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Abstract

The limited depth of field causes scene points at vari-
ous distances from a camera to be imaged with different
amounts of defocus. If images captured under different
aperture settings are available, the defocus measure can
be estimated and used for 3D scene reconstruction. Usu-
ally, defocusing is modeled by gaussian convolution over lo-
cal image patches, but the estimation of a defocus measure
based on that is hampered by the spurious high-frequencies
introduced by windowing. Here we show that this can be
ameliorated by the use of unnormalized gaussians, which
allow defocus estimation from the zero-frequency Fourier
component of the image patches, thus avoiding spurious
high frequencies. As our main contribution, we also show
that the modified shape from defocus approach can be ex-
tended to shape estimation from single shading inputs. This
is done by simulating an aperture change, via gaussian con-
volution, in order to generate the second image required for
defocus estimation. As proven here, the gaussian-blurred
image carries an explicit depth-dependent blur component
- which is missing from an ideal shading input -, and thus
allows depth estimation as in the multi-image case.

1. Introduction

Shape from defocus (SFD) concerns the estimation of
shape from the variable degree of blurring which results
from the limited depth of field of imaging systems. This
causes scene points at various distances from the camera to
be imaged with different amounts of defocusing. If the de-
focus measure is estimated - which requires two or more
images acquired under different aperture settings -, a depth
map of the scene can be easily inferred from geometrical
optics.

Usually, the defocusing process is modeled via the con-
volution of the perfectly focused image with a point spread
function (PSF), whose spatial dimension is proportional
to the defocus parameter. This is not a strictly realis-

tic approach, since defocusing is a spatially varying pro-
cess. Nevertheless, assuming a gaussian PSF, Pentland in-
troduced a Fourier-domain algorithm for defocus estimation
where convolution over local patches is assumed, in order to
account for depth-dependent blur [1]. Other frequency- and
spatial-domain techniques followed, most of them sharing
the local convolution assumption [2]-[5], but the problems
entailed by the use of local windows were soon identified,
such as the introduction of spurious high-frequency compo-
nents - due to the artificial discontinuities at window bound-
aries -, and irradiance leaking through neighboring patches.

Here we modify Pentland’s formulation of the
convolution-based SFD, by modeling the defocusing
process through the convolution with unnormalized, in-
stead of normalized, gaussians. Besides seeming more
appropriate to deal with irradiance bleeding across neigh-
boring windows, this model allows us to estimate the
defocus measure from the zero-frequency (DC) Fourier
component of the image patches, thus avoiding the afore-
mentioned spurious high-frequency components. Once
the defocus measure has been thus estimated, the 3D
reconstruction of the imaged surfaces proceeds as usual,
from geometrical optics.

As our main contribution, we also show that the modified
SFD approach can be extended to shape estimation from
single shading inputs. Ideal shading images, as used for
shape-from-shading estimation, carry no depth-dependent
blur, since they are assumed as having been captured un-
der orthographic projection. Here we model the formation
of such a uniformly blurred image, by introducing an over-
all defocus measure consisting of the product of a depth-
dependent blur component and an (spatially-varying) aper-
ture blur component which compensates the former. We
then proceed to show that, by simulating an aperture change
through the convolution of the shading image with a gaus-
sian PSF, the depth-dependent blur component can be made
explicit in the new image, and estimated via the modified
SFD approach. Shape reconstruction may then proceed as
in the muti-image case.

The remainder of this article is organized as follows: In
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Figure 1. (a) and (b) Pig images captured under two different aperture settings; (c): Rendition of the
estimated surface function in (d), for lambertian reflectance and uniform albedo, with illumination
from (1,1,1).

Section 2, we introduce our model for defocus estimation
based on local convolutions by unnormalized gaussians, and
show an example of its application. The process is then ex-
tended to single-image shape estimation in Section 3, and
illustrated by experimental results. The article then con-
cludes with our final remarks in Section 4.

2. Shape from Defocus

As shown in [1], the relation between the depth map and
the defocus map of a scene can be derived from geometrical
optics, as

���� �� �
���

�� � � � ����� ��
(1)

where ���� �� denotes the local blur radius, due to defocus-
ing, and where � , � and �� are parameters of the imaging
system: respectively, the focal distance, the f-number (de-
fined as the ratio between the focal distance and the aperture
radius, � � ��	), and the image plane position relative to
the focusing lens. According to (1), shape can be estimated
from the defocusing measure �, which, under the gaussian

blur model, is identified as the spatially-varying standard
deviation parameter,
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Also in [1], an approach for the estimation of 
��� �� has
been proposed, based on the ratio of the Fourier transforms
of corresponding patches in two images captured under dif-
ferent focus settings. Here we will take up essentially the
same approach, with an important distinction: differently
from [1], the defocusing of the local image patches will here
be modeled through unnormalized gaussian filters. Namely,
we assume that the intensities in a local image window can
be expressed as the convolution
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where ���� �� is the ideally focused image, and 
 denotes
the local defocusing measure, assumed uniform over each
window. Since there will always be some irradiance bleed-
ing, due to the defocusing blur, across the borders of neigh-
boring patches, it is reasonable not to assume normalization
in this case.
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Figure 2. (a) Synthetic face image; (b) Gaussian blurred version of (a), for �
 � 		
; (c): Rendition of
the estimated surface function in (d), for lambertian reflectance and uniform albedo, with illumination
from (1,1,1).

Now, in the frequency domain, equation (3) becomes
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where we are using the tilde to denote the Fourier trans-

form of the spatial signals, and where � �

�
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the spatial frequency magnitude. Therefore, if we consider
corresponding local patches over a pair of images, say � and
��, captured under different focus settings, we obtain from
(4)

�����
������

�

�


�
�

���

�
�

��

�
�
� � 
�

�
�

�
(5)

and thus,
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Since such relation is assumed to hold at all frequencies,
for the same local defocus measures, 
 and 
�, we may

consider it at � � 	, to obtain
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The above, when computed over a series of local win-
dows spanning the whole image will define the position-
dependent defocus measure of equation (2). This, in turn,
can be used for shape estimation via equation (1), which can
be easily recast in a form that expresses the surface func-
tion, up to a multiplicative factor, in terms of the defocus
measure and a single free parameter, here chosen empiri-
cally. The process is illustrated by the experiment in Fig. 1,
where ��� windows have been used for defocus estimation.

3. Single-Image Approach to SFD

Given a single shading image, we now propose shape
estimation based on a simulation of defocusing.



Ideal shading images, as used for shape from shading
(SFS), are assumed to have been captured under the general
reflectance-map conditions, including orthographic projec-
tion, and so they carry no depth-related blur. Shape from
defocus can not therefore be based on them. On the other
hand, since shading is due to surface orientation, and thus
depth variation, real shading images, captured under finite
aperture, must necessarily present spatially-variant, depth-
dependent defocus, and so are amenable to SFD estima-
tion; in such case, reflectance-map based shape from shad-
ing should work only approximately. This intrinsic contra-
diction between SFS and SFD can be accommodated if we
assume that the uniformly defocused image, as required by
SFS, has been captured under a finite position-dependent
aperture condition, in such a way that the aperture- and
depth-related blur effects compensate each other.

Let us illustrate this by considering a simple model,
whereby we express the overall defocus measure as the
product
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where both 
� and 
� - respectively, the aperture- and
depth-dependent blur components - could be functions of
position. Such multiplicative model is consistent with ge-
ometrical optics, from whence we learn that the defocus-
ing blur radius is proportional to the product of the aperture
radius and the displacement of the imaged point from its
perfectly focused position (equation (1) is ultimately a con-
sequence of this [7]).

What we propose, then, is to model the input image, ��,
as having been captured under a position-dependent aper-
ture condition, such that


���� �� �

�


���� ��
(9)

for a constant 
�, such that �� appears under overall uniform
blur.

Now, the effect of a uniform change in aperture (irising)
of the imaging system can be simulated by convolving � �
with a gaussian kernel, thus generating a new image, � . Ac-
cording to (8), if �
 is the additional blur entailed by the
aperture change, the defocus measure of � will be given as
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Equation (10) means that the depth-dependent blur compo-
nent, 
�, implicit in ��, becomes explicit in � , the artificially
defocused image. In particular, if �
 �� 
���� ��, the de-
focusing of � will be proportional to the depth-related blur.

From the Fourier transforms of � and �� over correspond-
ing local windows, the position-dependent measure 
��� ��
can be estimated through (7), thus allowing scene recon-

struction via equation (1), which now takes the form
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where we have used � � ��	, and taken the aperture radius
as equal to the aperture-component blur (	 � 
 ���
), also
assuming �
 �� 
���� ��. In (11), it is understood that
���	� and ����	� are window estimates, and thus functions of
� and �.

It is worthwhile remarking that the expression for
���� �� obtained above has a similar functional form as that
which results from an alternative approach to SFS, that of
the Green’s function photometric motion (GPM) [6]. GPM
can be related to the single-image SFD, inasmuch as both
processes share the basic approach of generating an artifi-
cial pair to the shading input. While here we simulate an
aperture change of the imaging system via convolution with
a gaussian kernel, GPM employs the Green’s function of
a matching equation to simulate motion. In such case, the
depth map of the imaged surface can be estimated as
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where �� and �� are parameters of the linearized irradiance
function, ���� �� � �� � ����� ���, and where � � ��� �,
for ���� �, denotes the direction of the simulated rotation.
The remaining parameters, � and � �, are also constants, rep-
resenting, respectively, the �-component of the optical flow
and its directional derivative, ��� � �����, at � � 	.

All the other terms being constant, if (11) and (12) are to
represent the same depth map, we should have�
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and thus
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Equation (14) can be interpreted as a quadratic image irra-
diance equation for ���	� - which represents essentially the
mean value of the intensities of � over each local window
-, with ����	� as a modulation factor. It should be recalled
that the input image ����� �� is assumed to be an ideal SFS
image, carrying only uniform defocus. The blurred image,
���� ��, on the other hand, has its depth-dependence made
explicit by the term under the square brackets in (14).

It is also worth remarking that an alternative interpreta-
tion can be given to �� - if we assume it as having been
captured under fixed and finite aperture -, as the representa-
tion of a flat scene, and thus of an albedo function. Equation
(14) then displays the standard form for an image irradiance
equation, consisting of the product of a position-dependent
albedo and a reflectance-map function.
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Figure 3. (a) Paolina image; (b) and (c): Renditions of the estimated surface function in (d), for
lambertian reflectance and uniform albedo, with illumination from (1,1,1) and (1,0,1).

Examples of the application of the single-image SFD ap-
proach appear in Figs. 2 to 4. In all cases, given the input
image, a uniformly blurred version of it was generated via
gaussian convolution (with �
 � 		
), as illustrated by
Fig. 2b. The defocus measure was then estimated in � � �
windows through equation (7), and used, for reconstruction
purpose, in equation (11). As in the two-image experiment
of Fig. 1, the depth function was estimated up to a multi-
plicative factor, and with its single free parameter empiri-
cally chosen.

4. Concluding Remarks

The following contributions have been reported here, to
the process of shape estimation from defocus (SFD):

i) We have modified Pentland’s defocus estimation ap-
proach [1], which is based on gaussian-convolution over
local image patches, by considering unnormalized, instead
of normalized gaussians. Besides being more appropriate
to account for irradiance bleeding, the use of unnormal-
ized gaussians allows the estimation of defocus from the
DC Fourier component of the image patches, thus avoiding

the undesirable high-frequency components introduced by
windowing.

ii) We have presented a single-image shape from defocus
process, which is based on simulating an aperture change
of the imaging system, in order to generate the second im-
age required by the defocus estimation approach. We in-
troduced a multiplicative model for the defocus measure -
expressing it as the product of an aperture-dependent and a
depth-dependent factor -, and assumed that the shading in-
put image, which carries no depth-dependent blur, has been
acquired in such a way that those two factors compensate
each other. Based on such model, we have then been able
to show that the gaussian-blurred image carries the depth-
dependent defocus information which is missing from the
input. Such information can be estimated via our modi-
fied shape-from-defocus approach, and surface reconstruc-
tion then proceeds as in the multi-image case.

The single-image SFD introduced here follows the same
line of approach which led to our previous Green’s func-
tion shape from shading (GSFS) [8, 9] and Green’s func-
tion photometric motion (GPM) [6], where an artificial pair
to the single input is generated by simulating a certain pho-
tometric or geometric intervention on the imaging set-up.
In GSFS and GPM, Green’s functions of image matching
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Figure 4. (a) Lenna image; (b) and (c): Renditions of the estimated surface function in (d), for
lambertian reflectance and uniform albedo, with illumination from (-1,-1,1) and (0,1,1).

equations are used for simulating, respectively, a change of
illumination and a rotation of the imaged surface; in the
single-image SFD, on the other hand, a change in aperture
is simulated via convolution with a gaussian kernel. A re-
markable finding of the present work is that the depth map
obtained through the latter approach shows the same func-
tional form as that yielded by GPM. Not less because they
are essentially distinct and unrelated processes, we believe
that such result adds to the credibility of both.
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