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Abstract

In a recent paper [1], a new type of watershed (WS)
transform was introduced: the tie-zone watershed (TZWS).
This region-based watershed transform does not depend
on arbitrary implementation and provides a unique (and
thereby unbiased) optimal solution. Indeed, many optimal
solutions are sometimes possible when segmenting an im-
age by WS. The TZWS assigns each pixel to a catchment
basin (CB) if in all solutions it belongs to this CB. Oth-
erwise, the pixel is said to belong to a tie-zone (TZ). An
efficient algorithm computing the TZWS and based on the
Image Foresting Transform (IFT) was also proposed.

In this article, we define the new concept of “bottle-
necks” in the watermerging paradigm. Intuitively, the bot-
tlenecks are the first contact points between at least two
different wave fronts. They are pixels in the image where
different colored waters meet and tie and from which may
begin, therefore, the tie-zones. They represent the origin
points or the access of the tie-zones (regions that cannot
be labeled without making arbitrary choices). If they are
preferentially assigned to one or another colored water ac-
cording to an arbitrary processing order, as occurs in most
of watershed algorithm, an entire region (its influence zone
– the “bottle”!) is conquered together. The bottlenecks play
therefore an important role in the bias that could be intro-
duced by a WS implementation. It is why we show in this
paper that both tie-zones and bottlenecks analysis can be
associated with the robustness of a segmentation.

1 Introduction

The watershed (WS) transform is a well-known and pow-
erful segmentation tool for morphological image process-
ing. It was first introduced by Beucher and Lantuéjoul [2]
for contour detection and applied in image segmentation by
Beucher and Meyer [10]. Nowadays, there are many defini-
tions and algorithms of watershed transforms in literature.

Roerdink and Meijster [12] give a comparison of some of
them. The algorithm of Vincent and Soille [13] is based
on immersion simulation: the image is represented by a
topography inundated by water that springs from regional
minima. The watershed lines are dams constructed for sep-
arating the growing catchment basins (CB) corresponding
to minima. The algorithm of Meyer [9] computes the WS
transform by solving a shortest path problem with respect
to a topographical distance function.

In the numerous WS algorithms, variations may first oc-
cur in the input: all regional minima; only imposed min-
ima to avoid oversegmentation (WS from markers [10]);
or grayscale markers [8] to specify the depth (handicap) of
some imposed minima. Then, the output may be of different
types: ‘line-algorithms’ return separating WS lines that are
sometimes valued (as in the topological watershed [3, 11]
which conserves the saliency between minima) whereas
‘region-algorithms’ return labeled regions (the CBs) that
form a partition of the image.
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Figure 1. Original images (a)(d) and two possi-
ble labeled WS outputs (raster or anti-raster
scan) of a line-algorithm (b)(c) or a region-
algorithm (e)(f). W represents the WS line.

In lots of (line- or region-) algorithms, the result varies
with implementations (scanning order and other arbitrary
processing order) or may be inconsistent with the WS def-
inition as observed in [12]. This variation due to imple-
mentation can be insignificant in some cases (1 pixel bias
for the line/region position, see Fig. 1) but in other cases,
it becomes considerable: in some images an entire region
is reached passing by a bottleneck pixel and consequently



included to the first (or other arbitrary) CB that invades the
bottleneck (like in Fig. 2(g)–(j)). Thus, the problem does
not occur only on plateaux. Furthermore, it is of theoreti-
cal interest having a unique solution for the WS transform.
These arguments encouraged the investigation of a WS def-
inition that would result in a unique and consistent solution.

The Image Foresting Transform (IFT), introduced by
Falcão, Lotufo and Stolfi [6] and based on Dijkstra algo-
rithm [4], provides a sound framework for the efficient im-
plementation of many image processing operators [5]. For
instance, the WS transform is computed as a problem of
trees of minimal paths.

Figure 2 shows a buttonhole case. It will be commented
in both sections 2 and 3. Figure 2(a) presents the input im-
age used to compute the different watersheds, forests and
maps of Figures 2(b)–(j). It is important to remark that
buttonhole cases “correspond to special pixel configurations
which are not so rare in practice” as refered by [11, 13].

This paper is organized as follows. In section 2, an
overview of the IFT framework is given to define in this
context the Tie-Zone Watershed (TZWS) that results in a
unique solution, regardless of implementation. Then, the
efficient algorithm introduced in [1] is recalled. The bottle-
necks, access of the tie-zones, are defined and characterized
in section 3. Finally, as an application of these new con-
cepts, the TZ and bottleneck analysis of real images is done
in section 4 and associated to the robustness of the segmen-
tations.

2 The Tie-Zone Watershed (TZWS)

2.1 Overview of the Image Foresting Transform
(IFT)

Under the IFT framework, an image is seen as a weighted
graph G = (V, A, I) where each pixel (or voxel in 3D) is
represented by a node or vertex v ∈ V with intensity I(v) (I
is a map from V to Z for digital image). An arc 〈u, v〉 ∈ A
exists between vertices u and v when the corresponding pix-
els are adjacent according to the defined adjacency (usually
4- or 8-adjacency in 2D and 6- or 26-adjacency in 3D). A
path from a node u to a node v in a graph (V, A, I) is a se-
quence 〈u = v1, v2, . . . , vn = v〉 of nodes of V such that
∀i = 1 . . . n− 1, 〈vi, vi+1〉 ∈ A. A path is said simple if all
its nodes are different from each other. Let S ⊆ V be a set
of particular nodes si called seeds or markers.

For a given weighted graph G = (V, A, I) and a set S
of seeds, an IFT is a directed forest F of G, i.e. a directed
acyclic subgraph1 F of G, such that (i) there exists for each
node v ∈ V a unique and directed simple path π(si, v) in
F from a seed node si ∈ S to v and (ii) each such path has

1The graph G′ = (V ′, A′) is a subgraph of G if V ′ ⊆ V , A′ ⊆ A
and A′ ⊆ V ′ × V ′.
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Figure 2. (a): Input grayscale image with 3
(underlined) minima and 8 (bold) bottlenecks.
(b): TZWS using 4-adjacency: 3 CBs (gray),
TZ (white), forest (black). (c)–(e): Result of
the Label Merging algorithm obtained with ei-
ther a non-MOF (d) or a MOF (e). (f): Map of
multiplicity. (g)–(h): Watersheds by Dijkstra-
IFT varying scanning-order. (i)–(j): Water-
sheds (black) by Vincent and Soille’s algo-
rithm (raster or anti-raster scan).

a minimum cost among all possible paths in G linking v to
any seed of S, according a specified path cost function fC .

Assume that the arcs 〈u, v〉 are weighted with the gray-
level I[v] of the pixel corresponding to v. Assume that the
seed nodes correspond to the regional minima of the image
(or to imposed minima, i.e. markers). If the path cost func-
tion is defined as the ‘maximum arc’ function fmax,

fmax(〈v1, v2, . . . , vn〉) = max {h(v1), I(v2), . . . , I(vn)}
where h is a fixed but arbitrary handicap cost [8], the IFT
computes a region-WS transform where each tree of the for-
est 2 corresponds to a CB. Note that all vertices (pixels) are
covered by this forest. The IFT can result in many optimal
forests because many paths of minimum cost are sometimes
possible. The set of all optimal forests is denoted by Φ.

The optimality of the WS by IFT was proved in [7]
where a two-component lexicographic cost function fLC

2A tree of the forest F is a connected component of F .



was proposed to mimic the flooding process and handle with
plateaux too: fLC = (fmax, fd). The first component, of
highest priority, is the max-arc function and represents the
flooding process. The second one makes different waters
propagate on plateau at a same speed rate:

fd(〈v1, v2, . . . , vn〉) = max
k∈[0,n−1]

{k, C[vn] = C[vn−k]}
C[vn] = fmax(〈v1, v2, . . . , vn〉)

This lexicographic path cost, inspired from Meyer’s to-
pographical distance strategy [9], is very simple to compute
using a priority FIFO queue, avoids a prior lower comple-
tion on image with plateaux, and provides partitions that
seem to be more equitable (on plateaux) than when only the
maximum cost is used.

2.2 The Tie-Zone Watershed (TZWS) transform

As we saw in the previous section, many optimal forests
and so, many partitions may correspond to an input image-
graph. We propose then a new definition of watershed trans-
form in the IFT context which results in a unique partition.

A node is included in a specific catchment basin CBi

when it is linked by a path to a same seed si in all the opti-
mal forests, otherwise it is included in the Tie-Zone T :

CBi = {v ∈ V, ∀F ∈ Φ, ∃π(si, v) in F}
T = V \

⋃

i

CBi

If a node is in the tie-zone, it means that it could be in-
cluded in different CBs without affecting the forest opti-
mality. CBs are only the common part of all optimal so-
lutions whereas differing parts are considered TZ. There-
fore, the tie-zone existence prevents from making any arbi-
trary choice between optimal solutions. Consequently, the
TZWS solution is defined without ambiguity.

Note that this definition does not produce watershed
lines but only regions: catchment basins and tie zone. They
form together a unique optimal partition of the image. If
all pixels are assigned to catchment basins, the tie zone will
be empty. This situation can occur when the lexicographic
path-cost function unties growing CBs on plateaux. So, the
watershed transform possibly does not contain any tie zone.

Unlike in the WS by IFT, each CB corresponds to a tree
or part of it, while the TZ is composed of many terminal
parts of trees as in the example of Fig. 2(b).

2.3 Algorithm

In this section, we present an efficient algorithm that la-
bels the image in order to obtain a TZWS. It is based on Di-
jkstra’s shortest path algorithm [4] and utilizes an ordered

queue Q where each bucket has a FIFO policy. Note that
the second component C2 of the lexicographic cost is not
intrinsically computed by the FIFO policy and must be ex-
plicit in the TZWS by IFT in order to prevent 1-pixel bias.

The algorithm input is: the image as a weighted graph
G = (V, A, I), the seed node set S with associated labeling
function λ and handicap function h. The priority queue Q is
initially empty: DequeueMin removes from Q and returns
the node of minimum cost; Enqueue(p, c) inserts node p
in Q at priority (cost) c bucket. We denote the neighborhood
of a node p ∈ V by: NG(p) = {q ∈ V, 〈p, q〉 ∈ A}. Label
map L corresponds to the TZWS result, map P gives each
node’s predecessor in the tree and maps C1,C2 give the lex-
icographic cost of an optimal path from a seed to each node.

The beginning of the algorithm (lines 1 to 11) is identical
with the IFT algorithm in [6]. Lines 12 to 16 are TZWS-
specific. In line 12, the second component of lexicographic
cost is incremented, as water propagates on plateau. Lines
13 to 16 detect the nodes where paths from (at least) two
seeds (L[p] �= L[v]) tie, i.e. have same costs (C1 and C2).

Algorithm 1: TZWS by IFT with lexicographic path
cost.

1. ∀p ∈ V , C2[p] ← 0; done(p) ← FALSE;
2. ∀p /∈ S, C1[p] ← ∞; L[p] ← NIL; P [p] ← NIL;
3. ∀p ∈ S, C1[p] ← h(p); L[p] ← λ(p); P [p] ← p ;

Enqueue(p,h(p));
4. while QueueNotEmpty,
5. v ← DequeueMin; done(v) ← TRUE;
6. ∀p ∈ NG(v) and done(p) = FALSE,
7. c ← max{C1[v], I [p]};
8. if c < C1[p],
9. if p in Q, Dequeue(p);
10. C1[p] ← c; L[p] ← L[v]; P [p] ← v;
11. Enqueue(p,C1[p]);
12. if c = C1[v], C2[p] ← C2[v] + 1;
13. else, if c = C1[p] and L[p] �= L[v],
14. if c = C1[v],
15. if C2[p] = C2[v] + 1, L[p] ← TZ;
16. else L[p] ← TZ;

This algorithm is fast and has the same speed perfor-
mance as the IFT-WS [6]. The solution of TZWS is optimal
because it is based on IFT, it keeps therefore the optimality
of the shortest-path forest solution as demonstrated in [7, 6].
Besides, the other algorithms generally depend on arbitrary
decisions in processing order (which pixel is removed first
from a priority bucket of the queue?) that are not in the strict
definition of WS and that introduce bias (see the different
solutions of Fig. 2(g)–(j)). Observe that the bias problem
does not occur only on plateaux and may be unacceptable
for some applications (e.g. precise measures on segmented
objects).

The TZWS can also be obtained without using an or-
dered queue by processing the image data in raster-scan and



anti raster-scan order alternatively until stability of the re-
sult (algorithm not presented here).

3 Bottlenecks

3.1 Watershed vs. watermerging

As said in section 1, the watershed (WS) transform is
compared to the flooding of a topography where dams are
built to prevent distinct colored waters from merging (sup-
pose that a color is assigned to each marker/minimum).
Now, let us illustrate the watermerging paradigm. For an
intuitive comprehension, put the topography (representing
the image) up-to-down (see an illustration in Fig.3). Imag-
ine that each marker (former minimum that is now regional
maximum) is a source of colored water. When colored wa-
ters meet together, no dam is built but the colored waters
naturally merge into a water of blended color. Holes are
punched in the regional minima (former maxima) for drain-
ing the water. Supposing that (abundant) waters propagate
along all negative slopes (not only the steepest as occurs
in reality), we get colored hills and possibly regions with
blended colors. These regions correspond to the (multi-
color) tie-zone. The up-to-down transformation is not used
in practical implementations but only for an intuitive ex-
planation of the watermerging paradigm. Watermerging is
different from the drop of water principle or rainfalling al-
gorithm [12].

As we defined earlier, the tie-zone is the region where
pixels cannot be assigned to a specific label, i.e. there is
no unique label that could be assigned to them. We can
differenciate the tie-zone in labeled (or colored) tie-zones.
A labeled tie-zone belongs necessarily to the tie-zone and
assumes a specific tie-zone label: this label contains the in-
formation of which labels could be potentially assigned to
the labeled tie-zone. In other words, the blended color of
a colored tie-zone contains all the pigments of original col-
ored waters that merged together. For example, when label
a and label b tie together at a region, this region becomes
a labeled tie-zone and will assume a merged-label {a, b}.
We say that the original labels a and b are included in the
merged-label {a, b}: a ∈ {a, b}; b ∈ {a, b}.

The Label Merging (LM) algorithm is a useful variation
of the previous algorithm 1. When waters from different
minima are merging, it assigns a new blended label to the
region invaded by these waters. Substitute in algorithm 1
TZ label (lines 15-16) by MergeLabels(L[p], L[v]) and
the simple label map L by a merged-label map L. So, the
final labeled image allows a traceability on tie zones: it in-
forms exactly which and how many colored waters of dif-
ferent labels tied together at each node. By analyzing the
pigment mix, one can deduce which original pigments are

Figure 3. Watermerging paradigm. On the left
(right), the arrows point the 2 minima (max-
ima) of the topography. A triple line (of con-
stant altitude) shows the bottlenecks locus
and constitutes with the gray zone the tie-
zone where waters merged. Only the front
bottleneck in contact with the gray zone (its
influence zone) is non-trivial.

included in. There is no more one TZ label but so many as
the distinct label mergings (4 in the example of Fig. 2(c)).

3.2 Multiplicity-based Optimal Forests (MOF)

We define the multiplicity m(p) of a pixel p as the num-
ber of original labels λi ∈ Λ that could be assigned to it, i.e.
the number of labels that tied together. Clearly, a pixel in a
catchment basin has always a multiplicity equal to one and
a pixel in a tie-zone has necessarily multiplicity greater than
one (see Fig.2(f)). Formally, the labeling function λ and the
multiplicity m are defined as follows:

λ : S → Λ
s 
→ λ(s)

m : V → N

p 
→ m(p) = CARD{L[p]}
And, assuming that Λ is the set of original labels and ΛI the
set of all possible subsets of Λ, the label map L is now:

L : V → ΛI

p 
→ L[p] = {λ1, λ2, · · · , λm(p)}
As we saw in sections 2.1 and 2.2, there can be many

optimal forests corresponding to an image. In other words,
there can be many possible predecessors for some nodes
of the image-graph. We distinguish a special type of opti-
mal forests: the Multiplicity-based Optimal Forests (MOF).



In the set of possible optimal forests, the MOFs are those
where each node points to the predecessor (father) of high-
est multiplicity among all possible predecessors. Note that
there can exist many MOFs associated to a same image-
graph. Figure 2 shows examples of a non-MOF (d) and two
MOFs (b) and (e).

3.3 Bottleneck characterization

The bottlenecks are particular pixels that play an impor-
tant role in the comprehension of the image and its parti-
tion in catchment basins or in tie-zone. Indeed, they are the
points from which tie-zones appear.

Intuitively, they represent a unique and thin access (‘bot-
tleneck’) for the water to enter and invade another region
(‘bottle’). More generally, in our context, they are the first
contacts between two (or more) wave fronts of different col-
ored merged-labels (and whose merging will result in an-
other merged-label). Once the wave fronts have merged, the
resulting wave front can, in some cases, invade a region (the
‘bottle’ of the bottleneck). Clearly, a bottleneck is never in
a CB as it is a merging point.

In the watermerging paradigm (LM), bottlenecks are de-
fined as nodes (pixels) whose merged-label is different from
the predecessor’s merged-label, when considering any par-
ticular MOF of the image-graph. For example, the bottle-
necks of the image of Fig. 2(a) (in bold) can be detected
from either MOF in (b) or (e) using the definition:

L[p] �= L[P [p]] ⇔ p is bottleneck (1)

Let us consider now the region whose access is permited
by the bottleneck: the influence zone. If all possible MOFs
are considered, the extended influence zone IZe(b) of a bot-
tleneck b is the set of all possible descendants (direct and
indirect children) of the bottleneck and itself. The number
of nodes of a bottleneck’s influence zone is called extended
weight we of the bottleneck. we(b) = CARD{IZe(b)}.
When considering only the descendant nodes with same
merged-label as the bottleneck’s one, we simply refer to the
influence zone IZ(b) of bottleneck b. And the number of
nodes within is defined as the weight w of the bottleneck:

w(b) = CARD{IZ(b)}.

A bottleneck is trivial if and only if its weight is one.
When the bottleneck has weight strictly greater than one, it
is said non-trivial (see Fig. 3).

An adapted version of the LM algorithm allows to iden-
tify the bottlenecks on-the-fly during the construction of the
forest. This Bottleneck Identification algorithm processes
the label merging like in the LM algorithm and also updates
the predecessor map according to the multiplicity criterion
even if it has no influence on the cost and label maps. Thus,

a particular MOF is obtained. When a node is removed from
the queue (see algorithm 1), its definitive label is compared
to the label of its predecessor to decide whether or not it is
a bottleneck according to relation (1).

4 On the robustness of a segmentation

Now the bottleneck (BN) concept has been defined and
related to the tie-zone (TZ) concept, we will show that the
analysis of both TZs and BNs can be associated with the
robustness of a segmentation. In this paper we call segmen-
tation’s robustness the impartiality or stability associated to
the result of a segmentation process utilizing the same in-
puts and method. In our case, if different WS algorithms
and implementations are used for segmenting a given image
with given parameters (like adjacency and seeds), result’s
variations will affect the robustness (reliability).

Observe that a robust segmentation is not necessarily a
‘good’ segmentation in a semantic point of view but it is
constant in relation to arbitrary choices of implementation.
Moreover, one can be sure that a non-robust segmentation is
only a possible but unreliable segmentation among numer-
ous other ones. In other words, a non-robust segmentation
is biased by the implemented algorithm as the image, seeds
and segmentation process should not define thin WS but a
large TZ.

4.1 Robustness based on tie-zone analysis

First, the area of the TZ can be a robustness measure.
Larger the TZ is, less robust the segmentation is. For exam-
ple, Fig.4(a) shows WS lines obtained from a non-filtered
airplane image gradient by the Vincent and Soille’s algo-
rithm. Clearly, anyone can observe an oversegmentation as
the airplane and the buildings are the expected objects of
interest. This result is not only ‘bad’ in a semantic point
of view but also very partial. The large and numerous tie-
zones of the TZWS in Fig.4(d) point out the high uncer-
tainty that affects any thin solution. In Fig.4(b) and (c), a
filtering was applied on gradient’s minima : basins (min-
ima) with height smaller than h = 10 and h = 35 were
respectively removed. The segmentation is much better in
both semantic and robustness points of view (Fig. 4(e)(f)).
It is necessary to normalize the TZ area with the image size
to have an objective and size-independent robustness mea-
sure. The first (non)robustness measure is consequently:

R1 =
CARD{T }
CARD{V } .

We can also observe that in many cases as in Fig.4(f),
the TZ is reduced to a thin WS line contouring the object
of interest. As the output of the segmentation can be sep-
arating lines, we may consider that the TZ area of this line
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Figure 4. Airplane image: Watershed lines (by
Vincent-Soille’s algorithm) of the gradient (a)
and the filtered gradient (b)(c) (with h = 10; 35
resp.). (d)–(f) Respective TZ in white.

does not represent a lack of robustness. Furthermore, when
a lot of objects of interest are expected (cells separation for
example), the previous measure R1 will bias the reality. We
cannot consider the lines contouring the objects as a real
handicap for robustness. Thus, we apply an erosion ε on
the TZ to eliminate the contouring lines and, thereby, not to
have a measure depending on the number of objects. The
residue R of this erosion represents now the thickness of
the TZ without depending on the number of objects. There-
fore, a second objective measure of (non)robustness is the
normalized area of the residue:

R2 =
CARD{ε(T )}
CARD{V } =

CARD{R}
CARD{V }

For an application, one may consider that R2 must be
less than 1% to ensure a robust segmentation. After pro-
cessing the TZWS for an image and its filtered versions,
the variation of R2 is computed and segmentations with
the required robustness are automatically selected. Figure 5
shows this variation for 8 images and the 1%-threshold. Ob-
serve that the artificial weavetile segmentation is very robust
for h ≥ 0 whereas natural mirage gradient image becomes
robust for h ≥ 6 and leaf-grass for h ≥ 37 (Fig. 6). This
is due to the grass background and natural light and shade
effects. Clearly, when the image is too much filtered, the
number of objects decreases and can be less than the ex-
pected number (no object at worst!): the image is underseg-
mented. Thus, there is a compromise between having a ro-
bust segmentation and a semantically good segmentation. If

this compromise is impossible, another segmentation strat-
egy (filtering, marker choice, etc.) must be applied. Seman-
tic criteria together with R2 can help the user to choose a
reasonable filtering.
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Figure 5. R2 in function of h for weavetile,
tree-leaf, mirage, airplane, lena, MR heart, XR
particles and leaf-grass images. R2 < 1% for
h ≥ 0, 3, 3, 8, 8, 14, 15, 37 respectively.
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Figure 6. (a) Original leaf-grass image. (b)–(d)
TZWS (white) after filtering the gradient min-
ima with h = 10; 35; 50 (2936, 411, 123 min.)
resp. (e) Input mirage gradient image. (f)–(h)
TZWS with h = 0; 5; 10 (116, 13, 4 min.) resp.



The pseudo-cone of Fig. 7 is an interesting case of very
large TZ. Any thin WS solution is totally unreliable and in-
consistent because many lines have to converge to a same
central pixel by passing through same pixels when closer
to the top. This phenomenon is due to the discretization of
the space and the non-null thickness of the lines. Observe
that only the TZWS (b) has a 4-axis-symmetry like the in-
put image (a). The other algorithms (c)(d) are biased by the
processing order.
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Figure 7. Pseudo-cone. (a) Input image with
24 minima at 0-level (4-adjacency) and 101
bottlenecks (in bold). (b) TZWS (white). (c)–
(d) WS by Dijkstra’s and Vincent-Soille’s algo-
rithms (raster-scan order).

4.2 Robustness based on bottlenecks analysis

In section 3, we saw that bottlenecks are the roots of
the patches that constitute the TZ. They are thereby the ori-
gin of the segmentation’s non-robustness. The bottlenecks
analysis allows to know how the sources of partiality are
distributed in the segmented image and how large their in-
fluence zones are. Figure 8 shows for example a detail of
the non-filtered mirage gradient image segmented by Label
Merging (LM) algorithm. CBs (solid gray) meet and bot-
tlenecks (BN) appear (white contour). Some of them have

Figure 8. LM algorithm on mirage (detail): bot-
tlenecks (white contour) and IZs (shaded).

a large influence zone (IZ). Others have a little one or are
trivial.

We compute therefore the histogram H of the BNs ac-
cording to their weight w. It informs which types of BNs
are most present in the segmented image. For example, for a
same R2 or TZ area, there can be a lot of trivial bottlenecks
in the entire image which proves that the potential bias is not
concentrated in a particular region; or maybe, there can be
few BNs with important weight. It depends on the essence
of the image. This BNs distribution by weight can be a
useful information for the choice of filtering strategy when
the user attempts to increase the segmentation’s robustness.
More useful is to know what contribution each type of BNs
has. To this end, the weighted histogram Hw is computed.
For each weight w corresponds the sum of the weights (IZ
areas) of all BN with weight w. So we have the contribu-
tion of each BN-type to the total TZ area. Look for exam-
ple at the cumulated weighted histogram Hc

w in Fig. 9(a)
for the non-filtered mirage case. We can see that the TZ
area is greater than 2500 and there exists BN with w ≈ 120
or 80 and nearly 500 trivial BNs. To have more compact
informations, the quartiles are calculated (Fig. 9(b)). For
the mirage image segmentation without filtering, the non-
robustness is due to BNs with weight w ≤ 2 (for 25%), BNs
with 2 < w ≤ 9 (for other 25%), BNs with 9 < w ≤ 32
(for 25% too) and BNs with 32 < w ≤ 123 (for the last
25%). Interestingly, for the leaf-grass image, the filtering
modifies this distribution of contribution in an unexpected
way. It creates BNs with larger IZs. Note that the total TZ
area increases with this filtering too. Be careful that it does
not appear in the quartiles diagrams and that the ranges of
BN weights contribute equally to the TZ area.
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Figure 9. (a) Cumulated weighted histogram.
(b) Quartiles for 3 segmented images varying
h: w-ranges of the BNs that contribute for
each quarter of the total TZ area.

In conclusion, the bottlenecks analysis gives information
on how a segmentation can be biased whereas the TZ anal-
ysis does on how much it can be.

5 Conclusions and future work

In this work, we recalled the tie-zone watershed (TZWS)
transform and, for understanding the TZ’s essence, defined
a new concept based on the watermerging paradigm: the
bottleneck (BN). Each BN is responsible for a part of the
TZ and, therefore, part of the possible bias of a WS trans-
form. Theoretical examples and real images were shown
to demonstrate that some WS segmentations have no sense
when the TZ is too large: they are not representative. Fur-
thermore, the robustness of a segmentation can be charac-
terized quantitatively by the (eroded) TZ’s area and qualita-
tively by the BN’s distribution and contribution.

In future work, we will show the central role of BNs in a

thinning procedure of the TZWS for segmentation purpose.
We also intend to investigate the relation of the bottlenecks
with pass-value and saliency concepts used by the topolog-
ical watershed.
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