
Boolean Operations on Surfel-Bounded Objects using Constrained BSP-Trees

Marcus A. C. Farias 1 Carlos E. Scheidegger 2 João L. D. Comba 1 Luiz C. Velho 3

1 Instituto de Informática, UFRGS
2 Scientific Computing and Imaging Institute, University of Utah

3 Instituto de Matemática Pura e Aplicada

Abstract

Point-based modeling and rendering is an active area
of research in Computer Graphics. The concept of points
with attributes (e.g. normals) is usually referred to as sur-
fels, and many algorithms have been devised to their effi-
cient manipulation and rendering. Key to the efficiency of
many methods is the use of partitioning schemes, and usu-
ally axis-aligned structures such as octrees and KD-trees
are preferred, instead of more general BSP-trees. In this
work we introduce a data structure called Constrained BSP-
tree (CBSP-tree) that can be seen as an intermediate struc-
ture between KD-trees and BSP-trees. The CBSP-tree is
characterized by allowing arbitrary cuts as long as the com-
plexity of its cells remains bounded, allowing better approx-
imation of curved regions. We discuss algorithms to build
CBSP-trees using the flexibility that the structure offers,
and present a modified algorithm for boolean operations
that uses a new inside-outside object classification. Re-
sults show that CBSP-trees generate fewer cells than axis-
aligned structures.

1. Introduction

Object representation using point samples is becoming
very common in Computer Graphics [12, 9]. The increased
detail needed for models and 3D scanners are reasons to
consider using points as geometric primitives instead of
polygons (triangles). Points with associated attributes (e.g.
normals) of an object surface are usually called surfels (sur-
face elements) [14] (figure 1.a).

Surfel-bounded objects can be created in many ways
(e.g. scanner acquisition). The ability to combine surfel-
bounded objects using boolean operations is also very im-
portant, and efficient algorithms have been proposed to
solve this problem [1, 2]. In such algorithms an important
geometric query involves checking which parts of an object
are inside another object. Spatial data structures such as oc-
trees and KD-trees are used to reduce the natural quadratic

(a) Surfels (b) Quadtree (485 cells)

(c) CBSP-tree 1(341 cells) (d) CBSP-tree 2(254 cells)

Figure 1. Circle example. (a) Surfels and (b)
Corresponding Quadtree. (c) and (d) shows
two possible CBSP-trees.

complexity of this problem. In addition, boolean operations
in such structures are simplified since they only have axis-
aligned cuts.

In order to circumvent the problem of creating too many
cells along curved parts of the model, a hybrid structure is
proposed in [1] that uses a quadtree (or octree) with cuts that
are not aligned with the coordinate axes at the leaves. This
solution requires special treatment of the leaves, specially
when computing boolean operations.

In this work we introduce Constrained BSP-trees
(CBSP-trees) as a variation of BSP-trees that impose cer-
tain conditions on the directions of cuts. CBSP-trees can
be seen as an intermediary structure between the BSP-tree
[6] and the KD-tree [4]. The KD-tree corresponds to a hi-



erarchical representation of binary partitions of space by
axis-aligned cuts. On the other hand, BSP-trees also rep-
resent binary partitions of space, but with no restriction on
the directions of cuts. This is one important aspect that dif-
ferentiates BSP-trees from KD-trees: the direction of the
partitioner cuts: arbitrary in a BSP-tree, orthogonal in a
KD-tree. Another important difference is the complexity
of the cells associated with regions in space: bounded in
a KD-tree (all cells have four vertices in 2D), unbounded
in a BSP-tree. The flexibility of the additional type of cuts
allows the CBSP-tree to better adapt the shape of the ob-
jects represented, generating trees with fewer cells (figure
1). This is a more general framework that naturally handles
non-orthogonal cuts (without special treatment such as in
[1]).

The paper is outlined as follows. Section 2 discusses pre-
vious work. CBSP-trees are presented in section 3, followed
by the presentation of the boolean operations algorithm in
section 4. Results are presented in section 5 followed by
conclusions and directions for future work in section 6.

2. Related work

Points as primitives were discussed in [12], and more re-
cently in the work of Grossman and Dally [9, 8] and Pfister
et al. [14], where the concept of surfel is introduced. A
good survey on the subject can be found in [3].

Adams and Dutré [1] described an algorithm to compute
boolean operations on surfel-bounded objects. Surfels are
stored in a hybrid structure, that uses an octree at interme-
diate nodes, and non-axis aligned cuts at the leaves. The oc-
tree speeds up computation of the inside-outside classifica-
tion required by boolean operations. A resampling operator
is used to improve the quality of the edges of the resulting
object. Later, the same authors improved their solution us-
ing programmable graphics hardware (GPUs) [2]. Another
surfel-based boolean operation algorithm that uses the GPU
was described in [10], based on a depth peeling technique.
Boolean operations using distance fields was described in
[5]. Octrees are also used here to speed-up calculations.

The octree, used in [1] and [5], was the preferred choice
of spatial data structure due to its simplicity, regularity and
easy boolean operation algorithms. Competing structures,
such as KD-trees[4], BSP-trees[6] can also be considered,
and algorithms to perform boolean operations are described
in [15, 13]. Each structure has its own advantages and dis-
advantages, and hybrid structures are often used as a way of
combining the good features of each approach. In this work
we propose the CBSP-tree to allow an adaptive combination
of the features of several spatial data structures.

3. Constrained BSP-trees

3.1. Definitions

A CBSP-tree corresponds to a BSP-tree with a predicate
that defines which directions of cuts are valid. For comput-
ing boolean operations with surfels we define a criterion to
identify valid cuts as described below.

Definition 1 Valid Cell: A cell in Rn is called valid if it is
a convex polytope in Rn that contains at most 2n vertices
and 2n faces.

For example, in 2D, cells have 3 or (usually) 4 vertices.
In 3D, cells have at most (usually exactly) 8 vertices. A
valid cut is defined as (figure 2):

Definition 2 Valid Cut: A cut c defined by a hyperplane in
space Rn is called valid when it partitions a valid cell in
Rn into exactly 2 valid cells.

Figure 2. Valid and invalid cells (cuts)

Our decision to use the above definition of valid cut is di-
rectly related to the cells generated by the subdivision. Cells
with bounded complexity can more efficiently be used in
geometric problems such as point location, nearest neigh-
bor search or intersection detection, as well as serve as bet-
ter function approximations using interpolation.

3.2. Choosing Partitioners

The construction of CBSP-trees for representing surfels
is controlled by a partition operation. We explore the added
flexibility of CBSP-trees with a combination of cut selec-
tion strategies implemented using the strategy pattern [7].

The first selection mode uses a Principal Component
Analysis [11] approach (called PCA selection). It consists
in computing the eigenvectors representing the principal
and secondary directions of the surfels positions. The cor-
responding eigenvalues represent the significance of each
direction. Figure 3 shows principal and second component
for a sequence of surfels. We use the direction given by the
second component to define partitioner cuts.

Another strategy is to choose a valid cut from a list of
candidates that span a subset of all possible directions in a
given space. This is called candidate selection. We use the



Figure 3. Principal components used to
choose partitioners

cut that maximizes empty space in one of its halfspaces. If
none is found, we split the longest dimension, thus avoiding
thin cells.

We observed that best results are obtained when we fur-
ther subdivide space with cuts that are orthogonal to the pre-
vious chosen direction. In order to simulate this behavior,
we chose to alternate between PCA and candidate selection
strategies while building a CBSP-tree.

3.3. Stop Criteria

Partitioning stops when certain conditions are met. Two
simple strategies have been tested. The first one uses an
evaluation of a geometric criteria based on surfels align-
ment, while the second stops processing when a certain tree
depth is reached In both cases, the area of the cell can be
tested first, to avoid wasting time processing very small
cells and also to avoid numerical errors. As expected, the
number of surfels in a cell is used as stop criterion too. In
our tests, the stop criterion was chosen so that partitioning
is detailed while avoiding too many unnecessary cuts.

3.3.1 Surfels Alignment Criterion

In this strategy we first test the number of surfels. If the
cell has less than lim surfels, we stop partitioning. The
parameter lim can be configured as low as 1 or 2 (since
two surfels will always be aligned), or a higher number can
be chosen when that degree of precision is found to be too
much.

If the cell has more than lim surfels, we check alignment
using the PCA results based on an equation that relates the
first and secondary components, such as the following for-
mula: sec eigval/(princ eigval + sec eigval). If the re-
sult is less than or equal to a given threshold, the surfels are
considered to be sufficiently aligned.

3.3.2 Tree Depth Criterion

A simple alternative to stop partitioning is based on the
depth of the tree. If the level of recursion when building
the tree is less than level (for example, level = 4), we con-
tinue dividing. When the tree depth is greater than level, we
test the number of surfels in the cell. That means that par-

titioning stops when a minimum tree depth is reached and
the cell has less than a given number of surfels.

3.4. Trim Partitioners

Cells containing surfels may require further processing
after the stop criterion is met. In particular, when a cell
contain nearly-aligned surfels, we can introduce additional
cuts to limit the interior and exterior of the object. This can
be accomplished by adding two parallel cuts such that all
surfels lie in between them. This operation is called trim
and the cuts used are called trim partitioners. However,
some trim partitioners might violate the CBSP-tree restric-
tion, generating invalid cells.1

(a) (b)

(c) (d)

Figure 4. Trim cases. (a) 2 valid cuts; (b) 2
invalid (same sides); (c) 1 invalid, 1 valid; and
(d) 2 invalid (different sides)

Trim partitioners are directly used if they are both valid.
Otherwise, in order to keep the bounded complexity of the
cells and all surfels in a small area, we add a few extra cuts
to make the others valid. Figure 4 illustrates the different
situations that can occur. The next sections describe how to
handle invalid cuts.

3.4.1 Two Invalid Cuts, Same Sides

Figure 4.b shows two invalid partitioners (notice that they
cut adjacent sides of the cell, rather than opposing sides).
To correct them we first add the cut labeled A (figure 5) in
a way that the original invalid cut now intersects opposite
sides of the new cell. We can make one endpoint of A and B
coincident, thus creating a cell with three sides (still valid),

1Notice that, in [1], trim does generate cells that would not exist in
normal octrees.



but keeping all cells with the same number of sides simpli-
fies the algorithm. The same idea is then applied to the other
invalid cut, creating the cuts labeled C and D.

Figure 5. Trim: correcting two invalid splits,
when both intersect the same sides of the cell.

3.4.2 One Invalid Cut

Figure 4.c shows a case where only one partitioner is in-
valid. As in the previous case, we add an extra cut (this
time labeled B, see figure 6) that intersects the invalid one
before it reaches the border of the cell. B could be any cut
with a direction that makes the partitioning valid (such as a
vertical cut). The one shown uses the middle of the valid cut
as an endpoint, because it is simpler and always generates a
valid cut.

Figure 6. Trim: correcting one invalid split

3.4.3 Two Invalid Cuts, Different Sides

In figure 4.d, there are two invalid trim partitioners, but they
intersect different sides of the cell, so we can’t apply case A
here. Instead, we cut the cell in half (preferably perpendicu-
lar to the longest dimension) and apply case B on both sides
(figure 7). Notice that, although all examples used rectan-
gular cells for illustration, they work for any cell with four
sides.

4. Boolean Operations using CBSP-trees

4.1. Inside-Outside Classification

In order to compute boolean operations between CBSP-
trees we first need to classify each leaf cell as inside, outside

Figure 7. Trim: correcting two invalid splits,
each intersecting different sides of the cell.

or in the boundary of the object. Every cell that contains
surfels is classified immediately as a boundary cell. How-
ever, inside and outside cell classification is more involved
and requires finding adjacent cells in the subdvision. By
keeping a polygon that represents the geometry of each cell,
we can use the following algorithm to identify neighbors for
all leaf nodes:

Algorithm 1 FindNeighbors
1: for each partitioner p do
2: (Cl, Cr) = FindCellsIncidentToPartitioner(p);
3: for each cell cl ∈ Cl and cell cr ∈ Cr do
4: if cl is neighbor to cr by a segment ps of p then
5: Add cl and ps to the neighbor list of cr (and

vice-versa)
6: end if
7: end for
8: end for

The highlighted partitioner in figure 8 has incident cells
Cl={2, 6, 7} by its left half-space, and cells Cr={3, 8} by
its right half-space. Remaining cells (1, 5, 4, 9) and any
children they might have are not considered for further tests.
Checking every cell from the left side against one in the
right side allows us to conclude that cells 3 and 6 are neigh-
bors by neighbor segment c-d. On the other hand, cells 7
and 3 are not neighbors because they do not share a com-
mon line segment. 2

Once we find all cell neighbors, we calculate the aver-
age of the normal vectors of the surfels for every boundary
cell. Since normals are not used individually, we refer to
it simply as normal vector. Using the normal vector and
the neighbor segment, a boundary cell can tell us whether
a neighbor represents the space inside or outside the object.
Suppose cell 6 is a boundary cell and cell 3 does not contain
surfels (figure 9).

Notice that the line passing through the center of the sur-
fels along the direction of the normal vector intersects a
shared neighbor segment. This allows us to classify cell 3
as outside since the normal vector of cell 6 points to cell 3.

2neighbor segments are ignored if they are much smaller than cell sides



Figure 8. Finding neighbor cells

If the vector had opposite direction, cell 3 would be clas-
sified as inside. Tests showed that using only the normal
vector direction classifies too many cells in some cases.

Figure 9. Classifying cell 3 as “outside”

If a cell is incorrectly missed by the above procedure,
it is classified along the remaining unclassified cells by a
simple flood-fill algorithm. Figure 10 shows an example of
the final result obtained by the inside-outside classification
algorithm.

4.2. Boolean Operations Algorithm

The boolean operation is performed as described in [1].
First we classify all surfels of one object as inside or out-
side the other (and vice-versa). This classification requires
a point-location algorithm that finds the cell reached by a
given surfel. If the surfel reaches a boundary cell, we use a
classification based on the closest surfel. Adams and Dutré
[1] suggest the use of a resampling operator to refine the
surfel into smaller surfels, which is not fully implemented
in our work since it will be more useful for the 3D case.

In some cases a surfel-by-surfel test is not necessary. For
instance, when a cell associated with one tree node does
not intersect the other tree (or intersects only with outside
(inside) leaf cells of the other tree), all surfels in that cell (or
its children) can be classified as outside (inside).

After this classification is finished, it is simple to com-
bine surfels using boolean operations. For example, when
performing a union operation, the result will have all surfels
that were classified as outside (from both objects). Table 1
shows the parts of each object kept in the result.

Operation Surface of A kept Surface of B kept
A ∪ B Outside B Outside A
A ∩ B Inside B Inside A
A − B Outside B Inside A

(inverted normals)
B − A Inside B Outside A

(inverted normals)

Table 1. Parts of surfaces kept when perform-
ing boolean operations [1].

5. Results

Several 2D objects have been tested using CBSP-trees
and quadtrees, with different partitioning strategies and stop
criteria. We compared the number of leaf cells in the tree
and a summary of results is shown in table 2. Every input
file used the same stop criterion with both the CBSP-tree
and the quadtree, in order to make the results comparable.
A video showing some of the results can be found at http:
//www.inf.ufrgs.br/∼macfarias/cbsp.

CBSP QT Tree
Input Leaves Leaves Stop criterion Constr. Time
circle 254 485 Max. tree depth: 4 and 19ms

max. 8 surfels
logo 1527 2333 Surfels alignment 69ms

or less than 1 surfel
ufrgs 1315 1589 Surfels alignment 61ms

or less than 8 surfels
koch 2220 2487 Max. tree depth: 4 and 110ms

max. 8 surfels
coke 5417 7688 Surfels alignment 292ms

or less than 2 surfels

Table 2. CBSP-Quadtree comparison.

The input file named circle obtained best results with al-
most unconstrained cuts (figure 1). Other input files ob-
tained best results with most axis-aligned cuts (except in the
trim operation, of course). See examples in figure 11. Still,
the CBSP-tree has fewer leaf nodes since quadtrees often
partition empty space when creating four cells. Boolean
operation examples are shown in figure 12.

6. Conclusions and future work

In this paper we introduced the concept of a CBSP-tree
as a more flexible spatial data structure. We used the prob-
lem of computing boolean operations on surfel-bounded



Figure 10. Inside-outside algorithm example. Left: subdivision. Center: cell classification. Right:
cell classification, with polygon lines hidden

solids to evaluate our proposal. The experiments show that
the ability of the CBSP-tree to better adjust to the shape of
objects leads to a subdivision that has a smaller number of
cells. The fact that we can use cuts that are not aligned with
the axes does not mean that they need to be always used. In
fact, in some of the cases, axis-aligned cuts were dominant
over the total number of cuts. However, in some objects
(such as the circle) non-axis-aligned cuts are important to
reduce the number of cells. The CBSP-tree handles the trim
cuts in a more general way than the hybrid octree used in
[1].

We are extending our approach and concepts to 3D and
considering a GPU implementation. We are also analysing
the time complexity of the algorithms. We plan to explore
CBSP-trees in other problems, such as the representation
of distance-fields (ADFs), texture mapping, and rendering
with proxy-geometry.

References

[1] B. Adams and P. Dutré. Interactive boolean operations on
surfel-bounded solids. In ACM Transactions on Graphics,
pages 651–656, 2003.

[2] B. Adams and P. Dutré. Boolean operations on surfel-
bounded solids using programmable graphics hardware. In
Eurographics Symposium on Point-Based Graphics 2004,
June 2004.

[3] M. Alexa, M. Gross, M. Pauly, H. Pfister, M. Stamminger,
and M. Zwicker. Point-based computer graphics siggraph
2004 course notes. In SIGGRAPH 2004, 2004.

[4] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Communication of the ACM,
18(9):509–517, 1975.

[5] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones.
Adaptively sampled distance fields: A general representation
of shape for computer graphics. In Proceedings of ACM SIG-
GRAPH 2000, pages 249–254. ACM Press, 2000.

[6] H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible sur-
face generation by a priori tree structures. In SIGGRAPH
’80: Proceedings of the 7th annual conference on Computer
graphics and interactive techniques, pages 124–133, New
York, NY, USA, 1980. ACM Press.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison-
Wesley Publishing Company, New York, 1995.

[8] J. P. Grossman. Point sample rendering. Master’s thesis,
Department of Electrical Engineering and Computer Science,
MIT, August 1998.

[9] J. P. Grossman and W. J. Dally. Point sample rendering. In
9th Eurographics Workshop on Rendering, pages 181–192,
1998.

[10] J. Hable and J. Rossignac. Blister: Gpu-based rendering of
boolean combinations of free-form triangulated shapes. In
ACM Transactions on Graphics, Proceedings of SIGGRAPH
2005, 2005.

[11] I. T. Jolliffe. Principal Component Analysis. Springer, 2nd
edition, 2002.

[12] M. Levoy and T. Whitted. The use of points as display prim-
itives. Technical Report TR 85-022, The University of North
Carolina at Chapel Hill, Department of Computer Science,
Jan. 1985.

[13] B. F. Naylor, J. Amanatides, and W. C. Thibault. Merging
BSP trees yields polyhedral set operations. Computer Graph-
ics, 24(4):115–124, Aug. 1990.

[14] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Sur-
fels: Surface elements as rendering primitives. In SIG-
GRAPH 2000, Computer Graphics Proceedings, pages 335–
342, 2000.

[15] H. Samet. The design and analysis of spatial data structures.
Addison-Wesley, 1990.



Quadtree(1589 cells)

CBSP-tree(1315 cells)

Quadtree(2333 cells), CBSP-tree(1527 cells)

Quadtree(2487 cells), CBSP-tree(2220 cells)

Figure 11. UFRGS, Logo and Koch results



Difference (Logo-Sphere)

Difference (Sphere-Logo) and Intersection

Union

Figure 12. Boolean Operation Examples


