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Abstract

High-fidelity renderings of virtual environments is a no-
toriously computationally expensive task. One commonly
used method to alleviate the costs is to adaptively sam-
ple the rendered images identifying the required number of
samples according to the variance of the area thus reduc-
ing aliasing and concurrently reducing the total number of
rays shot. When using ray tracing algorithms, the tradi-
tional method is to shoot a number of rays and depending on
the difference between the radiance of the samples further
rays may be shot. This approach fails to take into account
that different components of a material reflecting light may
exhibit more coherence than others. With this in mind we
present a component-based adaptive sampling algorithm
that renders components individually and adaptively sam-
ples at the component level, finally composting the result to
produce a full solution. Results demonstrate a significant
improvement in performance without any perceptual loss in
quality.

Keywords: high-fidelity graphics, adaptive sampling,
component-based rendering.

1. Introduction

High-fidelity physically rendering of complex scenes is
one of the major goals of computer graphics. Render-
ing algorithms that compute high-fidelity images, tradition-
ally based on ray-tracing [31] and its extensions, or radios-
ity [12] are notoriously computationally expensive. While
radiosity rendering is usually a function of the number of
elements, traditionally patches, needed to be rendered, ray-
tracing computation is a function of the number of sam-
ples traced to render a scene. Ray-traced images rely on
shooting rays to calculate the radiance at a given pixel. The
radiance of adjacent pixels may tend to exhibit spatial co-
herence, by which radiance values close to each other are
similar. This property has been taken into consideration for

Figure 1. Traditional adaptive sampling. Sam-
ples only, no interpolation.

designing adaptive sampling algorithms [31], whereby rays
are not traced at each pixel but at certain intervals and only
if the resulting difference in the radiance at the pixels is
above a certain threshold are the intermediate pixels calcu-
lated, see Figure 1. These algorithms can improve speedup
substantially by reducing the total number of rays signifi-
cantly, particularly in areas of high variance.

The traditional method of doing image plane adaptive
sampling was at the level of the pixel’s gross radiance com-
putation. In this paper we introduce a new flexible mech-
anism for adaptive sampling based on the reflectance func-
tion of a material whereby the light that hits a surface can be
divided into a number of components, see Figure 2. When
using ray-tracing techniques it has long been assumed that
certain reflective properties of a material exhibit different
behaviours. For example, indirect diffuse computations are
traditionally smooth and do not change much over space, a
property that Ward et al.’s irradiance cache [30] takes full



Figure 2. The Cornell box scene split into a number of Radiance shader-specific components: (top-left)
direct, (top-middle) indirect diffuse, (top-right) pure specular, (bottom-left) specular for mirror shader,
(bottom-middle) transmitted for glass shader, (bottom-right) reflected for glass shader (including
transmitted) and (right) the full solution.

advantage of to obtain orders of magnitude performance
over traditional distributed ray-tracing methods [7]. Simi-
larly, specular reflections exhibit high spatial frequencies,
meaning that the specular contribution to the radiance of
adjacent pixels hitting the same material may be substan-
tially different even if the direct, glossy and indirect diffuse
components of the material are very similar. By taking ad-
vantage of this insight we present a novel adaptive sampling
algorithm that bases its sampling criteria not on the radiance
of an individual pixel but on the individual contributions of
each component to the final radiance.

In this paper we present a framework for incorporating
such an adaptive sampling scheme within a traditional ray-
tracing renderer. To illustrate our component-based adap-
tive sampling we have extended the light simulation pack-
age Radiance [16] to support our approach as well as the
more standard approach. We use a number of Radiance
scenes to demonstrate that the component-based adaptive
sampling is superior to the more traditional approach.

This paper is divided as follows. Section 2 presents
related work. Section 3 introduces our novel algorithm.
Section 4 presents our implementation of the algorithm in
Radiance. Section 5 presents results using a number of
scenes and evaluates our work when compared the tradi-
tional method using a visible difference predictor. Finally
Section 6 concludes the paper and presents possible future
directions.

2. Related Work

In this section we present an overview of the work in
image sampling for ray tracing and component-based ren-
dering.

2.1. Image Space Sampling

Methods of sampling to diminish aliasing and improve
performance have been around since the earliest ray trac-
ers. Whitted [31] used adaptive sampling by shooting rays
at the corners of the pixels. If the results where within a
given value, the value of the pixel was averaged from the
given samples. Otherwise, another ray was shot in the cen-
tre of the pixel and the calculation was continued recur-
sively. Cook [6] presented the concept of stochastic sam-
pling as opposed to uniform sampling for improving an-
tialiasing. Further work on non-uniform sampling was pre-
sented by Mitchell [17]. Painter and Sloan [20] presented a
progressive approach to traditional ray tracing refining sam-
ples when necessary. Guo [13] constructed a coherence map
from sparse uniform samples and used it identify disconti-
nuities on the image plane in his progressive renderer. An
overview of uniform and non-uniform sampling is provided
in [11].

Recently sampling schemes have been developed in con-
junction with the human visual system. Myszkowski [18]
and Bolin and Meyer [1] used visible difference predictors,
such as [8] to direct the next set of samples. Cater et al. [3]
used the concept of the affinity of eye movements to the vi-



Figure 3. Samples per component without interpolation: (a) direct, (b) indirect diffuse, (c) glossy and
(d) specular component of the transparency. Low resolution is used to make samples more visible.

sual task being performed [32] to direct the samples of their
pixels for task based applications. O’Sullivan et al. [19]
presents an overview of recent work in perceptually adap-
tive graphics.

2.2. Component-based rendering

Rendering has been divided into components on a num-
ber of occasions in order to solve the problem more effi-
ciently. Wallace et al.’s [27] multipass algorithm computed
the diffuse component with a rendering pass and used a
z-buffer algorithm for view dependent planar reflections.
Ward et al.’s irradiance cache [30] decoupled the compu-
tation of the indirect diffuse from the rest of the rendering
equation for their distributed ray tracer. Calculated indi-
rect diffuse samples would then be stored in an irradiance
cache and future indirect requests could interpolate the re-
sults from the previous samples. Since the indirect diffuse
samples are usually the most expensive part of the equa-
tion, this resulted in an order of magnitude improvement
in performance over traditional distributed ray tracing. Sil-
lion and Puech [22] adapted a technique proposed by Wal-
lace et al. [27], using ray tracing for computing the specular
component and the form factors of the non-planar objects,
enabling multiple specular reflections. Shirley’s [21] used
a three pass method for varying components, path tracing
from the light source was used for caustics, soft indirect illu-
mination was obtained through radiosity and stochastic ray
tracing completed the rest of the components. Other multi-
pass algorithms that calculated components separately in-
clude Heckbert’s [14] and Chen et al.’s progressive multi-
pass method [5]. Slussalek et al. [23] presented a render-
ing framework for combining different algorithms together
into lighting networks. Recently the component-based ap-
proach has been tied in with perceptual rendering by Stokes
et al. [24]. They presented a perceptual metric which pre-
dicted the importance of the components for a given scene.

Stokes et al. proposed that the perceptual metric could be
used to drive a path tracing renderer, where the primary rays
collected information about the scene and then used the per-
ceptual metric to allocate the individual component calcu-
lations to resources based on their importance. The final
image was then composited from the distinct components.
They also indicated the possibility of allocating components
to separate resources. Debattista et al. [9] presented a se-
lective component-based rendering framework whereby a
regular expression, termed the crex controls the rendering
process. The crex could further be used in conjunction with
an importance map [26] to exploit visual attention and also
be applied to render images within given time constraints.

3. Component-based Adaptive Sampling

3.1. Rendering by Components

The radiance at a pixel (x, y) in direction −Θ which in-
tersects an object in the scene at point p is given by the
rendering equation [15]:

L(x, y) = L(p→ Θ) =

Le(p→ Θ)+
∫

Ωp

fr(p,Θ↔ Ψ) cos(Np,Ψ)L(p← Ψ)δwΨ

For convenience we set

Li(p→ Θ) =
∫

Ωp

fr(p,Θ↔ Ψi) cos(Np,Ψi)L(p← Ψi)δwΨ

where Ψi refers to a specific direction.
Traditionally it is common to subdivide the computation

into direct and indirect computations, using Ψd to refer to
the direction of the direct contribution of the light and Ψid

for the indirect contribution:

L(p→ Θ) = Le(p→ Θ) + Ld(p→ Θ) + Lid(p→ Θ)



Figure 4. Interpolated components: (a) direct, (b) indirect diffuse (without material contribution), (c)
glossy and (d) specular component of the transparency.

Furthermore, the indirect computation can be further di-
vided into components. The more traditional components
used are indirect indirect diffuse or ambient (a), indirect
specular (is) and indirect glossy (ig):

Lid(p→ Θ) = La(p→ Θ) + Lis(p→ Θ) + Lig(p→ Θ)

This can be abstracted further to account for shaders with
more components. Assuming Nc components:

Lid(p→ Θ) =
Nc∑
c

Lc(p→ Θ)

Finally,

L(p→ Θ) = Le(p→ Θ) + Ld(p→ Θ) +
Nc∑
c

Lc(p→ Θ)

This only means that we have split the calculation into
the direct and the indirect components for the first inter-
section from the virtual camera. The process can be taken
further and be done recursively. However, since our algo-
rithm is based on the image plane and for design simplicity,
as shall be described below, we are only interested in the
first intersection.

3.2. Motivation

As outlined previously the method adopted by our novel
adaptive sampling algorithm relies on adaptively sampling
the individual components. The motivation behind this lies
in the different spatial variances of the components and the
flexibility which arises in rendering them in separate passes.
From Section 3.1 it is clear that it is possible to calculate the
radiance at the image plane for each of the components indi-
vidually and composite them into a final result. We use this
knowledge in our framework to be able to render individ-
ual components using different adaptive sampling thresh-
olds (see Figure 3), since certain components (for example

indirect diffuse) are less likely to have highlights, and fi-
nally composite the results into a single individual plane.
Furthermore, we only break components up after the first
intersection with an object. The system can be extended to
handle component-based rendering for successive intersec-
tions, but for our purposes this complicates the rendering
system unnecessary. Our philosophy is that any renderer
can have enhanced speedup by a simple modification of the
shaders. Furthermore, all of this can be done at a system
level and is completely transparent to the user.

3.3. Framework

The algorithm we use is a modification of the classic ray-
tracing algorithm and can be applied to any ray tracer. Fur-
thermore, in the description of this algorithm we assume
a very simple adaptive sampling scheme whereby rays are
shot at the corners of a square and if the resultant calculated
radiance of the rays differs by some threshold, the square is
subdivided recursively up to a user-defined depth [31]. The
only additional data structures that are strictly required are
separate image buffers for each of the components that may
be broken, see Figure 4, and a data storage for the primary
rays that hit objects that have component-based materials.
We will term these structures, the component image buffers
and the primary ray structure. These structures are equal in
size to the maximum number of samples that can be shot.
The memory requirements of these structures on modern
systems is negligible. The material types (or shaders) that
can have components that are going to be rendered sepa-
rately need to be identified. This is a system design decision
and does in no way effect the user. It is added to our algo-
rithm design since certain shaders such as a mirror shader
in Radiance always perform a pure specular reflection and
thus it is computed immediately. We term shaders that can
be broken down into components as breakable. A descrip-
tion of our choice of breakable shaders for our implementa-



tion in Radiance will be discussed in Section 4.

3.4. Algorithm

The algorithm can be thought of as consisting of two
passes. The first pass corresponds to the calculation of
the radiance contribution by the direct light and the radi-
ance contribution from the non-breakable components. The
second pass corresponds to the calculation of the individ-
ual components. Initially the first pass rays are traced in
the traditional method with the sampling method outlined
above. When a ray initially hits an object, primarily the
direct lighting is calculated and stored on the direct compo-
nent image buffer. Whereas using a traditional method each
ray is traced to completion, with our method when the ray
first intersects an object, if the object’s material properties
contain a breakable shader, a flag is set inside the primary
ray structure tagging that particular pixel for calculating the
component, or components if more than one, for future use.
Non-breakable shader computations are performed the tra-
ditional way. After each of the four corners have been cal-
culated, the adaptive sampling criteria is consulted and if
necessary further adaptive sampling is performed and the
operations above are repeated for each of the direct rays. If
the criteria were satisfied the underlying pixels are interpo-
lated. When the first part terminates the direct lighting and
some parts of the indirect lighting (for the non-breakable
components) would have been completed and stored in the
direct component image buffer.

The second phase of the algorithm begins by identifying
which of the components need to be sampled. This is per-
formed for each of the breakable components. The samples
to be calculated are identified by consulting the primary ray
structure. The samples use the information from the pri-
mary rays stored in the primary ray structure to launch the
component ray. If the primary ray data is missing due to
the component requiring finer grain sampling than the di-
rect rays, the information can either be interpolated if all the
information is available or a primary ray calculated at that
stage in the algorithm. The component ray is fully recur-
sive and computes until it terminates in the traditional ray
tracing method as implemented by the underlying renderer.
The resulting radiance values are stored in the component
buffer for that specific component. Adaptive sampling pro-
ceeds in the traditional fashion. When the algorithm has
iterated through all components, the component buffers are
composited to produce the final image buffer.

4. Implementation

In this section we outline our own implementation of
the algorithm described in the previous section, and show
how we modified an existing renderer to do so. We will

describe the decisions we took for choosing the breakable
shaders and use the implementation for obtaining results in
Section 5.

Our component-based adaptive sampling algorithm has
been incorporated into the rpict renderer for still images
and animations of the lighting simulation package Radi-
ance [16]. Radiance is based on distributed ray tracing and
also implements a number of well documented algorithms
such as the irradiance cache [28, 30], adaptive shadow test-
ing [28] and shaders [29]. The irradiance cache, in par-
ticular, is of interest to us since it caches indirect diffuse
samples in object space, which are used for extrapolation
by other indirect diffuse requests similar to our method
but in object space. The irradiance cache can be further
used in animations since the indirect diffuse component is
view independent and does not vary for static scenes. Our
component-based adaptive sampling can sit on top of an al-
gorithm using an irradiance cache effectively providing a
two-tier image space and object space interpolation method,
with improved results.

4.1. Traditional Implementation

We have modified rpict in two further guises to bench-
mark the performance of our new implementation. The sim-
plest implementation just removes the quincunx [2] sam-
pling scheme traditionally used by Radiance and replaces
it with a more traditional stratification scheme which ren-
ders one ray for each entry of a stratified grid. The resolu-
tion of the images is computed as a secondary pass using
a separate filtering application which can downsample the
calculated image. Effectively the whole process could be
viewed as uniformed jittered stratified supersampling. This
implementation is performed to simplify the sampling pro-
cess and implementation of the other renderers, since it is
the most traditional form of sampling. There is no reason
apart from simplicity as to why quincunx sampling could
not have also been adapted for component-based adaptive
sampling. We have called this new renderer tpict.

The second traditional renderer is a modification of
rpict to perform adaptive sampling by shooting pixels at
the corners of the stratified structure at user-defined inter-
vals [31] as described in Section 2. We term this renderer
apict. Figure 1 was computed using this renderer.

4.2. Component-based Implementation

Our implementation of the component-based adaptive
sampling algorithm was applied as an extension to rpict
we term capict. The capict sampling scheme at its ba-
sic is similar to that of apict. However, this renderer fol-
lows the implementation of the algorithm outlined in Sec-
tion 3.4. The breakable shaders chosen for this implemen-



Figure 5. Views of the scenes used for results: (a) the corridor, (b) the library, (c) the Cornell box and
(d) the Temple of Kalabsha [25].

tation, were the isotropic shaders [29] that contain indirect
diffuse, indirect specular, indirect glossy for both reflected
and transmitted materials. Each of the components in these
shaders are breakable. Furthermore, the pure transparent
component glass is breakable into only the reflected com-
ponent. The transmitted component is computed as part
of the direct computation as a non-breakable computation.
This method is chosen since no direct computation is per-
formed, so breaking the component into both reflected and
transmitted would be useless. Furthermore, for similar rea-
sons, pure specular materials as implemented by the mirror
shader in Radiance are also bundled with the direct com-
putation. These shaders satisfied the requirement of our
test scenes so no further shader adjustments were required.
However, further shader modifications would be straightfor-
ward to add. The renderings of the breakable shader modi-
fications are illustrated in Figure 4.

5. Results and Verification

In order to demonstrate our approach we present results
using four distinct scenes, see Figure 5. The scenes cho-
sen represent a variety of different realistic and practical
scenes. The corridor scene (a) represents an indoor environ-
ment with artificial lighting, the library scene (b) is an in-
door scene with sun light. Our version of the Cornell box (c)
is chosen for practicality and the Kalabsha scene (d) is a re-
construction of the Temple of Kalabsha [25] in Egypt . The
results were computed with default Radiance parameters
except for the resolution and indirect diffuse bounces. The
four scenes were rendered with a resolution of 512 × 512,
with a maximum of nine rays per pixel effectively rendering
a stratified sampling grid of 1536× 1536 and filtered using
the standard Radiance gaussian filter. The indoor scenes
were rendered with one indirect diffuse bounce and the Kal-
absha scene and Cornell box with two indirect bounces. All
these images were rendered with an irradiance cache. Fur-
thermore, we present results for the Cornell box without ir-

radiance cache computations rendered at 512 × 512 with
a maximum of four rays per pixel and one indirect diffuse
bounce. Lower values were chosen for this benchmark due
to the prohibitive time it takes to render without adaptive
sampling. All results were computed on a Intel Pentium
Xeon CPU 2.40GHz with 3GB RAM under Linux.

5.1. Performance Results

The results are presented in Table 1. It is clear from
the speedup that capict outperforms both apict and
tpict always obtaining close to 50% speedup and more
over the traditional method. The slowest improvement is
for the library scene and is due to the glass on the tables be-
ing both at the top and bottom of the tables and this weak-
ens the component-based approach for those areas of the
image. Yet the results are still an improvement over the
traditional adaptive approach. Of particular interest is the
result of the Cornell box without the use of an irradiance
cache. The result demonstrates an order of magnitude im-
provement in performance over the standard technique sig-
nifying that the novel rendering method can be used as an
easy to implement substitute to the irradiance cache for sys-
tems that do not support irradiance caching. It also suggests
that the component-based adaptive sampling algorithm is
useful for other global illumination algorithms such as path
tracing where the integration of an irradiance cache is non-
trivial.

5.2. Verification

We provide verification of the results using the Visible
Differences Predictor [8], a metric that creates a grey scale
image of the perceptual differences between two images,
highlighting only differences that are visible by a human
observer. Since the resultant images between any two of
our images is mostly blank we summarise the results as the
average pixel error between the two adaptive sampling ren-



corridor library Cornell box Cornell box (no IC) Kalabsha
Renderer Time Speedup Time Speedup Time Speedup Time‡ Speedup Time Speedup
tpict 2,340 1 2,700 1 313 1 238 1 901 1
apict 1,687 1.39 2,085 1.29 199 1.57 61 3.9 870 1.04
capict 1,107 2.11 1,900 1.42 159 1.96 22 10.81 610 1.48

Table 1. Results for the various renderers. Time in seconds. ‡ Time in minutes.

Renderer corridor library Cornell box Cornell box (no IC) Kalabsha
apict 0.2% 1.3% 0.2% 0.1% 1.3%
capict 0.2% 0.5% 0.2% 0.08% 1.3%

Table 2. Visual Differences Predictor [8] results of the adaptive sampling renderers compared the
traditional approach.

derers and tpict in Table 2. The results demonstrate that
there is practically no percentage difference between any
of the adaptive renderers and the traditional approach. The
small percentage difference is probably due to the stochastic
nature of our rendering algorithm. In fact when comparing
two distinct images rendered with the same conditions un-
der tpict the error is around 0.2% similar to that of the
adaptive renderers.

6. Conclusions and Future Work

We have presented a novel adaptive sampling algorithm
that uses a component-based approach to speed up render-
ing times without any perceivable differences in the resul-
tant images. Our new algorithm is transparent to a user and
can be included into existing ray traced renderers through
a modification of the required shaders. The results also
show that, as expected, the component-based adaptive sam-
pling algorithm can be used in conjunction with an irra-
diance caching scheme providing a two-tier interpolation
mechanism and can also achieve an order of magnitude per-
formance increase when using strict distributed ray tracing
only. While we have presented the algorithm in terms of one
of the simplest adaptive sampling schemes, the algorithm
could potentially be used with other more complex adaptive
sampling schemes [2, 13]. Since it relies on ray tracing and
samples at the image plane, the component-based sampling
approach is also trivial to parallelise using an image tiling
demand driven approach [4].

Future work will investigate the usefulness of this algo-
rithm for other global illumination algorithms in particular
path tracing [15]. Furthermore, the use of this algorithm in
conjunction with perceptually adaptable renderers [19] and
techniques for visual masking [10] will be investigated.
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