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Abstract

Images rendered using global illumination algorithms are
considered amongst the most realistic in 3D computer
graphics. However, this high fidelity comes at a significant
computational expense. A major part of this cost arises from
the sampling required to eliminate aliasing errors. These
errors occur due to the discrete sampling of continuous ge-
ometry space inherent to these techniques. In this paper
we present a fast analytic method for predicting in advance
where antialiasing needs to be computed. This prediction
is based on a rapid visualisation of the scene using a GPU,
which is used to drive a selective renderer. We are able
to significantly reduce the overall number of anitialiasing
rays traced, producing an image that is perceptually indis-
tinguishable from the high quality image at a much reduced
computational cost.

1 Introduction

High-fidelity rendering is responsible for producing the
highest quality perceivable images simulated through
physically-based illumination of a virtual scene. Render-
ing such images is notoriously computationally expensive
through having to fully solve the rendering equation [15].
Ray-tracing [36] and its extensions, particularly variants of
stochastic ray-tracing [6, 15], have long been the algorithms
of choice for solving the rendering problem. For each pixel
in the screen a number of samples are shot and the radiance
is calculated for each one resulting in lengthly execution
times. The computation cost is further accentuated since
certain areas of the resulting images require more samples
than others per pixel in order to reduce aliasing artifacts that
arise from areas of high spatial frequencies. Quality defi-
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Figure 1. Under sampled global illumination
image demonstrating aliasing artifacts.

ciencies (aliasing errors) are highly noticeable if a particular
pixel contribution is not sufficiently sampled. These errors
occur if the data collected for a pixel is incomplete due to
insufficient sampling.

Figure 1 shows a rendered scene containing aliasing errors.
The majority of these, known as jaggies, occur at edges in
the scene. Particularly obvious are the errors on the back of
the chair in the foreground. This image was created using
the lighting simulation system Radiance [34]; only one jit-
tered ray was traced for each pixel. Unfortunately, tracing
more sample rays for each pixel to improve the quality of
the result increases computation linearly. Several common
sampling methods exist that are used widely in global illu-
mination applications. These include supersampling, adap-
tive sampling [36], and stochastic sampling [5]. All of these
methods, however, are over conservative as they operate
with no knowledge of the actual content of the scene; pixels
where no aliasing would occur are still sampled to a certain
extent.

When considering ray tracing, the number of samples



needed per pixel can be adjusted based on the complexity
of that area of the image. Complex areas where many ob-
jects contribute to the image may require many samples to
deal with antialiasing. However, a much lower number of
rays may be traced for areas occupied by a single surface.
An alternative to actually rendering the scene, is to develop
a method to extract the necessary pixel level information
from the scene geometry. This technique should be fast, at
least relative to rendering the final result, otherwise the ad-
vantages of selective rendering are nullified. An estimate
of the resultant image would indicate the sampling require-
ment for each pixel and unnecessary rays would not need to
be traced thus significantly reducing rendering times.

Fortunately, modern graphics hardware provides, albeit at
a reduced quality, the ability to rapidly generate locally il-
luminated images of a scene. This paper investigates how
an aliasing error prediction map, which we term aamap can
be used to selectively render a high-fidelity image only su-
persampling pixels when necessary. The aamap is achieved
by using a GPU to first rapidly estimate the image using a
traditional rasterisation pipeline, a technique we term Snap-
shot. Subsequently we generate the aamap on the GPU it-
self gaining a speedup over the CPU had it been used for this
image processing calculation. This information is then used
to correctly direct our selective renderer, an extension of
the lighting simulation package Radiance, to produce per-
ceptually high quality images at significantly reduced com-
putational times. We demonstrate the speedup for selective
rendering two scenes under a number of anitialiasing set-
tings and furthermore demonstrate, by the use of a Visible
Differences Predictor (VDP) [8], that there is no perceptual
difference between the supersampled version and our novel
technique.

This paper is divided as follows. Section 2 presents related
work in the field. Section 3 introduces the quick image es-
timate and discusses the generation of the aamap using the
GPU. Section 4 presents our adaptive antialiasing selective
renderer. Section 5 presents speedup for two scenes. Sec-
tion 6 compares the supersampled rendering with our ap-
proach using the VDP. Finally, Section 7 presents conclu-
sions and future work.

2 Related Work

In this section we discuss related work in antialiasing, the
GPU as a method of accelerating high-fidelity rendering and
finally, since we use VDP to evaluate our results we present
related work in that area.

2.1 Antialiasing

Antialiasing was first identified by Crow to be a major
source of artifacts in computer generated images [7]. Since
then, there has been significant work on antialiasing for ray
tracing applications, for example see [5, 9, 24, 27, 31].

Previous work to accelerate the processes of antialiasing
and primary ray calculation has included, using visible sur-
face preprocessing to create view and/or light buffers to de-
termine which areas of the image contain objects or are
in shadow since these methods are generally much faster
than the rendering process [3, 12] and lend themselves to
implementation in hardware [38]. Antialiasing is achieved
by subdividing pixels and hence effectively storing a higher
resolution image. The aliasing effects still appear however
for objects and edges that are smaller than the higher reso-
lution level.

Salesin and Stolfi [30] proposed the ZZ Buffer which stores
tile lists for cells of pixels. Each tile list contains a linked
list of objects visible for that cell and the maximum and
minimum depth of the list. In addition, each tile in the list
contains the data from a single object clipped to fit the cell
and its maximum and minimum depth. The ZZ Buffer pro-
duced is then scanned at render time to determine the com-
plexity of the tiles; simple tiles are sampled with a single
ray whereas complex tiles are super-sampled with a uni-
form number of rays to produce anti-aliasing. Again this
super-sampling approach leaves the possibility of missing
sub-pixel objects that occur between the sampling rays.

Adaptive super-sampling [18] used statistical analysis to de-
termine, for each pixel, when enough rays have been traced
by determining when the contribution of additional rays is
insignificant. While this is an effective method of produc-
ing high quality images there is the problem of not knowing
how many rays are going to be needed and hence complex
scenes can have a significant rendering cost.

2.2 Programmable Graphics Hardware

The performance of modern GPUs has risen to tens of
Gflops well above the performance of CPUs for certain
types of application [2]. While GPUs can be used for a nu-
merous number of rasterisation based techniques [10] our
primary interest is in their use as an aid to high-fidelity
rendering. GPUs have been used to accelerate ray-tracing
renderers in a number of distinct methods including hybrid
CPU and GPU ray-tracers [4], GPU only ray-tracers [28]
and for general purpose computation [2] which can be tied
into ray tracing. These systems are however not fully-
fledged physically-based renderers. GPUs have been used



for quick image estimates for generating saliency maps that
can be used by the high-fidelity renderer [20, 39]. The esti-
mates are then used as input to a saliency map [13, 14, 16]
generator. In these systems the GPU does not need to do
any extra processing apart from the standard rasterisation
pipeline. Our approach differs from all the above in that it
not only assists a high-fidelity renderer but also we exploit
the fast image processing availabilities of the GPU itself to
generate the aamap

2.3 Perceptual Image Difference Techniques

Image quality metrics have been developed using psy-
chophysical approaches and computational techniques to
differentiate between pairs of images [17, 22, 26, 29, 35].
There are numerous metrics that can be applied to a com-
pare a pair of images, however if a perceptual visual dif-
ference is required, the metric must somehow consider the
workings of the human visual system (HVS). The two main
approaches that fulfill this criterion are the Sarnoff Visual
Discrimination Model (VDM) [1, 21] and Daly’s Visual
Difference Predictor (VDP) [8, 25]. There have been sev-
eral evaluations of these measures [19, 23, 40].

3 The Snapshot

Snapshot produces a rapid image estimate from the scene
description. We chose OpenGL as a basis for our analyt-
ical antialiasing technique because it is well supported in
hardware, it is fast and portable. Snapshot is designed to
read model data from a Wavefront “.obj” file. This is an es-
tablished format which many renderers can read. Lighting
information is read in from a simple custom light file for-
mat which states position and emission properties. Camera
positions are handled through the same view files used by
Radiance. Multiple views can be stipulated in one of these
files to represent an animation.

Shadows and reflections are a key component of any high
fidelity image and thus it is important that these too are
antialiased correctly. To predict the shadow boundaries,
we generated shadows in our scenes by projecting shadow
maps from the front and back of each light source [37]. Mir-
ror reflections are generated by redrawing the scene’s geom-
etry from a reflected camera position onto the mirror plane.
Figure 2 illustrates correct shadows and reflections gener-
ated from our system. It would be possible to predict more
general reflections and also refractions within Snapshot us-
ing a technique such as cubic environment mapping [33].
This is something we will consider in the future; it is how-
ever debatable how much errors in these regions would de-
tract from a final image.

Figure 2. Snapshot with texture mapping,
shadowing and reflections.

Common OpenGL hardware extensions were used to of-
fload the generation of the shadows, and to perform high
resolution off-screen renders. A potential cost of creating
the aamap was the time required to read the result back
from the screen. We were, however, able to keep this cost to
a minimum by using a graphics card built for PCI-Express
bus architecture. This is a new standard which allows high
speed bi-directional communication with PC cards.

Initially the Snapshot is created based on all the information
available for the scene. Pixel prioritisation can then occur
using the aamap generated from this preview. Additional
information such as task relevant pixels can also be intro-
duced at this stage [32].

3.1 Creation of the Pixel Prioritisation Map

Aliasing artifacts appear in a rendered image typically at
the edges of objects and shadows. The strategy for iden-
tifying where these errors occur makes use of a high pass
filter, or edge detector. An initial consideration may be to
use a filter in fourier space, however the key feature of the
generation of our map is the speed that can be gained from
good use of the GPU. Although an FFT can be performed
relatively quickly on recent CPUs, for this application, im-
age space filtering is preferable as image convolution filters
lend themselves well to implementation on graphics hard-
ware. We used a standard 5×5 Laplacian filter as we found
this filter good at picking up both low contrast edges and
high frequency texture information. Other filters which are
instead gradient based, such as the Sobel or Prewitt, would
work equally well. Future work will consider a combina-
tion of components from a Haar wavelet decomposition as
an alternative to the Laplacian. Figure 4 compares the time
required to filter an image with a 5×5 filter kernel on a stan-
dard CPU and on a modern graphics card. It is clear from



Figure 3. Greyscale Snapshot (left), Laplacian edge map (middle), and aamap (right).

the graph how even a current, high performance, proces-
sor cannot come close to matching the raw pixel processing
power of the graphics card. The advantage that a GPU has
over a conventional CPU for this type of application is the
inherent parallelism. The 6600GT that we use, for exam-
ple, has 12 pipelines allowing for 12 pixels to be filtered
concurrently. Due to this, in this comparison the GPU is
consistently at least 5 times faster regardless of resolution.
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Figure 4. Linear image filtering: Nvidia
6600GT GPU vs. P4 3.4Ghz CPU.

To undertake the required filter on the graphics hardware we
used a fragment shader written in CG. CG is a language de-
veloped by Nvidia, that works in conjunction with either Di-
rectX or OpenGL, to program certain aspects of the graph-
ics pipeline [11]. A fragment shader can be simply thought
of as a small program that operates once per fragment (in
this case a fragment equates to a pixel). To use a shader to
computer image filtering we first draw the scene as normal
and record this into a texture. The next step is to create a
square which exactly fits the screen. Our shader modifies
each pixel of this square as it is drawn with values from the
texture image. The resulting image (the filtered result) can
then be read into a second texture, which, in turn can be
passed as an image into our selective renderer. In this way

it is possible to recreate almost any local image filter on a
modern GPU.

Figure 3 shows the intensity image from Snapshot along
with the initial edge map and the final aamap. Because the
edges in the initial Laplacian edge map themselves suffer
from aliasing, we blurred the edges using an averaging filter
to construct the aamap. Additionally, given the relatively
low cost of the generation of these maps (see figure 4) it
was possible for us to increase their accuracy by creating
them at a larger resolution than the final render.

4 Selective Rendering

In order to demonstrate the effectiveness of our approach we
have extended the lighting simulation system Radiance ren-
derer rpict to a new renderer we term apict. apict
performs jittered stratified sampling. A user-defined vari-
able sets the level of stratification per pixel effectively dic-
tating the number of rays shot per pixel. apict can be
passed as a parameter the aamap in the form of a grey-level
map generated by Snapshot. The aamap dictates to apict
two methods for sub-sampling. Firstly, the grey-level in the
map modulates the stratification parameter, from one to the
stratification value defined by the user. Secondly, the map
is used to direct adaptive subsampling. The adaptive sub-
sampling shoots a ray for every fixed number of pixels in
both the x and y direction. The distance between rays shot
is given by a user parameter. A common value is 8 or 16.
Whenever the four rays outlining an area are shot, the value
of the pixels in aamap corresponding to that same area are
consulted. If the total of their values is greater than a user-
specified value (typically 0, meaning the map must be com-
pletely black in this area), the area is subdivided into four
and the same procedure is applied recursively until the area
corresponds to one pixel. When the total value of the area in
the aamap is less than or equal to the threshold, the values



Figure 5. Interpolated adaptive subsampling (left), aamap (middle), and result (right)

within this area are interpolated. Figure 5 (left) illustrates
which rays are shot for the adaptive subsampling algorithm
given an aamap (middle) and the final image (right) shows
the final interpolated solution.

5 Results

We show timings for two scenes to demonstrate the effec-
tiveness of our approach. All timings shown in this sec-
tion were achieved on a dual Intel Xeon 2.4GHz with 3GB
of ram under Linux. The aamap timings are based on an
Nvidia 6600GT AGP graphics card.

We used a Cornell box scene and a scene designed to con-
tain a large number of edges (Figure 3). To simulate the
area light source used within the Cornell box we subsam-
pled the light source with five point light samples. This was
necessary as it is not currently possible to create area light
sources in OpenGL environments. This scene took less than
30ms to create a Snapshot of a 768×768 frame on the GPU.

The second scene contained ≈130,000 triangles and 6 light
sources, this required 13 passes within Snapshot (a first pass
and two passes per light source) totaling 155ms for a 768×
768 frame. We used a brute force approach to create our
images; this time could easily be improved however through
some simple OpenGL optimisations, for example invisible
object culling. All final timings for both scenes relate to a
rendering a 512×512 final frame.

The timing results for our Cornell box test are shown in
table 1. The time taken to create the aamap is included
however, given the simplicity of the scene, this had a negli-
gible impact on the overall time. We compared times for the
baseline cases where the same number of rays were traced
for every pixel (rpp), against selectively rendering using our
map. The aamap defined the number of rays traced for each
pixel from 1 ray up to the fixed maximum. Additionally we

Time (s)
rpp SELECTIVE

STANDARD Non-Adaptive Space 8 Space 16
1 6.53 1.74 1.75
4 24.52 7.33 2.46 2.43
16 96.46 21.07 10.23 10.15
36 216.21 40.71 22.18 22.18

Speedup
rpp Non-Adaptive Space 8 Space 16
1 3.8 3.7
4 3.3 10.0 10.1
16 4.6 9.4 9.5
36 5.3 9.7 9.7

Table 1. Timings for the Cornell box (rpp=rays
per pixel)

used the aamap with adaptive sampling to interpolate at 8
and 16 pixel spacing. For this scene we were able to ben-
efit greatly from using the map. For the selective sampling
case where the stratification level is 36 rays per pixel the re-
sultants image is indistinguishable from the reference high
quality image. However the selectively rendered image was
rendered more than 5 times as fast. Using the adaptive sam-
pling method in conjunction with selective rendering gave
us a further performance boost. Combining these strategies
we were able to reduce the rendering time by up to 1 order
of magnitude. This allowed us, in the time taken to perform
a standard render using 4 jittered rays per pixel, to selec-
tively render an image comparable to one with 9 times as
many rays traced (36rpp).

Table 2 shows the timings we achieved for our second
scene. Again the timings for images which were selectively
rendered include also the time taken to generate the aamap.
Given the complexity of the scene we did not witness such
a large reduction in rendering time, however we were able
to get a speed increase of almost 3 times. For both scenes
we witnessed a linear relationship between the render time
and the number of rays traced per pixel (Figures 6 and 7).



Time (s)
rpp SELECTIVE

STANDARD Non-Adaptive Space 8 Space 16
1 92.12 53.44 52.20
4 358.06 168.91 130.61 130.80
16 1464.79 586.98 533.35 549.13
36 3217.32 1316.09 1092.37 1101.55

Speedup
rpp Non-Adaptive Space 8 Space 16
1 1.7 1.8
4 2.1 2.7 2.7
16 2.5 2.7 2.7
36 2.4 2.9 2.9

Table 2. Timings for the room scene (rpp=rays
per pixel)
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Figure 6. Timing results from the Cornell box

These graphs also show that the relative performance gain
increases with the number of rays traced per pixel.

6 Perceptual Assessment of Results

For each scene the full solution was compared to each se-
lective render. These image pairs were evaluated using two
different metrics. To find pixel level errors, the mean square
error was found as a difference map then averaged for all
pixels. Secondly we used an implementation of Daly’s vi-
sual difference predictor to find the perceivable difference
between the images [8]. Primarily each image is treated
individually to remove frequencies that would not be wit-
nessed by a human observer. The remaining differences
are then weighted with regards to a multitude of frequency
and orientation channels. The metric is designed to high-
light, as a probability map, differences near and below a
just noticeable threshold. Figure 8 shows the room scene
rendered both using the full solution and selectively at the
highest quality we tested (36rpp) and a resultant VDP dif-
ference image. These predicted differences are, for display
purposes overlayed in red on the standard image. To gain a
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Figure 7. Timing Results from the room scene

single error value for each image we average the map. Al-
though this averaging gives a number which is comparable
between the different cases, unfortunately it does not relate
directly to the probability of detection of errors (the same
average could relate to an imperceivable error throughout
the image or a highly perceivable error in one location). For
every image this error was less than 1%. A more useful
statistic is the percentage of pixels which are in error, as
shown in table 3.

% Error Pixels: Cornell Box
rpp NON-ADAPTIVE SPACE 8 SPACE 16

VDP MSe VDP MSe VDP MSe
1 2.94 1.16 4.15 1.98
4 2.74 1.61 3.39 1.91 4.77 2.78
16 1.16 0.54 1.80 0.43 3.53 1.76
36 1.08 0.35 1.17 0.71 3.42 1.49

% Error Pixels: Room Scene
rpp NON-ADAPTIVE SPACE 8 SPACE 16

VDP MSe VDP MSe VDP MSe
1 2.55 8.62 2.57 10.97
4 1.21 9.91 1.32 10.83 1.29 11.19
16 1.00 11.47 1.21 12.25 0.39 12.05
36 0.28 10.60 0.29 37.96 0.30 38.61

Table 3. Selective quality percentage error

For every image we selectively rendered we observed a
correlation to the standard render with less the 5% of the
image’s pixels in error. The Cornell box scene measured
slightly worse, this is due to the area light source sampling.
Future work will investigate various alternative methods for
simulating area light sources from Snapshot. However for
the 36 rays per pixel case we were able to render scenes per-
ceptually identically to the standard case; neither scene had
a significant error at this level of detail.



Figure 8. High quality render (left) vs Selective render (middle), VDP difference overlayed in red (right)

7 Conclusions

We have successfully shown that selectively rendering a
scene based on our aamap can significantly reduce the time
taken to render the scene. Furthermore, we have shown the
resultant image to be perceptually indistinguishable from
the same image rendered traditionally. For our simple scene
we have achieved a speed up greater than one order of mag-
nitude. For our more complex scene, although we may
not achieve such an improvement, we still achieve a good
speedup. Using Snapshot we have demonstrated the abil-
ity to correctly predict areas where sampling is required to
reduce aliasing artifacts. Our selective renderer apict is
able to use this information to combine two separate sam-
pling strategies to reduce the time take to render the scene.

Future work will extend the process outlined in this paper to
include temporal antialiasing for animated sequences. Fur-
thermore we intend to extend the work from [20, 39] to be
more inline with our philosophy of hybrid GPU-CPU ren-
dering, whereby the relatively expensive saliency map com-
putations [14] will be computed on the GPU.
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