
CHF: A Scalable Topological Data Structure for Tetrahedral Meshes

Marcos Lage1, Thomas Lewiner1,2, Hélio Lopes1 and Luiz Velho3

1PUC–Rio — Departamento de Matemática — Matḿıdia Project — Rio de Janeiro — Brazil
2INRIA — Géoḿetrica Project — Sophia Antipolis — France

3IMPA — Visgraf Project — Rio de Janeiro — Brazil

{mlage,tomlew,lopes}@mat.puc-rio.br, lvelho@visgraf.impa.br

Figure 1. Visualization of tetrahedral meshes using CHF.

Abstract

This work introduces a scalable topological data structure
for manifold tetrahedral meshes calledCompact Half–
Face (CHF). It provides a high degree of scalability, since
it is able to optimize the memory consumption / execution
time ratio for different applications and data by using fea-
tures of its different levels. An object–oriented API using
class inheritance and virtual instantiation enables a unique
interface for each function at any level.CHF requires very
few memory, is simple to implement and easy to use, since it
substitutes pointers by container of integers and basic bit-
wise rules.
Keywords: Geometric Modeling, Data Structures, Object
Oriented Programming, Generic Containers.

1. Introduction

Tetrahedral meshes constitute one of the fundamental
representations for volumetric objects in computer graphics
and geometric modeling. Although mesh–less models are
very popular in visualization, meshes represent in a unique,
local and explicit manner the underlying geometric space of
an object. This is the main reason why these representations

are omnipresent for finite element methods. For these appli-
cations and many others, the efficiency of the data structure
is a crucial element. In particular, generation of meshes
from point data is a very active area of research, where ef-
ficient data structures asCHF can help in both clarity and
efficiency.

Nowadays, many geometric modeling and scientific vi-
sualization systems commonly have to deal with huge vol-
umetric models [16, 20]. Several data structures and algo-
rithm have been proposed to visualize and manipulate tetra-
hedral meshes [26, 18, 10, 21]. However, such structures
consume considerable memory, requiring high scalability to
handle large models without losing performance in memory
access because of thrashing.

Contributions. This work introduces a scalable topolog-
ical data structure for manifold tetrahedral meshes called
Compact Half–Face (CHF). This data structure is an im-
provement for theHandle–Facedata structure [18] and ex-
tends theCorner–Tabledata structure for surfaces [24]. The
main advantages ofCHF are threefold. First, it is scalable,
since it is able to change the use of memory to improve ex-
ecution time. The amount of information stored on the data
structure can adapt to a specific application or model. Sec-
ond, it requires very few memory, since it substitutes point-

1



ers by container of integers and basic bitwise rules. More-
over, it is very easy to implement and use. And last, its
object–oriented API using class inheritance and virtual in-
stantiation enables a unique interface of the same functions
for every scale.

Paper outline. Section 2 introduces some basic concepts
of combinatorial structure. Section 3 reviews some related
works. Section 4 presents theCHF data structure, while
section 5 studies the complexity of the basic operations on
the CHF. Section 6 comparesCHF to some of the related
works.

2. Combinatorial structures for geometrical
objects

This sections introduces the basic concepts that will be
modeled by our data structure. For more details on the fol-
lowing definitions, see [1].

Simplices. A simplexσp of dimensionp is the closed con-
vex hull of p + 1 points{v0, . . . , vp}, vi ∈ R

m, in general
position, i.e., when the vectorsv1−v0, v2−v0, . . . , vp−v0

are linearly independent. For example, simplices of dimen-
sions3, 2, 1 and0 are, respectively, tetrahedrons, triangles,
edges and vertices. The pointsv0, . . . , vp are called thever-
ticesof σ. A faceof σ is the convex hull of some but not all
of the vertices ofσ and therefore is also a simplex. Ifσ is a
face of a simplexτ thenτ is said to beincidentto σ andτ
boundsσ. Theboundaryof ap–simplexσ, denoted by∂σ,
is the collection of all of its faces.

Simplicial Complex. Two k–simplicesσ andρ ∈ K are
adjacentwhenσ ∩ ρ �= ∅, and independentotherwise. A
simplicial complexK is a finite set of simplices together
with all their faces such that ifσ andτ are simplices ofK,
then they either meet at a faceλ, or are independent.

Figure 2. The star of an inner edge vavb is com-
posed of the tetrahedrons, triangles, edges
and vertices drawn.

Stars. Theopen starof a simplexσ ∈ K, is the union of
all simplices inK havingσ as a face. Thestar of σ ∈ K,
denoted bystar (σ,K), is the union of all simplices of the
open star together with all their faces (see figure 2).

Manifolds. A simplicial complexM is a combinatorial
k–manifoldif the open star of a vertex inM is homeomor-
phic either toR

k or to R
k−1 × R+. In particular, ifM is

a manifold, then every(k−1)–simplex inM is bounding
either one or twok–simplex.

A combinatorialk–manifold isorientablewhen it is pos-
sible to choose a coherent orientation for all of its simplices,
where coherent means that two adjacentk–faces induce op-
posite orientations on their common(k−1)–face. From now
on, ak–manifold will always mean an oriented combinato-
rial k–manifold and we will denote bynk be the number of
k–simplices inM .

Boundary. The (k−1)–simplices of a combinatorialk–
manifold M that are incident to only onek–simplex are
calledboundary simplices. All faces of a boundary simplex
are also called boundary simplices. The set of boundary
simplices forms theboundaryof M and is denoted by∂M .
The boundary of a combinatorialk–manifold is a combina-
torial (k−1)–manifold without boundary. The simplices that
are not on the boundary are calledinterior simplices. Fig-
ure 3 shows an example of interior and boundary cells of a
combinatorial 3–manifold.

Figure 3. Example interior and boundary cells
of a combinatorial 3–manifold.

Operations on manifolds. This works aims at defining an
optimized data structure for representing3–manifolds with
or without boundary. According to [10], the necessary op-
erations on such data structures are the retrieval functions
Rpq (σ), which returns for ap–simplexσ theq–simplicesτ
that bound common simplices.

For exampleR00 (v) returns all the vertices in the star of
v. More generally, whenp < q, Rpq (σ) consists of the set
of q–simplices instar (σ). Whenp > q, Rpq (σ) consists
of the set ofq–simplices that are faces ofσ. Finally, when
p = q, Rpq (σ) consists of the set ofq–simplicesτ such that
σ andτ are both faces of a common simplex ofM . All the

2



data structures described in the next section implement part
or all of theRpq relations, each with a different trade–off
between memory consumption and execution time.

3. Previous and related works.

Data structures for surfaces. Since Baumgart’sWinged–
Edgedata structure [2] for representing solids inR

3, sev-
eral modifications have been proposed in order to extend
the range of objects to be modeled. Among those, Braid [4]
introduced the concept ofloopand Mäntyl̈a [19] defined the
Half–Edgedata structure. Guibas and Stolfi [11] proposed
a generalization to include non–orientable 2–manifolds im-
plemented as theQuad–Edgedata structure. Lopes [17, 7]
defined theHandle–Edge, a new data structure that repre-
sents explicitly the boundary of a combinatorial surface,
which allows a direct description of its topology at each op-
eration. Rossignac et al. [24] proposed a very concise ver-
sion of the half–edge data structure, calledCorner–Table,
which only uses two array of integers and a set of rules to
represent triangular surfaces. A first scalable data structure
for 2–manifold, nameDirect–Edgeswas proposed by Cam-
pagna et al. in [6].

Data structure for 3–manifolds. For three dimensional
manifolds representation, other data structures have been
developed. Dobkin and Laszlo [9], with theirFacet–Edge
data structure, extended Guibas and Stolfi’s scheme in or-
der to represent cell complexes that are subdivisions of the
3–dimensional sphere. After that, Lopes and Tavares [18]
introduced theHandle–Facedata structure that explicitly
represents the boundaries.

Data structure for n–manifolds. Generalizing the idea
of theQuad–EdgeandFacet–Edge, some significant works
were introduced to representn–dimensional manifold.
Among those, theCell–Tupledata structure by Brisson [5],
then–Generalized Mapsfor simplicial quasi–manifolds by
Lienhardt [15] and theHypermapsby Bertrand and Du-
fourd [3] are to be cited.

Cell representation. According to Brisson [5], among
all the above cited dimension–independent data structures,
only the Quad–Edgeand theFacet–Edgedo not explicit
represents each cell, while theWinged–Edge, the Half–
Edge, the Handle–Edge, and theHandle–Faceare exam-
ples of data structures with explicit representation of cells.
Another widely used dimension–independent explicit rep-
resentation is theIndexed data structure with adjacencies
proposed by Paoluzzi et al. [22].

Non–manifold data structures. Traditional non–
manifold models usually results from Boolean operations.
Weiler [26] was the first to propose a non–manifold data
structure, calledRadial–Edge. After that, several modifica-
tions have been suggested to deal with specific applications.
Some substantial contributions to non–manifolds represen-
tation include the works of Wu [27, 28], Yamaguchi and
Kimura [29], Gursoz [12], Rossignac and O’Connor [25],
Cavalcanti et al. [8], and Lee and Lee [14]. More recently,
de Floriani and Hui [10] presented a very concise data
structure for non–manifold manipulation, calledNMIA,
which is an extension of theIndexed data structure with ad-
jacencies, and Pesco et al. proposed theHandle–Cell[23],
which is an extension of theHandle–Edge, to deal with
general 2–dimensional cell complexes. Finally, Nonato et
al. [21] proposedSingular Handle–Face, an extension of
theHandle–Facein order to deal with some non–manifold
cases. All the above structures represent the cells explicitly.

The CHF proposal. The CHF data structure has been
created to represent 3–manifolds. It extends theCorner–
Table [24] to volumes and at the same time can be con-
sidered a concise version of theHandle–Face[18], since
its volumetric cells are simplices. It uses generic contain-
ers instead of pointers or static arrays. Similarly to the
Corner–Table, it explicitly represents a few adjacencies and
incidence relations between cells and uses a set of rules to
obtain the others. However,CHF has a very different and
important characteristic that is its scalability, since it can
change in size according to the application.

4. The CHF Data Structure

The objective of this section is to introduce theCHF data
structure for the representation of 3–dimensional manifolds
with or without boundary. There are actually four levels
of structures, each one completing the previous in order to
accelerate the execution time, but consuming a little more
memory at each step. Those levels are implicit to the pro-
grammer by virtual inheritance: aC++ feature that avoids
the programmer to care about which structure level he is us-
ing. The compiler simply generates at the beginning of each
function a piece of code like:

OperationRpq (σ) at leveli;
if haslevel i+1 then

RETURN OperationRpq (σ) at leveli+1;
end if
(. . . )
This section describes the four levels of theCHF data

structure, with their construction from the first level. The
next section will describe the main operations on each of
those levels.

3



4.0. Level 0: representing tetrahedrons by the Ver-
tex container

The CHF uses the concept ofhalf–face(see figure 4)
to represent the association of a tetrahedron with one of its
bounding triangles, or equivalently the association of this
triangle with its apex. Any access to the elements of a tetra-
hedron is performed through its half–faces. The level 0 if
theCHF represents only the tetrahedral soup (see figure 5)
by storing the apex of each half–faces.

Figure 4. One half–face of a tetrahedron.

In the CHF data structure, the half–faces, the vertices
and the tetrahedrons are indexed by non–negative integers.
Each tetrahedron is represented by 4 consecutive half–faces
that define its orientation. For example, half–faces 0, 1, 2
and 3 correspond to the first tetrahedron, the half–faces 4, 5,
6 and 7 correspond to the second tetrahedron and so on. . .

Vertex geometry. The representation of the mesh geome-
try is done by the use of a container, namedG[], that stores
the geometry (coordinates, normals,. . . ) of then0 vertices
in M . For example, the geometry of a vertex with index
Vid v is obtained by accessingG[v].

Half–Faces’ rules. A half–face with indexHFid hf is as-
sociated with the tetrahedron of index�hf/4�. Therefore,
the indexes of the four half–faces that belong to the tetrahe-
dron with indexTid t are4t, 4t + 1, 4t + 2, and4t + 3. The
next, middle and previous half–faces of a given half–face

Figure 5. CHF level 0.

Half–Face < Orientation >
HFid 4t < V[4t + 1], V[4t + 2], V[4t + 3] >
HFid 4t + 1 < V[4t + 2], V[4t] , V[4t + 3] >
HFid 4t + 2 < V[4t + 3], V[4t] , V[4t + 1] >
HFid 4t + 3 < V[4t] , V[4t + 2], V[4t + 1] >

Table 1. Orientation of the triangles of a
generic tetrahedron Tid t.

HFid hf on the tetrahedron�hf/4� can be obtained by the
use of the following rules:

nexthf (hf) := 4�hf/4�+ (hf + 1) %4,
midhf (hf) := 4�hf/4�+ (hf + 2) %4,
prefhf (hf) := 4�hf/4�+ (hf + 3) %4.

Note that the arithmetic operations above can be coded effi-
ciently with bitwise rules:4t := t� 2, �hf/4� := hf � 2,
hf%4 := hf&3 and4�hf/4� := hf& (∼ 3).

The Vertex container. The association of each half-face
HFid hf to its apex is stored in a container of integers,
named theVertex container and denoted byV[]. The inte-
ger v = V[hf] is the index of the apex of half-facehf (see
figure 6). The size ofV[] is 4n3, and each entry ofV[] varies
from 0 to n0 − 1. Table 1 and figure 7 define the triangle
orientation for each half–face of a tetrahedron with indext.

Figure 6. Insides of half-faces and vertices.

The Half–Edges. Similarly to the Handle-Face data
structure, each half–face in theCHF is bounded by a cycle
of threehalf–edges(see figure 4). However, in theCHF the
half–edges are implicitly represented. The half–edge rep-
resents the association between a vertex of a half–face and
the half–face itself. Table 1 fixes the orientation of the half–
edge cycle inside a generic tetrahedron. For example, the
cycle of half–edges inside half–faceHFid 4t can be read
as: V[4t + 1] → V[4t + 2] , V[4t + 2] → V[4t + 3], and
V[4t + 3]→ V[4t + 1].

4



Figure 7. Orientation of the triangles of a
generic tetrahedron Tid t.

Define the index of a half–edge in half–faceHFidhf as
(hf, he), wherehe is the index of the half–face opposed to
the initial vertex of the half–edge (denotedVhe on figures 8
and 9). With this notation, the next and previous half-edges
of (hf, he) insidehf are, respectively:

nexthe (hf, he) := (hf, N [he%4][hf%4]),
prevhe (hf, he) := (hf, P [he%4][hf%4]).

where : N =



− 3 1 2
2 − 3 0
3 0 − 1
1 2 0 −


 and P = N t.

On one hand, themateof a half–edge lives on the half–
face opposed to its previous vertex:

matehe (hf, he) = (prevhe (hf, he) ,nexthe (hf, he)) .

On the other hand, theradial of a half–edge lives on the
opposite half–face, that will be defined in section 4.1 or that
can be constructed by algorithm 1:

radialhe (hf, he) = (O[hf] ,nexthe (hf, he)) .

With these four rules on half–edge, one can derive an
algorithm similar to Weiler [26] to traverse all half–faces
around an edge.

Figure 8. Mate half–edge.

Figure 9. Radial half–edge.

4.1. Level 1: representing the adjacencies among
tetrahedrons through the Opposite container

Figure 10. CHF level 1.

Level 1 of theCHF adds to the level 0 (figure 5) in-
formation on the neighbor of each tetrahedron (figure 10).
SinceM is a 3–manifold, each half–face is incident to one
or two tetrahedrons. In order to explicitly represent the
adjacency relation of two tetrahedrons, theCHF uses an-
other container of integers, named theOpposite container,
denoted byO[]. The face–adjacency between neighboring
tetrahedrons is represented by associating to each half–face
HFid hf its opposite half–faceO[hf] (figure 11), which has
the same vertices but opposite orientation. If the half–face
hf is on the boundary, then it doesn’t have an opposite,
which is encoded byO[hf] = −1. Thus, the value ofO[hf]
allows to directly checking whether a half–facehf is on the
boundary or not. The size ofO[] is 4n3, and each entry
of O[] varies from−1 to n3 − 1. Algorithm 1 shows how
to efficiently construct theO[] container from theV[] con-
tainer. This algorithm uses maps, which is a simple associa-
tive container.

Figure 11. Opposite of a half-face.

5



Algorithm 1 Opposite container construction

1: O[i]← −1 // Inits the container
2: map{Vid × Vid × Vid → HFid} adjacency
3: for HFid hf ∈ {0 . . . 4n3 − 1} do
4: // Gets the vertices tuple ofhf

v0 ← V[nexthf (hf)] ; v1 ← V[midhf (hf)] ;
v2 ← V[prefhf (hf)] ; v3 ← sort (v0, v1, v2)

5: if adjacency.find
(
v3

)
then

6: O[hf]← adjacency
[
v3

]
7: O[O[hf]]← hf // Found opposite half–face
8: adjacency.erase

(
v3

)
9: else // Temporarily stores half–face

10: adjacency
[
v3

]
← hf

11: end if
12: end for

4.2. Level 2: representing the cells explicitly

The Face map. An interior face will be identified by the
lowest of its two half–faceFid := HFid, since the other
half–face can be obtained by the use of containerO[]. A
boundary half–face will be identified by its unique half–
face. The faces can then be explicitly represented by a map
FH mapping each face, identified by one of its half–face, to
its attribute. Depending on the application, this attribute can
be the normal vector, material color, differential quantity. . .
The vertices of the faces can be easily accessed through
the half–face identifying it. The mapFH has exactlyn2

entries, which can be allocated inO(n2log(n2)) time and
space using a classical red–black tree structure.

The Edge map. Incidence relations on edges are essential
in many applications such as simplification and subdivision
algorithms. An edge is identified by an ordered pair of in-
tegersEid :=< v1, v2 >, wherev1 < v2 are the indexes of
the edge vertices. The edges can be explicitly represented
by a mapEH, mapping an edge identifier to the index of
one of its incident half–faces, and eventually to its attributes
such as color, collapse cost. . . If the edge lies on the bound-
ary, the stored half-face will be the boundary half–face ori-
entated fromv1 to v2. This gives directly the classification
of an edge as interior or boundary. The mapEH hasn1

entries, which can be allocated inO(n1log(n1)).

The extra Vertex container. To compute simple geom-
etry operators such as derivation, it is necessary to obtain
the vertex star efficiently. Therefore, it is useful to store an
extra container of integersVH that for each vertexv stores
an index of a half–face incident to vertexv. In the case the
vertex is on the boundary, the stored half–face should be a
boundary one. Such container has sizeO(n0) and can be
constructed in timeO(n3).

4.3. Level 3: representing the boundary through a
Compact Half–Edge

The boundary of a combinatorial 3–manifold is a set of
combinatorial 2–manifolds without boundary. Lopes and
Tavares in [18] pointed out the importance of having effi-
cient boundary cells manipulation for building and unbuild-
ing 3-manifolds. Moreover, advancing front triangulations
is a very significant application that needs an explicit repre-
sentation of the boundary. To do so, the incidences and ad-
jacencies of cells on the boundary should be explicitly rep-
resented. In theCHF such representation is done by the use
of the Compact Half–Edge (CHE) data structure, which
is a version of theCHF for surfaces.

TheCHE [13] is also a scalable data-structure. Similarly
to CHF, the first level ofCHE has only theVertex con-
tainer. The second level includes theOpposite container
for the half–edges. The third level represents the cells ex-
plicitly. And finally, the fourth level introduces an explicit
representation for the boundary curves.

Here, theCHF implements the second level ofCHE, i.e.,
it uses two containers of integers, thebV[] container and the
bO[] container. The vertices ofCHE and CHF have the
same index, and theCHE does not need to store the vertex
geometry for level 0. Each boundary triangle is represented
by 3 consecutive oriented–edges that define its frontier. In
theCHE, the oriented–edges 0, 1, and 2 correspond to the
first triangle, the oriented–edges 3, 4, and 5 correspond to
the second triangle and so on. . . ThebV[] container stores
the indexes of the vertices of the boundary triangles. The
bO[] container stores in each entry the index of the opposite
oriented–edge on the boundary surface. Those two contain-
ers are obtained in linear time traversingV[] andO[].

5. Operations on the CHF for each level

This section discusses the computational performance of
someRpq relations at all levels of theCHF.

5.1. R0∗: the vertex star

The vertex star is essential in particular to volume mod-
eling. TheCHF answers relationsR0∗ in time O(n3) at
level 0, since the function has to transverse all theV[] con-
tainer. At level 1, theV[] container is traversed until one
half–face incident to the input vertex is found, after that the
vertex star is obtained in timeO(deg(v)) by the use of the
O[] and the rules described above. Thus, the worst case at
level 1 has complexityO(n3), but it is in averagedeg(v)
times faster than for level 0. Finally, at level 2 and 3 the
complexity of finding the star of a vertexv is reduced to
O(deg(v)), sinceVH directly stores the starting half–face
to traverse the vertex star.

6



5.2. R1∗: the edge star

Algorithm 2 R13 (Eid < v1, v2 >), level 0
1: container< Vid > R13

2: for HFid hf ∈ {0 . . . 4n3 − 1} do // all half–faces
3: if v1 == V[hf] and

(v2 = V[nexthf (hf)] or v2 = V[midhf (hf)]
or v2 = V[prefhf (hf)]) then

4: R13.insert(hf � 2) ; continue // add tetrahedron
5: end if
6: end for

The edge star is also very important to several kind of
algorithms, such as volume simplification schemes using
edge collapse. Here, the edge is considered as an ordered
pair of indexes of its vertices. Thus,R10 is directly an-
swered. At level 0, the time complexity for theCHF to an-
swer the relationsR12 andR13 is O(n3), since the method
has to transverse all theV[] container (see algorithm 2). At
level 1, again theV[] container is traversed to find a half–
face incident to the input edge, after that by the use of the
O[] container and the rules formate andradial, the cycle of
half–faces around the edge is obtained in timeO(deg(e)),
wheredeg(e) is the number of faces incident toe. The worst
case for level 1 has complexity timeO(n3) but it is in av-
eragedeg(e) times faster than for level 0. Finally, at level
2 and 3 the complexity is reduced toO(deg(e)), sinceEH
directly identifies the first half–face (see algorithm 3).

Algorithm 3 R13 (Eid < v1, v2, (hf0, he0) >), level 3
1: container< Vid > R13

2: Tid t0 ← �hf0/4� // first tetrahedron
3: HFid hf ← hf0 ; HEid he← he0 ; Tid t← t0
4: repeat
5: R13.insert(t); // insert to the result
6: (hf, he)← radialhe (hf, he) // radial mate
7: t← �hf/4� // next tetrahedron
8: until hf �= −1 and t �= t0

5.3. R2∗: the face star

Obtaining the face star is simpler than the edge and ver-
tex star. Since a face is identified by one of its half–face
hf, we can get its vertices directly byv0 = V[nexthf (hf)],
v1 = V[midhf (hf)], v2 = V[prefhf (hf)], answeringR20

in constant time at any level. The edgesv0v1, v1v2, v2v0,
can also be retrieved, answeringR21 in constant time at any
level. At level 0, to answerR22 andR23 the methods have
to transverse all theV[] container to find the opposite half–
face if any, therefore the time complexity isO(n3) for both

relations. At level 1 and above, the complexity is reduced to
O(1), since the face is identified by one of its incident half–
faces and theO[] container gives the other one directly.

5.4. R3∗: tetrahedron incidence and adjacency

All the incidences of a tetrahedron are answered in con-
stant time at all levels of theCHF, except at level 0 where
the query for adjacent tetrahedrons,R33, is answered in
O(n3). At level 1, 2 and 3 by the use of theO[] container,
the query is obtained inO(1) time.

6. Memory Comparisons

memory consumption
Handle–Face 135n3 + 10n2 + 12n1 + 10n0

CHF 0 4n3

CHF 1 8n3

CHF 2 8n3 + n2 log2 n2 + n1 log2 n1 + n0

CHF 3 CHF 2 + 6 card
(
∂M2

)

Table 2. Memory complexity for topology.

All data structures described in section 3 provide differ-
ent trade–offs between memory usage and time complex-
ity of basic operations such as identifying a simplex, ac-
cessing its vertices, computing its stars. When handling
huge amount of data, a programmer has always to bal-
ance the memory consumption with the time complexity.
We comparedCHF with the unique structure specific to 3–
manifolds that has an explicit representation for cells and
for the boundary: theHandle–Face[18] (see table 2). In a
real context, the structure can be adapted in three comple-
mentary ways. First, the programmer can choose to use a
specific level for the whole program. Second, a set of rules
can be defined to decide dynamically which level offers the
best memory consumption / execution time trade–off. Last,
the whole structure can be first reserved, dynamically filled
each time a query is performed and completed when filled
more than a given ratio.

7. Conclusions and Future Works

The main contribution of this paper is an introduction
of an efficient data structure for 3–manifold representation,
calledCHF. TheCHF is straightforward to use, concise and
easy to implement. Moreover, it can adapt its size according
to its necessity by the use of inheritance. The use of con-
tainers makes theCHF implementation clear and general.

In order to illustrate its use, figure 1 shows some simple
visualization examples using theCHF. The first picture is
an example of a wire-frame visualization of a scalar field

7



defined on a molecule. The second illustrates some isosur-
faces of a scalar field defined on the Stanford Bunny. The
third one shows in blue the boundary vertices and in red the
interior ones. Finally, the last picture shows in different col-
ors the several boundary components of the volume mesh.

The authors plan to extend theCHF in order to consider
non-manifolds. In that case, the scalable level structure
of CHF is used again by adding one level to deal with 3-
complexes with singular vertices, and another one to deal
with singular edges. This extension is straightforward in
both cases, replacing the map containers used inCHF by
multi-maps.

Acknowledgments

The authors would like to thank Pierre Alliez (INRIA)
for the volumetric models. Marcos Lage is supported by
CAPES. H́elio Lopes is partially supported by CNPq and
FAPERJ (contract E261170.693/2004).

References

[1] J. W. Alexander. The combinatorial theory of complexes.
Annals of Mathematics, 31:219–320, 1930.

[2] B. G. Baumgart. A Polyhedron Representation for Com-
puter Vision. AFIPS National Computer Conference,
44:589–596, 1975.

[3] Y. Bertrand and J.-F. Dufourd. Algebraic Specification of
a 3D–Modeler Based on Hypergraphs.CVGIP Graphical
Models and Image Processing, 56:29–60, 1994.

[4] I. C. Braid, R. C. Hillyard, and I. A. Stroud. Stepwise con-
struction of polyhedra in geometric modeling. In K. W.
Brodlie, editor,Mathematical Methods in Computer Graph-
ics and Design, pages 123–141. Academic Press, 1980.

[5] E. Brisson. Representing Geometric Structures in d Dimen-
sions: Topology and Order.Discrete and Computational
Geometry, 9:387–426, 1993.

[6] S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed edges:
A scalable representation for triangle meshes.Journal of
Graphics Tools, 3(4):1–11, 1998.

[7] A. Castelo, H. Lopes, and G. Tavares. Handlebody Repre-
sentation for Surfaces and Morse Operators. InCurves and
Surfaces in Computer Vision Graphics III, pages 270–283,
1992.

[8] P. Roma Cavalcanti, P. C. P. Carvalho, and L. F. Martha.
Non–Manifold modelling: an approach based on spatial sub-
division. Computer–Aided Design, 29(3):209–220, 1997.

[9] D. P. Dobkin and M. J. Laszlo. Primitives for the manipula-
tion of three–dimensional subdivisions.Algorithmica, 4:3–
32, 1989.

[10] L. de Floriani and A. Hui. A scalable data structure for
three–dimensional non–manifold objects. InSymposium on
Geometry processing, pages 72–82. ACM, 2003.

[11] L. J. Guibas and J. Stolfi. Primitives for the manipulation
of general subdivisions and the computation of Voronoi dia-
grams.Transactions on Graphics, 4:74–123, 1985.

[12] E. L. Gursoz, Y. Choi, and F. B. Prinz. Vertex–Based Rep-
resentation of Non–Manifold Boundaries. In J. U. Turner,
M. J. Wozny, and K. Preiss, editors,Geometric Modeling
for Product Engineering, pages 107–130. Elsevier, 1990.

[13] M. Lage, T. Lewiner, H. Lopes, and L. Velho. CHE: A scal-
able topological data structure for triangular meshes. Tech-
nical report, PUC — Rio de Janeiro, 2005.

[14] S. Lee and K. Lee. Partial Entity Structure: A Compact
Non–Manifold Boundary Representation Based on Partial
Topological Entities. InSolid Modeling and Applications,
pages 159–170. ACM, 2001.

[15] P. Lienhardt. N–dimensional Generalized Combinatorial
Maps and Cellular Quasi–Manifolds.Journal of Compu-
tational Geometry & Applications, 4:275–324, 1994.

[16] H. Lopes, G. Nonato, S. Pesco, and G. Tavares. Dealing with
topological singularities in volumetric reconstruction. In P.-
J. Laurrent, P. Sablonière, and L. Schumaker, editors,Curve
and Surface Design, pages 229–238, Saint Malo, 2000. Van-
derbilt University Press.

[17] H. Lopes. Algorithm to build and unbuild 2 and 3 dimen-
sional manifolds. PhD thesis, Department of Mathematics,
PUC–Rio, 1996.

[18] H. Lopes and G. Tavares. Structural operators for model-
ing 3–manifolds. In C. Hoffman and W. Bronsvort, editors,
Solid Modeling and Applications, pages 10–18. ACM, 1997.

[19] M. Mäntyl̈a. An Introduction to Solid Modeling. Computer
Science Press, Rockville, 1988.

[20] G. Nonato, R. Minghim, M. C. F. de Oliveira, and
G. Tavares. A Novel Approach for Delaunay 3D Recon-
struction with a comparative analysis in the Light of Appli-
cations.Computer Graphics Forum, 20(2):161–174, 2001.

[21] G. Nonato, A. Castelo, R. Minghim, and H. Hideraldo.
Topological tetrahedron characterization with application in
volume reconstruction.Journal of Shape Modeling, 11(2),
2005.

[22] A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci.
Dimension–independent modeling with simplicial com-
plexes.Transactions on Graphics, 12(1):56–102, 1993.

[23] S. Pesco, H. Lopes, and G. Tavares. A Stratification
Approach for Modeling 2–cell complexes.Computers &
Graphics, 28(2):235–247, 2004.

[24] J. Rossignac, A. Safonova, and A. Szymczak. 3D Com-
pression Made Simple: Edgebreaker on a Corner–Table. In
Shape Modeling International, pages 278–283. IEEE, 2001.

[25] J. Rossignac and M. A. O’Connor. SGC : A Dimension In-
dependent Model for Pointsets with Internal Structures and
Incomplete Boundaries. In J. U. Turner, M. J. Wozny, and
K. Preiss, editors,Geometric Modeling for Product Engi-
neering, pages 145–180. Elsevier, 1990.

[26] K. J. Weiler. Topological Structures for Geometric Model-
ing. PhD thesis, Rensselaer Polytechnic Institute, New York,
USA, 1986.

[27] S. T. Wu. A new combinatorial model for boundary repre-
sentation.Computers & Graphics, 13(4):477–486, 1989.

[28] S. T. Wu. Non–manifold data models: implementation is-
sue. InMICAD, Computer Graphcis and Computer Aided
Technologies, pages 37–56, 1992.

[29] Y. Yamaguchi and F. Kimura. Non–Manifold Topology
Based on Coupling Entities. Computers & Graphics,
15(1):42–50, 1995.

8


