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Abstract

In this paper a new approach to polarimetric Synthetic
Aperture Radar (SAR) image region boundary detection is
presented. It is based on a new model for polarimetric SAR
data and the use of B-Spline active contours for image seg-
mentation. In order to detect the boundary for a region,
an initial B-Spline curve is specified and the proposed al-
gorithm uses a deformable contours technique to find the
boundary.

In doing this, the statistical parameters of the polarimet-
ric GH model for the data are estimated, in order to find the
transition points between the region being segmented and
the surrounding area.

This algorithm can be regarded as a local one, in the
sense that it works on the region to be segmented instead of
on the whole image

1 Introduction

The importance of polarimetric SAR images is due
to the large amount of information they convey. Refer-
ences [4, 18, 20] show the potential of polarimetric SAR
images compared to monopolarized SAR images in various
applications.

Region boundary finding is an important task in image
analysis, and many techniques have been proposed to solve

this problem. In the particular case of polarimetric Syn-
thetic Aperture Radar (SAR) images many techniques have
been proposed for feature extraction and area classification
(see [5, 12, 13, 23]), but they had never been combined with
B-Spline based deformable contour methods. These meth-
ods have the advantage of operating on regions instead of
over the whole image. Given the complexity of polarimet-
ric SAR images this is a considerable advantage.

The B-spline approach has been widely used in curve
representation for boundary detection [3], shape approxi-
mation [14] and object tracking [2]. Contours formulated by
means of B-splines allow local control, have local represen-
tation, require few parameters and are intrinsically smooth.

The technique proposed in this work is based on B-
Spline boundary fitting as considered by [1] tailored to the
properties of polarimetric SAR imagery by means of the
polarimetric GH distribution as a general data model. The
polarimetric GH model was recently developed in [10] and
presents an attractive choice for polarimetric SAR data seg-
mentation.

This proposal for boundary extraction begins with the
manual specification of initial regions of interest determined
by a series of control points which generate a B-spline
curve. Then, a series of radial segments are drawn on the
image, and image data around them are extracted. For each
segment, the transition point, that is, the point belonging to
the region boundary, is determined by parameter estimation
from the data under the GH model.

Then, for each region, the contour sought is given by the



B-spline curve that fits these transition points. In all that
follows, random variables will be denoted by capital letters;
for vectors and matrices bold characters will be used. The
structure of this paper is as follows: section 2 describes the
statistical model used for monopolarimetric SAR data, sec-
tion 3.1 presents the statistical model for polarimetric SAR
data, section 4 gives an introduction to B-Spline curve fit-
ting, section 5 specifies the criterion used to determine the
transition points and explains the region fitting algorithm,
section 6 shows the obtained results and section 7 presents
the conclusions.

2 The G distribution for monopolarized SAR
data

The multilook return in monopolarized SAR images can
be modeled as the product of two independent random vari-
ables, one corresponding to the backscatter X and other to
the speckle noise Y . In this manner

Z = X · Y (1)

models the return Z in each pixel under the multiplicative
model. For monopolarized data, the speckle noise Y is
modeled as a Γ(n, n) distributed random variable, where
n is the number of looks, while the backscatter X is consid-
ered to obey a Generalized Inverse Gaussian law, denoted
as N−1(α, λ, γ) (see [22]).

For particular values of the parameters of the N−1 dis-
tribution, the Γ(α, λ) , the Γ−1(α, γ), and the IG(γ, λ) (In-
verse Gaussian) distributions are obtained. These, in turn,
give rise to the K , the G0, and the GH distributions for the
return Z , respectively.

The IG distribution can be reparametrized according to

ω =
√

λγ,

η =
√

λ/γ.

With this parametrization, η is the mean vaule and ω repre-
sents the variability of the backscatter.

Given the mathematical tractability and descriptive
power of the G0 (see [11, 15, 16, 17, 19]) and the GH dis-
tributions, they represent an attractive choice for SAR data
modeling.

The density functions for these models are given by

fG0(z) =
2nnΓ(n − α)
γαΓ(−α)Γ(n)

· z2n−1

(γ + z2n)n−α
, (2)

where −α, γ, z > 0 and n ≥ 1, and

fGH (z) =
nn

Γ(n)

√
2ωη

π
eω(

ω

η(ωη + 2nz)
)n/2+1/4.

zn−1Kn+1/2

(√
ω

η
(ωη + 2nz)

)
, (3)

with ω, η, z > 0 and n ≥ 1, respectively.
The moments of the G0 and the GH distributions are:

EG0(Zr) = (
γ

2n
)r Γ(−α + r)

Γ(−α)
Γ(n + r)

Γ(n)
, −α > r,

(4)
and

EGH (Zr) = (
η

n
)reω

√
2ω

π
Kr−1/2(ω)

Γ(n + r)
Γ(n)

, (5)

respectively, and are used to estimate the statistical param-
eters. The Kν is the modified Bessel function of the third
kind and order ν, whose integral representation is [8]:

Kν(z) =
∫ ∞

0

exp{−z cosh(t)} cosh(νt)dt.

Numerical problems arise when computing this func-
tion [7], but the distribution used in this paper circumvents
this issue as will be seen in the next section.

3 Polarimetric SAR Data

Polarimetric SAR systems use antennas designed to
transmit and receive electromagnetic waves of a specific
polarization, being the two most common polarizations the
horizontal linear or H, and vertical linear or V. Due to the
possible change in polarization of the scattered wave, radar
antennas are often designed to receive the different polar-
ization components simultaneously and, therefore, HH, VV,
HV and VH data will be available in a full polarimetric sys-
tem. HV and VH channels are strongly correlated, so one
will be discarded in the following.

We will follow the multiplicative paradigm, sothe re-
turned data will be considered as the result of the product
between backscatter and speckle, given by

 Zhh

Zhv

Zvv


 =

√
X


 Yhh

Yhv

Yvv


 , (6)

where Z = [Zhh, Zhv, Zvv]t and Y = [Yhh, Yhv, Yvv]t

are complex random vectors modelling, respectively, the re-
turned signal and the speckle noise; the random variable X
is a scalar that models backscatter variability due to the het-
erogeneity of the sensed area.

We define now the 3 × 3 complex random matrix Z(n),
given by

Z(n) =
1
n

n∑
k=1

Z(k)Z∗t(k), (7)

where n is the number of looks and Z(k) are complex ran-
dom variables that correspond to each of the n looks. In a



similar way, we can also define Y(n) as

Y(n) =
1
n

n∑
k=1

Y(k)Y∗t(k), (8)

for the speckle noise. Then, from (6), (7) and (8) one has

Z(n) = XY(n), (9)

so equation (6) can be rewritten as

Z(n) =
X

n

n∑
k=1

Y(k)Y∗t(k) (10)

where

Y(k)Y∗t(k) =
 |Yhh(k)|2 Yhh(k)Y ∗

hv(k) Yhh(k)Y ∗
vv(k)

Y ∗
hh(k)Yhv(k) |Yhv(k)|2 Yhv(k)Y ∗

vv(k)
Y ∗

hh(k)Yvv(k) Y ∗
hv(k)Yvv(k) |Yvv(k)|2


 .

(11)
In the folowing subsections we explain the polarimetric

version of the GH distribution.

3.1 A polarimetric version of the GH distribution

If we consider that the components of Y(k) exhibit a
Multivariate Complex Gaussian distribution, then nY(n)

will have a Centered Complex Wishart distribution (see [6]),
so the density function of Y(n) will given by

fY(n)(y) =
n3n |y|n−3

π3Γ(n) · · ·Γ(n − 2) |ΣY|n ·

exp(−nTr(Σ−1
Y y)), (12)

for n ≥ 3 and for Y ∈ C3×3, where Tr is the trace opera-
tor, | · | denotes the determinant of a matrix and ΣY is the
covariance matrix of Y.

In order to find the density function of Z(n), the integral
given by

fZ(n)(z) =
∫
R+

fZ(n)|X=x(z) fX(x) dx (13)

is calculated. Using equation (12) it can be easily found that

fZ(n)|X=x(z) = x−32
fY(n)(x−1z). (14)

We will consider that the variability of backscatter, modeled
by random variable X , will follow a Inverse Gaussian dis-
tribution with unitary mean. So, its density function fX will
be given by

fX(x) =
√

ω

2πx3
exp

(
−1

2
ω

(x − 1)2

x

)
1R+(x), (15)

where

1A(x) =
{

1 if x ∈ A
0 if x /∈ A

(16)

and ω is a roughness parameter. Now, from formulæ (13),
(14) and (15) we can finally write fZ(n) as

fZ(n)(z) =

√
2
nn3neωω3n+1 |z|n−3

π3Γ(n) · · ·Γ(n − 2) |ΣY|n ·

K3n+1/2(
√

ω(2nTr(Σ−1
Y z) + ω))

(ω(2nTr(Σ−1
Y z) + ω))

3
2 n+ 1

4
. (17)

The Bessel function K3n+1/2 above can be computed using
a closed formula:

Knp+1/2(ν) =
√

π

2ν
eν

np∑
k=0

(np + k)!
k!(np − k)(2ν)k

, (18)

with

ν =
√

ω(2nTr(Σ−1
Y z) + ω), (19)

alleviating, thus, the numerical issues that the evaluation of
this function imposes in the general case.

Figure 1 shows a synthetic image with this distribution.
A similar approach had been used in [9] for parameter es-
timation of the two-channel sample covariance matrix, as-
suming an inverse χ2 distribution.

3.2 Parameter Estimation

The estimation of the roughness parameter ω is done us-
ing the first and second order moments of of the diagonal
elements of Z(n) (see [10]). The components of the princi-
pal diagonal of Z(n), are given by

Z
(n)
i,i =

X

n

n∑
k=1

|Yk,i|2 , with i ∈ {hh, hv, vv} ,

where the random variables X and n−1
∑n

k=1 |Yk,i|2 are
such that X ∼ GI(ω, 1) and n−1

∑n
k=1 |Yk,i|2 ∼

σ2
i Γ(n, 2n). This is equivalent to considering Z

(n)
i,i as

the result of the product of a GI(ω, σ2
i ) distributed ran-

dom variable and a Γ(n, 2n) distributed random vari-
able, because a σ2

i GI(ω, 1) distributed random variable is

GI(ω, σ2
i ) distributed. This, in turn, implies that Z

(n)
i,i is a

GH
I (ω, σ2

i , n) distributed random variable.
Given the independence between the random variables

X and Y , the rth-order moment of Z is obtained multi-
plying the rth-order moments of Y and X . The rth-order
moment of X is

E [Xr] =

√
2ω

π
eωηrKr− 1

2
(ω) (20)



and the rth-order moments of Y is

E[Y r] =
1
nr

Γ(n + r)
Γ(n)

(21)

Then, the rth-order moment of the return Z is

E[Zr] = (
η

n
)reω

√
2ω

π
Kr− 1

2
(ω)

Γ(n + r)
Γ(n)

(22)

Then, calling
m1i = E[Z(n)

i,i ]

and
m2i = E[(Z(n)

i,i )2]

the estimates of ω are given by

ω̂i =
1

n
n+1

m2i

m2
1i
− 1

, (23)

for i ∈ {HH, HV, V V }. We adopt the average of these
three values as the estimated value for the parameter ω:

ω̂ =
ω̂1 + ω̂2 + ω̂3

3
. (24)

3.3 Parameter interpretation

One of the most important features of the GH distribu-
tion is that the estimated values of the parameter ω have im-
mediate interpretation in terms of roughness. For values of
ω near zero, the imaged area presents very heterogeneous
gray values, as is the case of urban areas in polarimetric
SAR images. As we move to less heterogeneous areas like
forests, the value of ω grows, reaching its highest values for
homogeneous areas like pastures and certain types of crops.
This is the reason why this parameter is regarded to as a
roughness or texture measure.

4 B-spline Representation

In this work, the B-spline curve representation for de-
scribing object contours in an scene is used. B-splines are
a convenient representation of spline functions with the fol-
lowing interesting features:

1. The curve is represented by a few parameters, the con-
trol points; this reduces the computational effort to
compute it.

2. The order of the polynomial segments is chosen arbi-
trarily, and it relates to the desired smoothness.

3. The B-spline approach allows the local control of the
curve by controlling the control points individually.

4. The curve lies within the convex hull induced by the
control points.

In the following, a brief review of B-spline represen-
tation of contours is presented; for more details see the
works [1, 21].

Let {Q0, . . . , QNB−1} be a set of control points, where
Qn = (xn, yn)t ∈ R2, 0 ≤ n ≤ NB − 1, and let {s0 <
s1 < s2 < · · · < sL−1} ⊂ R be a set of L knots. A B-
spline curve of order d is defined as a weighted sum of NB

polynomial basis functions Bn,d(s) of degree d − 1, within
each interval [si, si+1] with 0 ≤ i ≤ L−1. The constructed
spline function is r(s) = (x(s), y(s))t, 0 ≤ s ≤ L − 1,
being

r(s) =
NB−1∑
n=0

Bn,d(s)Qn,

and

x(s) = Bt(s)Qx (25)

y(s) = Bt(s)Qy (26)

where the basis functions vector B(s) of NB components is
given by B(s) = (B0,d(s), . . . , BNB−1,d(s))t. The weight
vectors Qx and Qy give the first and second components of
Qn, respectively.

The curves used in this work are closed, with d = 3 or
d = 4, and are specified by periodic B-spline basis func-
tions.

We now present a brief review of the problem of de-
termining a polygon that generates a fitting B-spline curve
with known number of control points, NB.

Consider {D0, D1, . . . , Dk−1} ∈ R2, k points in the im-
age plane, where Di = (xi, yi)t, i = 0, . . . , k−1; the spline
curve that best fits them is sought. Equations (25) and (26),
imply that the components Di must satisfy

xi = Bt(ti)Qx,

yi = Bt(ti)Qy,

for certain values of ti, where i = 0, . . . , k − 1, and NB ≤
k.

This linear system is more compactly written in ma-
trix form as D = K(Qx Qy), where the k × NB ele-
ments of the real matrix K are given by Kij = Bj,d(ti),
with i = 0, . . . , k − 1, j = 0, . . . , NB − 1, and D =
(D0, D1, . . . , Dk)t. In the most general case NB < k and,
therefore, K is not a square matrix. In this case, the pseudo-
inverse matrix form (Qx Qy) = K+D is used to find the
B-spline fitting curve. A useful set of values for the param-
eters {t0, . . . , tk−1} is given by

t0 = 0, t� =
∑�

i=1 ‖Di − Di−1‖∑k−1
i=1 ‖Di − Di−1‖

, 
 ≥ 1.

The knot set to build the B-spline basis functions is arbitrar-
ily chosen.



5 Boundary detection

In this section we describe an algorithm developed for
boundary detection using B-spline deformable contours.
Let E be a scene made up by the background B and a region
R with its boundary ∂R. We want to find a curve CB that
fits ∂R in the image. We define an initial search area, which
is specified by polygons, the vertexes of which are control
points that generate a B-spline curve, as Figure 2 shows.
Once the initial search zone is determined the centroid is
calculated.

If a point belongs to the object boundary, then a sample
taken from the neighborhood of that point should exhibit a
change in the statistical parameters and it is considered to be
a transition point. Then N segments s(i), i = 1, . . . , N of
the form s(i) = CPi are considered, being C the centroid
of the initial region, the extreme Pi a point outside of the
region and being θ = ∠(s(i), s(i+1)) the angle between two
consecutive segments, for every i. It is necessary for the
centroid C to be in the interior of the object whose contour
is sought.

The segment s(i) is an array of m × 6 elements coming
from a discretization of the straight line on the array of the
polarimetric image and is given by:

s(i) =
(
z
(i)
1 , . . . , z(i)

m

)
, 1 ≤ i ≤ N.

where z
(i)
k , k = 1, . . .m is an array of 6 elements as Fig-

ure 3 shows.
For each segment s(i), 1 ≤ i ≤ N , we consider the

following partition

Z
(i)
k ∼ GH(ωr), k = 1, . . . , j

Z
(i)
k ∼ GH(ωb), k = j + 1, . . . , m

where for each k, with 1 ≤ k ≤ m, z
(i)
k is the realization of

the random variable Z
(i)
k . The parameters ωr and ωb char-

acterize the region and its background, respectively.
In order to find the transition point on each segment s(i),

the parameter ω is estimated as explained in section 3.1 us-
ing a rectangle around the segment and a sliding window of
dimension 20 × 20. Then the Ω̂(i) = (ω1, . . . , ωm) are
obtained and the biggest variation of Ω̂(i) within the ar-
ray is found convolving it with the mask [−2,−1, 0, 1, 2].
Once the set of border points A = {b1, ..., bN} is found,
the method builds the interpolating B-spline curve as its ex-
plained in section 4. Algorithm 1 shows a summary of the
process to find the border points.

6 Results

A synthetic image, under the polarimetric GH model,
with two different regions was generated. The parameters

Algorithm 1 Boundary Detect Algorithm
1: Determination of the region of interest using a B-Spline

curve.
2: Determination of a series of radial segments on the im-

age.
3: for each segment do
4: Estimation of statistical parameters for polarimetric

SAR data, using the data within a rectangular win-
dow around the segment, as explained in section 3.1.

5: Detection of the border point by convolving with a
border detection operator.

6: end for
7: Determination of the B-Spline that interpolates the

points found.

are ω = 1.0 for the object and ω = 10.0 for the background,
see Figure 1. In this work it was not necessary to consider
the other nine parameters of the polarimetric data to detect
the transition points, given the very good performance ob-
tained using the estimation of the ω parameter alone.

Figure 4 shows the results of applying Algorithm 1 to
this image. Figure 5 shows the probability of finding the
border point with an error lower than the number of pixels
indicated on the horizontal axis. This graph was generated
using a Monte Carlo method, taking 200 samples of rect-
angular windows of synthetic polarimetric SAR data and
calculating the transition point for each of them. Then, the
relative frequency of finding the border with an error less
than a number of pixels, is calculated.

Figure 6(a) shows typical values of the array Ω̂(i) for the
segment s(i). Figure 6(b) shows the variation in the array
Ω̂(i).

Figure 7(a) shows a 3 looks real E-SAR image showing
an urban area from the city of Munich, while Figure 7(b)
shows a region boundary detected using Algorithm 1. As
can be seen, the technique deals well with both complex
structures and noisy data.

7 Conclusions

In this paper, a new approach to region boundary detec-
tion in polarimetric SAR images using B-spline deformable
contours is described. The boundaries of several regions
with varying degrees of complexity were obtained using our
proposal.

In the first step we find regions of interest that corre-
spond to areas with different degrees of homogeneity, as a
coarse first approximation. For each region, its respective
boundaries are considered as the initial solution for the bor-
der detector. Then, the estimated parameter of roughness
is calculated using two samples: one included in the region
and the other out of the region and we find the transition



point only for the data that are on a set surround a line seg-
ments.

All these processes diminish the computational cost and
improve the performance of the method.

For each region, the result of the application of this algo-
rithm is a boundary curve given by an expression in terms
of B-Spline functions. The results using both simulated and
real SAR images are excellent and were obtained with an
acceptable computational effort.

Future work includes the use of more parameters for
finer detail detection.
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(a) HH Band

(b) HV Band

(c) VV Band

Figure 1. Syntethic polarimetric SAR image
with two different regions for which the sta-
tistical parameters of the GH distribution were
estimated.

Figure 2. Initial Region specified by a polygon
which vertexes generate a B-spline curve.
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Figure 3. Scheme showing the data structure
for segment s(i).

Figure 4. Synthetic image with the detected
boundary.



Figure 5. Probability of finding the transition
point with an error lower than the one indi-
cated on the horizontal axis, with the polari-
metric GH distribution.

(a) Typical values

(b) Variation

Figure 6. Behavior of the parameter ω.

(a)

(b)

Figure 7. Real polarimetric three looks E-SAR
image and boundary detection.


