|2, which can

be decomposed in a Fourier series of only even frequencies

in θ , for a given (x,y). Let Csh
1 and Csh

2 be the cosine and

sine coefficients of the second harmonic of |W sh
θ (x,y)|2.

Then, the local orientation φ sh(x,y) of I(x,y) is defined as
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The coordinates (x,y) have been dropped for clarity. The

magnitude of the output of the quadrature-pair filter is

given by Esh(x,y) = |W sh
θopt

(x,y)|. The magnitude Esh(x,y)

and the local orientation φ sh(x,y) compose the orientation

field extracted with the steerable quadrature-pair Gaussian

second-derivative filter.

The Gaussian second-derivative filter will be henceforth

referred to as the steerable filter only; the quadrature-pair

Gaussian second-derivative filter will be referred to as the

quadrature steerable filter.



1.2. Gabor filters

Gabor filters are a category of filters obtained from the

modulation of a sinusoidal function (real or complex) by

a Gaussian envelope [10]. The Gabor filter represents

the best compromise between spatial localization and fre-

quency localization, as measured by the product between

the spatial extent and the frequency bandwidth of the fil-

ter [10]. In image processing applications, Gabor filters

may be used as oriented feature detectors [11, 5, 6].

1.2.1. The real Gabor filter . The real Gabor filter kernel

oriented at the angle θ = −π/2 is given by

gr(x,y) =
1

2πσxσy

exp

[

−1

2

(

x2

σ2
x

+
y2

σ2
y

)]

cos(2π f x) .

(1)

Kernels at other angles can be obtained by rotating this ker-

nel over the range [−π/2,π/2]. In the present work, the pa-

rameters in Equation (1), namely σx, σy, and f , are derived

from design rules as follows:

• Let τ be the full-width at half-maximum of the Gaus-

sian term in Equation (1) along the x axis. Then,

σx = τ/(2
√

2ln2) = τ/2.35.

• The cosine term has a period of τ; therefore, f = 1/τ .

• The value of σy is defined as σy = l σx, where l de-

termines the elongation of the Gabor filter in the y di-

rection, as compared to the extent of the filter in the x

direction. In this work, we use l = 8.

The parameter τ controls the scale of the filter.

Let φ r(x,y) be the angle of the oriented feature at (x,y),
and gr

k(x,y), k = 0,1, · · · ,17, be the real Gabor filter ori-

ented at αk = −π/2 + πk/18. The functions gr
k(x,y), k =

0,1, · · · ,17 form a bank of real Gabor filters, from which

the orientation field can be extracted. Let I(x,y) be the im-

age being processed, and W r
k (x,y) = (I ∗gr

k)(x,y) represent

the Gabor-filtered images, where the asterisk denotes linear

convolution. Then, the orientation field of I(x,y) produced

by the bank of real Gabor filters is given by the angle

φ r(x,y) = αkmax
where kmax = arg{max

k
[|W r

k (x,y)|]} ,

and by the magnitude of the output of the real Gabor filter

at the optimal orientation Er(x,y) = |W r
kmax

(x,y)|.

1.2.2. The complex Gabor filter. The complex Gabor fil-

ter kernel oriented at the angle θ = −π/2 is given by

gc(x,y) =
1
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exp
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−1
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(
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= gr(x,y)+ jgi(x,y), (2)

where gr(x,y) is the real Gabor filter of the preceding sec-

tion, and gi(x,y) is the imaginary component of the com-

plex Gabor filter, given by

gi(x,y) =
1

2πσxσy
exp

[

−1

2
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+
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σ2
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Analogous to the real Gabor filter, complex Gabor kernels

at other angles can be obtained by rotating gc(x,y) over the

range [−π/2,π/2]. The same design rules as described in

Section 1.2.1 apply for the selection of the parameters σx,

σy, and f .

The imaginary part of the complex Gabor filter approx-

imates the Hilbert transform of the real Gabor filter; hence,

the complex Gabor filter acts as a quadrature pair. Let

W r
k (x,y) be the result of filtering a given image I(x,y) with

the real Gabor filter gr(x,y); let W i
k(x,y) be the result of fil-

tering I(x,y) with the imaginary component gi(x,y) of the

complex Gabor filter; and let W c
k (x,y) be the result of fil-

tering I(x,y) with the complex Gabor filter gc(x,y). From

Equation (2), it is evident that the following relationship

holds: |W c
k (x,y)|2 = |W r

k (x,y)|2 + |W i
k(x,y)|2. The orienta-

tion field computed with the complex Gabor filter bank is

given by the angle field φ c(x,y), with

φ c(x,y) = αkmax
where kmax = arg{max

k
[|W c

k (x,y)|]} ,

and by the magnitude of the output of the complex Gabor

filter at the optimal orientation Ec(x,y) = |W c
kmax

(x,y)|.

1.3. Line operator

In a recent article, Zwiggelaar et al. [8] compared sev-

eral methods for the detection of linear structures in mam-

mographic images, namely: steerable filter [9], orientated

bins [12], ridge detector [13], and line operator [4]. The

line operator was shown to have the best detection perfor-

mance among the oriented feature detectors investigated.

The oriented feature detection methods investigated by

Zwiggelaar et al. operate in a multiscale mode: the original

image is decomposed in a Gaussian pyramid [14], and the

methods are applied to each level of the pyramid.

The basic line operator kernel is sensitive to horizon-

tal lines: detection of lines at an arbitrary orientation is

achieved by rotating the basic line operator kernel. Let

H(x,y) be the average of NL pixels along a horizontal line

segment centered at (x,y), and B(x,y) be the average of the



pixel values inside a square box of width NL, centered at

(x,y) and aligned with the Cartesian axes. The line oper-

ator kernel is then given by L(x,y) = H(x,y)−B(x,y). In

this work, we employ NL = 5 pixels. Figure 1 illustrates

the basic line operator kernel.
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Figure 1. Basic line operator kernel, aligned with
the x axis.

Let I(x,y) be the image containing the lines to be de-

tected, and Lk(x,y) be the line operator kernel rotated to the

angle βk =−π/2+πk/18, k = 0,1, · · · ,17. Let W l
k (x,y) be

the result of filtering I(x,y) with Lk(x,y). The orientation

of the line detected at pixel (x,y) is denoted by φl(x,y), and

is obtained as

φ l(x,y) = βkmax
where kmax = arg{max

k
[|W l

k (x,y)|]} ,

and the magnitude of the result of the line operator filtering

is given by E l(x,y) = |W l
kmax

(x,y)|.
Contrary to the steerable filters and the Gabor filters,

the line operator does not provide a parameter for scaling.

Multiscale analysis using the line detector is performed by

decomposing I(x,y) into a Gaussian pyramid [14], and ap-

plying the line operator at each level of the pyramid. Two

operations are defined in the framework of Gaussian pyra-

mids: reduction (low-pass filtering followed by decimation

by a factor of two) and expansion (the image is augmented

with the interleaving of zeros and subsequent filtering, ex-

panding the resolution by a factor of two). The Gaussian

pyramid of a given image I(x,y) is a collection of images

Ip(x,y) obtained by the successive reductions, where p de-

notes the number of reductions applied. The expanded im-

ages Ie
p(x,y) are obtained through the expansion of Ip(x,y)

to the original resolution of I(x,y).
The scale of the line operator is defined as λ = 2p, where

p indicates that the line operator is applied to the reduced

Ip(x,y) image. The magnitude of the result of the line op-

erator applied to Ip(x,y) is expanded to the original reso-

lution, in order to obtain the final magnitude E l(x,y). The

line orientation produced by the application of the line de-

tector to Ip(x,y) is expanded to the original resolution using

nearest-neighbor interpolation. (Linear interpolation is not

applicable to angular quantities, as it would lead to incon-

sistent results. For instance, the average of 0o and 180o is

90o, indicating a vertical orientation that is incompatible

with the horizontal orientations being averaged.)

2. Comparative analysis of the oriented fea-

ture detectors

The aim of the present work is to compare the detection

performance and orientation accuracy of the five oriented

feature detectors presented in Section 1. The detection per-

formance is defined in terms of the ability of each filter to

detect linear structures in the presence of noise and impre-

cision in the specification of scale. The orientation accu-

racy is given in terms of the cumulative angle error for the

pixels belonging to the lines in the test pattern used.

A test image of size 512× 512 pixels was employed in

this work. The test pattern includes 34 line segments ori-

ented at equally spaced angles, distributed radially around

a circle with a radius of 70 pixels. Each line segment has

a length of 115 pixels and a width of two pixels. The test

image background was set to 0.4, and the line segments

were set to 0.6, in the normalized scale [0,1] for gray lev-

els. The test pattern was corrupted with various levels of

Gaussian noise (standard deviation range: [0,0.5], in steps

of 0.05), allowing the analysis of the robustness of each fil-

ter to noise. Figure 2a shows the test pattern corrupted by

Gaussian noise of standard deviation 0.2.

The number of line segments was chosen as 34 in or-

der to prevent synchronization between the angles of the

kernels of the Gabor filter banks (real and complex) and in

the line operator filter banks. Over the half-closed angular

interval [0,180) degrees, we have 17 line segments and 18

kernels in each filter bank. As a consequence, the absolute

angular error between the angle of a given line segment and

the closest kernel angle in the filter bank will evenly span

the range [0,5) degrees. The same reasoning applies to the

line segments oriented at angles in the half-closed angu-

lar interval [180,360), because orientation angles follow a

congruence arithmetic modulo 180 degrees.

The orientation field of the test image was obtained, for

each level of noise, and for different values of the corre-

sponding scale parameter with each filter. Figure 2 shows

the orientation field magnitude obtained with each of the

five oriented feature detectors.

For each filter, a pixel was considered to be part of a

linear structure if the magnitude of the orientation field at

that pixel exceeded a given threshold. In this manner, re-

ceiver operating characteristics (ROC) analysis [15] can be

performed to investigate the detection performance of each

filter. The detection performance measure was defined as



(a) (b) (c)

(d) (e) (f)

Figure 2. Orientation field magnitude ob-

tained with each oriented feature detector. (a)

Test pattern, corrupted with Gaussian noise
(standard deviation = 0.2). (b) Steerable filter (σ =
3.5 pixels). (c) Quadrature steerable filter (σ = 2.1
pixels). (d) Real Gabor filter (τ = 10 pixels). (e)
Complex Gabor filter (τ = 5.5 pixels). (f) Line oper-

ator (λ = 2 pixels).

the area under the ROC curve [15], denoted by Az. The

value of Az was obtained for each noise level, and for sev-

eral values of the scale parameter of each filter; the results

are shown as topographic maps in Figure 3.

The definition of the scale parameter varies across the

oriented feature detectors implemented in this work, intro-

ducing a degree of freedom in multiscale comparison of the

different detectors: the scale measurement of each detector

may differ from the remaining detectors by a multiplica-

tive factor. Therefore, the base-ten logarithm of the scale

parameter is employed in the present analysis, instead of

the linear scale, in order to allow straightforward compari-

son of the different detectors. The logarithm operation con-

verts any multiplicative factor into a summation constant,

and comparisons of interval length in the scale parameter

are not influenced by this constant. In particular, it is possi-

ble to integrate the detection performance of each detector

(given by Az, as previously mentioned) with respect to the

logarithm of the scale parameter.

The following observations apply to all of the oriented

feature detectors investigated in this work:

• The value of Az decreases with the noise level. A

slower decay in Az versus noise denotes greater ro-

bustness to noise.

• For a given level of noise, there is an optimal range of

values for the scale parameter associated with a high
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Figure 3. Topographic map showing Az for the ori-
ented feature detectors studied, at various levels

of noise and scale (std = standard deviation). (a)

Steerable filter. (b) Quadrature steerable filter. (c)
Real Gabor filter. (d) Complex Gabor filter. (e) Line

operator.

Az value. This range can be interpreted as an indica-

tor of robustness to imprecision in the specification of

scale in the design of the filter, in relation to the actual

width of the feature in the given image. Conversely,

for a single-scale detector, the range of optimal values

is associated with the variation of characteristic widths

of oriented features for which the oriented feature de-

tector can provide a high detection capability.

A measure to represent the combined robustness to noise

and scale of each detector is proposed in this work, as the

area of the domain (noise level, log10 of the scale param-

eter) for which Az > 0.9. Table 1 presents the robustness

measure of each detector.

In order to illustrate better the robustness of each ori-

ented feature detector to imprecision in the specification of



scale, the standard deviation of the noise in the test image

was set to 0.2, and the area under the ROC curve Az was

analyzed as a function of scale only, for each detector. The

following parameters were obtained for each oriented fea-

ture detector, and the results are shown in Table 1:

• The best scale;

• The range of scale (in pixels) in which Az > 0.9, called

the detection range;

• The equivalent detection range, in millimeters, if the

scale parameter is normalized around the width of

1 mm for the oriented feature.

In order to evaluate the angular precision of the detec-

tors, the cumulative angular error was obtained at the best

scale (shown in Table 1), and with a noise standard devi-

ation of 0.2.; Figure 4 displays the results of the cumula-

tive angular error analysis, i.e., the fraction of the positive

(line) pixels whose angular error is smaller than a given an-

gular tolerance. It is observed that the real and complex

Gabor filters present the best accuracy: almost 100% of the

line pixels (pixels belonging to the true line pattern in the

test image) in the orientation field generated by these filters

present an angular error smaller than 10 degrees.
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Figure 4. Cumulative error for each oriented

feature detector: steerable filter (dotted line);
quadrature steerable filter (dash-dot line); real Ga-

bor filter (dashed line); complex Gabor filter (solid

line); line operator (bold solid line). The curves
associated with the real and complex Gabor filters

overlap significantly.

3. Discussion

This work presented a performance analysis of five ori-

ented feature detectors, in terms of their ability in the detec-

tion of oriented features and accuracy in the determination

of the angle of the oriented features of interest. The per-

formance measures were evaluated in the presence of noise

and imprecision in the specification of scale.

All of the oriented feature detectors investigated in this

work are based on filter banks consisting of filtering ker-

nels that are sensitive to the presence of oriented features.

Each filter presents a main positive lobe that is elongated

at a certain orientation, surrounded by negative sidelobes

that are parallel to the main lobe, in order to highlight the

presence of linear features at a particular orientation. The

results of filtering for each filter bank are combined to form

two maps: the magnitude map, which indicates the inten-

sity of the oriented feature at each pixel, and the angle map,

which indicates the orientation of the feature at each pixel.

The magnitude and angle maps are referred to as the orien-

tation field of the image under analysis.

The detection performance of the oriented feature detec-

tors in the presence of noise and scale imprecision is shown

in Figure 3. It is observed that the all of the oriented feature

detectors studied present a reduction in Az with increasing

noise, as expected. The Gabor filters (real and complex)

are the most robust: the Gabor filters generally present a

larger range of noise over which the detection performance

is greater than 0.9. On the same token, the line operator

is the most sensitive to noise. This result can be explained

in terms of the spatial extent of the filters investigated: the

main lobe of the Gabor filters has a larger length-to-width

ratio than that of the other filters, thus enhancing more ef-

fectively the signal-to-noise ratio after filtering.

The robustness to imprecision in scale specification is

also shown in Figure 3; it is noticed that, for a given level of

noise in the test image, each oriented feature detector has

an optimal range of scales in which the detector presents

good detection performance (defined as Az > 0.9). Table 1

shows the optimal scale range of each oriented feature de-

tector, for a noise standard deviation level of 0.2 in the test

image; conversion of the optimal scale range to millime-

ters is also given for easier comparison of the oriented fea-

ture detectors. The optimal scale range was converted to

millimeters in such way that the oriented feature width of

1 mm is placed at the center of the optimal scale ranges. It

is observed that the steerable filter, quadrature steerable fil-

ter, and the real and complex Gabor filters, present similar

optimal scale range (in millimeters). The line operator has

a significantly reduced optimal scale range (in millimeters),

when compared to the other oriented feature detectors. It is

possible that the implementation of scale control using the

Gaussian pyramid results in reduced flexibility of the line

operator to adapt to the size of the oriented feature to be

detected.

It must be noted that the optimal scale range of all ori-

ented feature detectors can be enhanced with the adoption

of a multiscale strategy: each oriented feature detector can

be applied to the image under analysis at different values of

the scale parameter, resulting in an orientation field for each

scale. The final orientation field is then obtained as follows:



Table 1. Robustness measure, best scale, and detection range for each oriented feature detector. The
best scale and the detection range values are obtained at a noise standard deviation of 0.2 in the test

image.

Detector Robustness Best scale [pixels] Detection range [pixels] Detection range [mm]

Steerable 0.25 3.5 1.7−9.7 0.3−1.7
Quadrature steerable 0.22 2.1 1.3−7.3 0.3−1.7
Real Gabor 0.33 10.0 4.0−32.5 0.2−1.8
Complex Gabor 0.34 5.5 3.4−26.2 0.2−1.8
Line operator 0.14 2.0 1.9−4.3 0.6−1.4

the magnitude of the final orientation field, at a given pixel,

is the largest magnitude across the set of orientation fields

that are obtained for each scale; the final angle is taken as

the angle of the orientation field at the scale that provided

the largest magnitude response. Nevertheless, the analy-

sis of the optimal scale range is relevant: given a range of

characteristic widths of several oriented features to be de-

tected in an image, the analysis of the optimal scale range

as above permits the appropriate selection of the scale pa-

rameter values, in the multiscale operation of each oriented

feature detector. The set of scale parameter values must be

chosen in such a manner that the union of the optimal scale

ranges, associated with each scale chosen, covers the given

range of the characteristic widths of the oriented features

of interest.

The effect of noise and scale imprecision in the detec-

tion capability of each oriented feature detector may be

summarized in a single combined robustness measure, as

shown in Table 1 and described in Section 2. It can be

observed that the real and complex Gabor filters have the

best combined robustness measure, followed by the steer-

able filters; the line operator presents the lowest robustness.

As mentioned in the preceding discussion, the Gabor and

steerable filters have a similar optimal scale range, and the

Gabor filters have a higher robustness to noise. The line

operator has a reduced optimal scale range and low robust-

ness to noise, when compared with the Gabor and steerable

filters. Therefore, the ranking of the oriented feature de-

tectors according to the combined robustness measure is

consistent with the preceding discussion.

The angular precision of the oriented feature detectors is

illustrated in Figure 4. It was observed that the Gabor filters

have the best accuracy among the oriented feature detectors

studied in this work. The line detector has the poorest ori-

entation accuracy. These results are a consequence of the

length-to-width aspect ratio of the main lobe of the filters.

The Gabor filters have the highest aspect ratio; hence, the

oriented Gabor kernel corresponding to the optimal orien-

tation will prevail over the remaining kernels in the Gabor

filter bank in terms of the magnitude of the output, result-

ing in less ambiguity when deciding upon the orientation

of the feature at a given pixel.

The steerable filter has the highest computational speed,

because it depends on three filtering operations only, fol-

lowed by the quadrature steerable filter, whose filter bank

consists of seven filters. The line operator implemented in

this work required 18 filters; the width of the filter kernels

is small (5× 5 pixels), allowing the efficient implementa-

tion of each line operator filter as a convolution operation.

The Gabor filters require the highest computational effort:

both the real and complex Gabor filter banks required 18

filters, which were implemented as frequency-domain fil-

ters instead of convolution operations in the space domain.

Combining the preceding observations, it can be noted

that the Gabor filters present the best detection performance

and angle accuracy, followed by the steerable filter, quadra-

ture steerable filter, and the line operator. The steerable

filter has the best computational performance, followed by

the quadrature steerable filter; the Gabor filters have the

highest computational requirement among the oriented fea-

ture detectors analyzed in this work. As a consequence, it is

recommended that steerable filters be employed in applica-

tions where computational speed is important, and Gabor

filters be used when high detection performance and an-

gular accuracy are required. The Gabor filters are recom-

mended in the case of noisy images or when the presence

of oriented features is subtle. We have found the real Ga-

bor filter to perform well in the detection of architectural

distortion in mammograms [5, 6].

The line operator exhibited the poorest performance

among the oriented feature detectors studied, in contrast

with the results obtained by Zwiggelaar et al. [8]. This dif-

ference can be explained in terms of the methodological

differences between the present work and that of Zwigge-

laar et al. The key methodological aspects of the work of

Zwiggelaar et al. (in regards to the evaluation of the de-

tection performance of the line operator and the steerable

filter) are as follows:



• The test image contained line segments of length 29

pixels; of width of two, four, and eight pixels; and

of orientation from 0o to 180o in steps of 5o. The

line segments were superimposed on a background

image that consisted of a square region extracted from

the mammographic image of a fatty breast. Artificial

noise was not added to the test image.

• The oriented feature detectors studied were operated

in a multiscale strategy as follows: the test image was

decomposed into multiple scales using the Gaussian

pyramid (four levels), and each oriented feature de-

tector was applied to each level of the pyramid; the

resulting orientation fields were combined to form the

final orientation field for the given image. The scale

of each oriented feature detector was kept constant;

the scale of the image was changed in the Gaussian

pyramid.

The Gaussian pyramid decomposition procedure effec-

tively halves the resolution of the image from one level

of the pyramid to the next. Therefore, the application of

single-scale oriented feature detectors at each level of the

pyramid is similar to the application of multiple-scale ori-

ented feature detectors to the original image, where the val-

ues of the scale parameter follow a geometric progression

of ratio two. Observe that the characteristic widths of the

line segments used by Zwiggelaar et al. in the test im-

age also follow this geometric progression pattern. Conse-

quently, it is possible to associate each characteristic width

of the line segments in the test image with a level in the

Gaussian pyramid: in this manner, the performance evalua-

tion of the multiple-scale oriented feature detectors shown

in the work of Zwiggelaar et al. is analogous to a single-

scale analysis of the oriented feature detectors, where the

characteristic width of the test line segments is equal to

two. Hence, the scale parameter in the steerable filter must

be properly tuned in order to obtain the best detection per-

formance from this filter, as shown in the present work. It

is possible that the value of σ = 0.8 chosen by Zwigge-

laar et al. for the steerable filter is suboptimal, resulting in

a poorer performance when compared to the line operator.

A limitation of the present study is that only one basic

test pattern was used (with variation in the noise level). Fu-

ture work should include different patters that may reveal

other aspects of the oriented feature detectors studied, and

test the methods to the limits of their capability.
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