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Figure 1. Curvature motion on a spiral shape made of a union of balls.

Abstract

This work proposes a scheme for multi–resolution repre-
sentation of union of balls in the plane. This representation
is inspired by curvature motion for smooth curves. More
precisely, the proposed evolution of centres and radii of the
balls are based on equations of evolution of the medial axis
of a curve that performs curvature motion. The results ob-
tained are very close to the pixel approximation of curvature
motion.
Keywords: Union of Balls. Medial Axis. Curvature Mo-
tion. Shape. Vision. Multiresolution.

1. Introduction

In this paper we shall consider finite union of balls in the
plane. The objective is to describe a motion that represents
the union of balls in multi–resolution, i.e., such that at each
time the new union of balls can be considered a rough ver-
sion of its predecessor. In other words, we are constructing
a scale space for unions of balls.

Importance of curvature motion. Curvature motion is a
method for simplifying smooth curves that has very desir-
able properties: A curve does not create self–intersections,

two different curves do not intersect, any curve become con-
vex in finite time and at the end the region become close
to a disk. Thanks of these properties, curvature motion is
widely used for creating multi–resolution representation of
plane regions [12, 10, 11]). Some generalizations of curva-
ture motion to surfaces in 3D-space are also widely used for
simplifying surfaces [9, 6].

Union of balls as discretization of shapes. Pixel dis-
cretization of curvature motion is a delicate task [3]. In-
stead, we can consider a regionU in the plane and its medial
axis, which consists in the centres of maximal balls con-
tained in the region. In this way, the regionU can be written
as an infinite union of balls whose centres lie in the medial
axis. By sampling these centres, one can approximateU by
a finite union of balls [1]. Our main point of view is to con-
sider union of balls as a discretization of the regionU , but
we are also pointing at objects that are modelled as union of
balls, such as molecules.

Contributions. In this article, we propose a multi–
resolution representation of union of balls that is inspired
by curvature motion. The equations of evolution of centres
and radii of the balls are based on the equations of evolu-
tion of the medial axis and the radius function of a smooth
curve evolving by curvature motion [13, 14]. The main ex-
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pectation is that, if the balls sampling at the medial axis is
dense enough, the proposed movement will be close to the
curvature motion.

There are several difficulties in the implementation of the
motion, which are explained and solved in this paper. Since
it is based on the medial axis of a union of balls, we need
to have reliable implementations of Voronoi diagrams and
α–shapes. But the points considered are often in the same
circle, which makes the usual implementations quite unsta-
ble. Another difficulty is the bad sampling of the balls in the
medial axis. Even if one begins with evenly spaced balls,
several times the new centres become too close or too far
from each other. When this occurs, it is necessary to over–
sample or to sub–sample the balls. And last but not least,
there are a lot of numerical problems in the curvature and
radius derivatives estimations.

Overview. This paper is organized as follows: In sec-
tion 2 we describe the theoretical background related to me-
dial axes andα–shapes necessary to understand the paper.
Then, section 3 recalls and completes the results of [13] for
the effects of curvature motion on the medial axis. In sec-
tion 4 we describe the proposed equations for the centres
and radii of a union of balls. In section 5 we discuss several
implementation issues and in section 6 we show the results
obtained. This paper is an extension of the master’s disser-
tation of C.Ferreira [5].

2. Medial axis of a union of balls

A union of balls can be concisely described in terms of
its medial axis and itsα–shape. We will now summarize
these two notions, which were first described in [4] and [2].
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Figure 2. Medial axis of an ellipse.

Medial axis of a region. The (inner) medial axis of a re-
gion is the set of points of the region whose distance to the
boundary is reached in at least two points (fig. 2). This no-
tion is close to the (inner) skeleton of a region, which is the
closure of the medial axis. The distance from a point of the
medial axis to the boundary of the region is called the radius
function.

Figure 3. Generally, the Voronoi balls (thick)
are not part of the original union (dotted).

Generically, the medial axis of a smooth region is a finite
graph whose edges are smooth curves [13]. If the region is
the interior of a polygon, the medial axis is the boundary of
the cells of its Voronoi diagram. An extension of this prop-
erty will allow a direct construction of the medial axis of a
union of balls from the Voronoi Diagram of the intersection
points of the boundary of the balls.

α–shape. Theα–shape of a union of balls in the plane is
a combinatorial structure made of triangles, edges and ver-
tices. Intuitively, it describes if neighbouring balls intersect,
constructing an edge or a triangle to materialize this inter-
section. By varying theα, one can interpret if the balls
intersect deeply or simply touch. In the remaining of the
paper, we will consider only the caseα = 0. Here follows
a brief definition of theα–shape which will be used mainly
for the implementation issues of section 5.

Theα–shape of a set of pointsU = {pi} is defined as
follows: The vertices of theα–shape are the pointspi. A
trianglepipjpk belongs to the Delaunay triangulation if its
circumcircle does not contain any point ofU exceptpi, pj

andpk. It further belongs to theα–shape if its circumra-
dius is inferior toα. An edgepipj of a Delaunay triangle
belongs to theα–shape if it is in the boundary of a trian-
gle of theα–shape or if its diameter is inferior to2α and if
the distance of its midpoint topk andpl is greater thanα,
wherepipjpk andpipjpl are the two Delaunay triangles
pipj bounds.

Consider now a union of ballsU = ∪Bi and assume
thatU cannot be written as the union of a proper subset of
the ballsBi. The power of a pointp to a ballBi of centre
ci and radiusri is defined byπ(p, Bi) = d(p, ci)

2 − r2
i .

Theα–shape (fig. 5)ofU is constructed similarly to theα–
shape of a set of points, replacing the Euclidean distance for
defining the circumcircle and the diametrical circle by the
power distance and allowing the circumradius to be negative
when the 3 balls intersect.
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Figure 4. The medial axis as part of the α–
shape edges (solid lines) and part of the
Voronoi diagram (dashed lines) of the exter-
nal intersection points (cross marks).

Medial axis of a union of balls. The medial axis is con-
tained in theα–shape. Actually, when theα–shape has lo-
cally no triangle, the medial axis is theα–shape and the
centres of balls of this part of theα–shape are the vertices
of the medial axis [2].

Inside a group of triangles, the construction of the medial
axis is not so straightforward, and requires the construction
of the intersection pointsnj of balls that lie on the bound-
ary of the region:ni ∈ ∂U (fig. 4). Theα–shape actually
fastens the computation of these intersection points.

Inside a group of triangles of theα–shape, the medial
axis coincides with the edges of the Voronoi diagram of the
intersection points{ni} [2]. The verticesc of this part of the
medial axis are associated with the radiusr of their Voronoi
region, and the pairs(c, r) define balls that will be called the
Voronoi balls of the medial axis. Note that those Voronoi
balls do not usually coincide with any ball ofU (fig. 3).

Figure 5. The α–shape (solid lines and filled
triangles) as a subset of the regular triangu-
lation (dashed lines).

3. Curvature motion on the medial axis

In this section we will introduce briefly the curvature
motion that we intend to mimic. We will refer intensively to
the geometrical description of the effects of curvature mo-
tion on the medial axis of [13] for the regular case, and to
the topological evolution of [14] for the singular case (figs. 1
and 6). We summarize these results here, and complete
them by a geometric description of the evolution of the end
points.

Curvature motion. Consider an evolutionQ(s, t) of an
initial simple curveQ(s, 0) in the plane. The curvature mo-
tion [12] will deform the curve according to the equation

Qt(s, t) = K(s, t)N(s, t)

whereK(s, t) is the curvature andN(s, t) is the inward unit
normal (fig. 2).

In the rest of this work, we will consider that the me-
dial axisM(v) is parameterized by the arc–length (near the
regular points) and denote byK its curvature andN its uni-
tary normal. The radius at pointM and its derivatives are
denoted byr, rv andrvv.

Curvature motion around a regular point. A point M
of the medial axis is calledregular if the maximum ball cen-
tred atM is tangent to the boundary at exactly2 points, with
a tangency of order1. It was shown in [13] that when the
curve evolves by curvature motion, a regular point evolve
according to equations




Mt =
K(1−rv

2)
(1−rv

2−rrvv)2−r2K2(1−rv
2)
N

rt =
rK2(1−rv

2)+rv(1−rv
2−rrvv)

(1−rv
2−rrvv)2−r2K2(1−rv

2)

(1)

Curvature motion at a bifurcation. When the maximal
ball of a pointM of the medial axis touches the curve at
n ≥ 3 points, we callM a bifurcation point. Generically, a
bifurcation point is the intersection ofn curves called sym-
metry sets for which it is a regular point [14]. Hence the
evolution of a bifurcation point can be seen as the evolution
of the intersection ofn symmetry sets evolving according
to equation 1.

Curvature motion at an end point. When the maximal
disk of a pointM of the medial axis (actually the skeleton)
touches the curve at only one pointp, the order of tangency
must be at least3 [14]. We call such a pointM anend point.
When the curve evolves through the curvature motion, end
points of the medial axis evolve according to the following
formula: {

Mt = −KssN
rt = −Kss − K

(2)
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Figure 6. The effect of the curvature motion can be computed from the medial axis.

whereK is the curvature atp andN is the inward normal.
This formula can be proved by techniques similar to those
used in [13].

4. Proposed evolution for union of balls

This works aims at constructing a curvature motion for a
union of balls. Our paradigm considers that the balls form-
ing the shape are centred on the medial axis. Starting with
a union of balls that does not conform to this paradigm, the
equation we use together with an eventual local re–sampling
of the shape will smoothly ensure the conformance of the
union of balls to it.

Curvature motion acts on each medial axis vertices ac-
cording to the equations of the last section, depending on
the type of this vertex. For each type, we describe now how
to discretize the differential quantities of the equations in-
troduced in last section.

Inner balls. If the centre of a ball is not part of the me-
dial axis, we shall call it aninner ball. Those balls are not
directly necessary, but are essential since they would create
a hole if removed. There is no need to have them evolved,
but for numerical stability it is better to let their radius grow
until they reach the boundary.

Regular balls. If the centre of a ballB belongs to the
medial axis and is incident to exactly two edges of the me-
dial axis, it is called aregular ball (fig. 6). These centres
are alike to correspond to regular points of the medial axis,
although they can correspond also to non–regular points,
when the ball radius is a local maximum. In order to use
equations 1 for regular points, we must estimate the curva-
tureK of the medial axis and the first and second deriva-
tives of the radius function. To do so, we will consider the
maximal regular portion of the medial axis aroundB, i.e.
a maximal sequence of adjacent regular balls containingB.
This defines a polygonal line of at least 2 segments, and
we can apply the method of [8] to estimate its curvature.
This method can be directly adapted to estimaterv andrvv,

d d

i1

i2

Figure 7. At a bifurcation ball, the symmetry
set continues the medial axis. Its direction
is guessed as the perpendicular to the line
joining the intersections i1 and i2. Its radius
function is chosen to touch i1 and i2.

consideringr as another coordinate of each vertex of the
polygonal line.

Bifurcation balls. If there are more than3 edges of the
medial axis incident to its centre, the ball will be called a
bifurcation ball (fig. 6). It is important to note that there
are bifurcation points in the medial axis that are not centres
of balls of the union, which we called Voronoi balls. In this
case, the computation of the evolution of the bifurcation ball
is not necessary, as the Voronoi balls naturally move when
moving the other balls of the union.

As explained in section 3, a bifurcation point should
evolve as if it were a regular point of each branch of the
symmetry set. The difficulty we have here is that we
need points of the symmetry set that are not in the me-
dial axis. This symmetry set corresponds to balls that touch
the boundary of the shape twice, but are not completely in-
cluded in the shape. The construction of such a ball is de-
scribed on fig. 7.

After computing the evolution of the branches, one must
find the intersection of each pair of branches. In our case,
these branches are approximated by line segments. Hence
each pair of segments intersects at a point and the new bi-
furcation point was proposed to be the barycentre of these
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Figure 8. A small perturbation of the shape
perturbs the medial axis significantly.

intersections. The value ofrt was estimated as the mean of
the values ofrt corresponding to each branch.

End balls. We say that a ballB = (c, r) is anend ball
if there is only one edge of the medial axis incident to its
centre. The medial axis is a combinatorial structure that is
very sensitive to noise: a small perturbation of the boundary
creates an end point close to this perturbation. The notion of
perturbation is hard to formalize in general, but for the case
of union of balls, we will try to make a distinction between
end points that correspond to noise and end points that cor-
respond to real protrusions: We say that an end ball isclean
if its centre is incident to only one edge of theα–shape, and
noisy if its centre is incident to at least one triangle of the
α–shape (fig. 6). The notion of “real” protuberance then
corresponds to a sequence of balls going towards the end
point.

Ellipse approximation. In order to use equations 2 for
the end point case, we must estimate the curvatureK of the
curve and its second derivativeKss at the pointq where the
maximal ball touches the curve. To estimateKss andK at
q, we shall consider an ellipse that approximates the end
ball and the adjacent ones. This ellipse is constructed with
q being a curvature extremum. In this way, the curvatureK
and its second derivativeKss are estimated byK = a/b2

andKss = 3(b2 − a2)/a4 wherea is the half–axis passing
throughq andb is the other half–axis.

Clean end balls. For the case of clean end balls, there
is only one ballB′ = (c′, r′) adjacent toB in theα–shape.
We can consider that the approximating ellipse has half–
axisb = r′ anda = r + d(c, c′).

Noisy end balls. For the noisy end ball case, the ellipse
should follow the boundary of the union of balls. Consider
the two boundary edges of theα–shape incident to the end
ball B. These two edges linkB to two other ballsB1 and

t1

t
′

1

t2 t
′

2

Figure 9. For the noisy end ball case, the ap-
proximating ellipse is calculated from the bi–
tangents of the end ball and the two neigh-
bours in the boundary of the α–shape.

B2. The ellipse here will be constructed from the bi–tangent
of those balls: letli be the external bi–tangent ofB andBi.
The axis of the ellipse will be the bisector ofl1 andl2, and
the ellipse is then the unique one passing through the four
tangency pointst1, t′1, t2 andt′2 (fig. 9).

5. Sampling condition and numerical issues

The above description works better when the medial axis
is well sampled. On one hand, as curvature motion glob-
ally shrinks the shape, the sample points will become closer
during the evolution. On the other hand, when the shape is
non–convex, it locally expands, making samples to get more
distant. These phenomena must be compensated in order to
maintain a good sampling rate.

Many difficulties appeared in the implementation of the
proposed motion. Some of these difficulties are related to
instability in the computation ofα–shapes, Voronoi dia-
grams and medial axes when the points are not in general
position. These cases always occur when moving slowly all
the points. This section will describe the re-sampling we
performed, and some solutions for numerical instabilities.

Over–sampling. The sampling is considered insufficient
when two adjacent ballsB1 = (c1, r1) andB2 = (c2, r2)
of the medial axis are too distant one from the other in the
sense thatd(c1, c2) > min(r1, r2). In that case, we add
a new ball to the union, having centre12 (c1 + c2) and ra-
dius 1

2 (r1 + r2). At each step of the evolution, this test is
performed even with Voronoi balls.

Sub–sampling. The sampling will be considered too
dense, leading to potential numerical errors, when two ad-
jacent ballsB1 = (c1, r1) andB2 = (c2, r2) of the me-
dial axis are too close one in the sense thatd(c1, c2) <
ε min(r1, r2). We choseε = 0.05 for the implementation.
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Figure 10. Two cases where the α of triangle
is small. This triangle contains a hole if it
contains its radical centre (isolated point).

If one of the ballsB1 or B2 is an end ball, the other one is
removed. Otherwise, we substitute both balls by one with
centre1

2 (c1 + c2) and radius12 (r1 + r2).

Bifurcation to regular topological change. Another test
tries to remove noisy end balls, when their removal leaves
the shape almost unchanged. This actually corresponds to
a topological change of the smooth curvature motion de-
scribed in [14], as for the transition from the third to the last
step of fig. 6. The test is then performed whenB1 is an end
ball, B2 is a bifurcation ball, andd(c1, c2) < µ|r1 − r2|.
We choseµ = 1.05 for the implementation.

Regular to bifurcation case. When three balls are almost
intersecting, the curvature evolution can move them closer
one to the others. In some cases, this topological change
in inherent to the curvature motion [13], as for the tran-
sition from the first to the second step of fig. 6. In other
ones, maintaining the medial axis would violate one of the
conditions on the radius function described in [13]. This
behaviour translates to a real numerical instability for the
regular case, namely a very small denominator for equa-
tions 1. In order to estimateK, rv andrvv avoiding this
instability, we process the same code, but replacing each
ball Bi = (ci, ri) of the regular portion of the medial axis
by the ball of centre12 (ci + ci±1) and radius12 (ri + ri±1).
If after 10 recursions the denominator is still too small, the
regular ball is considered successively as a clean end ball on
one side of the medial axis, and a clean end ball on the other
side. The resulting movement is computed as the average of
the two clean end ball computations.

Avoiding non–existing holes. When moving the union of
balls, three balls in the middle of the shape can disconnect
and create an artificial hole. In order to avoid this phe-
nomenon, a ball is added to the union of balls. This case
is detected by a very smallαof a triangleT smaller than
dt · r, wheredt is the time step andr is the maximal radius

of the balls ofT . A triangleT with a smallαcorresponds
either to a hole in the interior of the region or to a concavity
at the border of the region. To ensure thatT corresponds to
a hole, we check that it contain the (radical) centrec of its
circumcircle (for the power distance) (fig. 10). In that case,
we insert a ball centred atc, with radius the minimal radius
of the balls ofT .

Numerical validation of the noisy end ball case. The
noisy end ball case is intrinsically unstable, as it corre-
sponds to noisy data. However, the approximation of a
shape by a union of balls introduces such a noise, and that
case should be handled with care. The calculus of the ap-
proximating ellipse by the bi–tangentsli described at sec-
tion 4 is quite stable, but the result should be validated.
First, the ellipse is not well defined if the two bi–tangents
are almost parallel, or if two of the four pointst1, t′1, t2
andt′2 are too close. Also, the computed values ofK and
Kss should be coherent with the original data, in particu-
lar the curvature cannot exceed the curvature of the only
end ball 1/r: K/r > γ, with γ close to1 (we chose
0.8 for the implementation). And the curvature around the
touch pointq can be approximating by Taylor’s formula:
Ki ≈ K + Kssi + 1

2Ksss
2
i , with Ki = 1/ri is the curva-

ture of the ball att′i andsi = d(ti, t′i). Note that around
an end point,Ks = 0, and the validation criteria becomes:
ri/r + 1

2riKsss
2
i > γ. If one of those tests fails, the end

ball is considered as clean, as the clean test is more robust.

6. Results, application and conclusion

We have implemented the proposed algorithm and the
results obtained are quite promising.

6.1. Comparing the proposed motion with curva-
ture motion

In the examples considered, the proposed motion be-
haved qualitatively very well. In the spiral example
(fig. 12), the proposed motion simplifies the curve as time
evolves, without creating self-intersections, without creat-
ing holes and keeping just one connected component. These
properties are very desirable for a scale space. In the “x” ex-
ample (fig. 14), we have also observed that the motion sim-
plifies the regions without creating holes and maintaining
the number of connected components.

We have also compared our motion with the pixel–wise
approximation of curvature motion using Megawave [9].
One can observe from (figs. 11, 12, 13 and 14) that the
behaviours of both implementations are qualitatively very
close. The execution time of Megawave is related to the
number of pixels of the image, while our approach depends
on the number of balls describing the shape.
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Figure 11. Curvature motion approximated pixel–wise using Megawave: 50, 100, 150 and 200 steps.

Figure 12. Curvature motion approximated by our method: 50, 100, 150 and 200 iterations.

6.2. The reaction–diffusion scale space

A multi–resolution representation of objects called
reaction–diffusion scale space is proposed in [7]. In this
representation, the boundary of the curve evolves according
to the equationQt(s, t) = (α + βK(s, t)) N(s, t) whereα
andβ are parameters. Whenα = 0, we have pure diffusion
and whenβ = 0 we have pure reaction. By varying the ratio
α
β we obtain descriptions of the planar shape that, in some
sense, give a level of significance to parts of the shape.

We have implemented a reaction–diffusion scale space
by intercalating some steps of the proposed curvature mo-
tion with some steps of erosion. The ratio between the num-
ber of steps of each motion has the same role as the ratioα

β
of Kimia’s scale space.

We can observe the results obtained on fig. 16. It is inter-
esting to see that parts of the body are being disconnected
from the main at different times, depending on the scale
considered. When we apply more curvature motion, it takes
more time to disconnect parts of the body, and when we ap-
ply more erosion, it takes less time for the disconnections.

We have also compared our scale space with a pixel–
wise approximation of Kimia’s scale space that we have im-
plemented using Megawave. Some differences between the
2 approaches can be observed (fig. 15), but both schemes
present the qualitative behaviour of a reaction–diffusion
scale space.
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Figure 13. Curvature motion approximated pixel–wise using Megawave: 50, 100, 150 and 200 steps.

Figure 14. Curvature motion approximated by our method: 50, 100, 150 and 200 iterations.

Figure 15. Kimia scale space approximated
pixel–wise using Megawave.

Figure 16. Kimia scale space approximated by
our method.
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