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Abstract

The notion of “strength of connectedness” between pix-
els has been successfully used in image segmentation. We
present an extension to these works, which can consider-
ably increase the efficiency of object definition tasks. A set
of pixels is said a κ-connected component with respect to a
seed pixel when the strength of connectedness of any pixel
in that set with respect to the seed is higher than or equal
to a threshold. While the previous approaches either as-
sume no competition with a single threshold for all seeds or
eliminate the threshold for seed competition, we found that
seed competition with different thresholds can reduce the
number of seeds and the need for user interaction during
segmentation. We also propose automatic and user-friendly
interactive methods for determining the thresholds. The im-
provements are demonstrated through several segmentation
experiments involving medical images.

1. Introduction

Many image segmentation methods have been proposed,
but their success usually depends on user intervention, be-
ing automatic segmentation only verified for some specific
situations. In view of that, it is important to develop interac-
tive methods, which minimize the user’s time and involve-
ment in the segmentation process, such that their automa-
tion becomes feasible under certain conditions. For exam-
ple, we are interested in reducing the user intervention to
simple selection of a few pixels in the image.

Fuzzy connectedness/watersheds are image segmenta-
tion approaches based on seed pixels, still in progress,
and successfully used in many applications [11, 14, 15, 9].
These approaches have been used under two region growing
paradigms, with and without competition among seeds. In
object detection with seed competition [17, 10, 21, 1], the
seeds are specified inside and outside the object, each seed
defines an influence zone composed by pixels more strongly
connected to that seed than to any other, and the object is

defined by the union of the influence zones of its internal
seeds. In object definition without seed competition [20], a
seed is specified inside the object and the strength of con-
nectedness of each pixel with respect to that seed is com-
puted, such that the object is obtained by thresholding the
resulting connectivity image.

We extend these methods using the framework of the im-
age foresting transform (IFT) [5]— a general tool for the
design, implementation, and evaluation of image process-
ing operators based on connectivity. In the IFT, the image
is interpreted as a graph, whose nodes are the image pixels
and whose arcs are defined by an adjacency relation be-
tween pixels. The cost of a path in this graph is determined
by an application-specific path-cost function, which usually
depends on local image properties along the path— such as
color, gradient, and pixel position. For suitable path-cost
functions and a set of seed pixels, one can obtain an im-
age partition as an optimum-path forest rooted at the seed
set. That is, each seed is root of a minimum-cost path tree
whose pixels are reached from that seed by a path of mini-
mum cost, as compared to the cost of any other path starting
in the seed set. The IFT essentially reduces image oper-
ators to a simple local processing of attributes of the for-
est [12, 4, 19, 2, 3].

The strength of connectedness of a pixel with respect to
a seed is inversely related to the cost of the optimum path
connecting the seed to that pixel in the graph. A set of pix-
els is said a κ-connected component with respect to a seed,
when they are reached by optimum paths whose costs are
less than or equal to κ. In this sense, when a seed is se-
lected inside an object, its maximal extent is a κ-connected
component composed by only internal pixels. In [20], the
object is defined without competition, as the union of all κ-
connected components (minimum-cost path trees) created
from each internal seed, separately (which requires one IFT
for each seed). Clearly, the initial appeal for seed competi-
tion is the possibility to detect multiple objects with a sin-
gle IFT and without depending on thresholds: external and
internal seeds compete among themselves, partitioning the
image into an optimum-path forest, and each object is de-



fined by the union of the optimum-path trees rooted at its
internal seeds. However, we found that seed competition
with a threshold κs for each internal seed s can consider-
ably increase the efficiency of object definition tasks. The
method restricts seed competition into regions of pixels that
are κs-connected to some internal seed s, pixels not reached
by any seed are considered background, and external seeds
are only needed when the extent of a seed is not contained in
the object. Of course, this comes with the problem of find-
ing the values κs for each seed s, but we provide automatic
and user-friendly interactive ways to determining them.

Section 2 describes some definitions related to the IFT,
making them more specific for region-based image segmen-
tation. For sake of simplicity, we will describe the methods
for gray-scale and two-dimensional images, but they are ex-
tensive to multi-parametric and multi-dimensional data sets.
The proposed method and its algorithms with automatic and
interactive ks detection, respectively, are presented in Sec-
tions 3 and 4. Section 5 demonstrates the improvements
with respect to the previous approaches and Section 6 states
conclusions and discusses future work.

2. Background

An image Î is a pair (DI , I) consisting of a finite set
DI of pixels (points in Z

2) and a mapping I that assigns to
each pixel p in DI a pixel value I(p) in some arbitrary value
space.

An adjacency relation A is a binary relation between
pixels p and q of DI . We use q ∈ A(p) and (p, q) ∈ A

to indicate that q is adjacent to p. Once the adjacency re-
lation A has been fixed, the image Î can be interpreted as
a directed graph (DI , A) whose nodes are the image pix-
els in DI and whose arcs are the pixel pairs (p, q) in A.
We are interested in irreflexive, symmetric, and translation-
invariant relations. For example, one can take A to consist
of all pairs of pixels (p, q) ∈ DI × DI \ {(0, 0)} such that
d(p, q) ≤ ρ, where d(p, q) denotes the Euclidean distance
and ρ is a specified constant (i.e. 4-adjacency, when ρ = 1,
and 8-adjacency, when ρ =

√
2).

A path is a sequence π = 〈p1, p2, . . . , pn〉 of pixels
where (pi, pi+1) ∈ A, for 1 ≤ i ≤ n − 1. The path is
trivial if n = 1. Let org(π) = p1 and dst(π) = pn be the
origin and destination of a path π. If π and τ are paths such
that dst(π) = org(τ) = p, we denote by π · τ the concate-
nation of the two paths, with the two joining instances of p

merged into one. In particular, π · 〈p, q〉 is a path resulting
from the concatenation of its longest prefix π and the last
arc (p, q) ∈ A.

A predecessor map is a function P that assigns to each
pixel q ∈ DI either some other pixel in DI , or a distinctive
marker nil not in DI — in which case q is said to be a
root of the map. A spanning forest is a predecessor map
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Figure 1. (a) A spanning forest with two roots.
The bold path is P ∗(q). (b) An image graph
with 4-adjacency. The numbers are the im-
age values I(p) and the bigger dots denote
two seeds (One inside the brighter rectan-
gle and one in the darker background around
it). The background also has bright pix-
els. (c) An optimum-path forest for fmax, with
δ(p, q) = |I(q) − I(p)|. The numbers are the
cost values and the rectangle is obtained as
a tree rooted at the internal seed.

which contains no cycles — in other words, one which takes
every pixel to nil in a finite number of iterations. For any
pixel q ∈ DI , a spanning forest P defines a path P ∗(q)
recursively as 〈q〉, if P (q) = nil, or P ∗(p) ·〈p, q〉 if P (q) =
p 6= nil (see Figure 1a).

A pixel q is connected to a pixel p if there exists a path
in the graph from p to q. In this sense, every pixel is con-
nected to itself by its trivial path. Since A is symmetric, we
can also say that p is connected to q, or simply p and q are
connected. Therefore, a connected component is a subset of
DI wherein all pairs of pixels are connected.

A path-cost function f assigns to each path π a path cost
f(π), in some totally ordered set V of cost values, whose
maximum element is denoted by +∞. A path π is optimum
if f(π) ≤ f(τ) for any other path τ with dst(τ) = dst(π),
irrespective of its starting point. The IFT establishes some
conditions applied to optimum paths, which are satisfied by
only smooth path-cost functions. That is, for any pixel q ∈
DI , there must exist an optimum path π ending at q which
either is trivial, or has the form τ · 〈p, q〉 where

(C1) f(τ) ≤ f(π),

(C2) τ is optimum,
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(C3) for any optimum path τ ′ ending at p, f(τ ′ · 〈p, q〉) =
f(π).

The IFT takes an image Î , a smooth path-cost function f

and an adjacency relation A; and returns an optimum-path
forest— a spanning forest P such that P ∗(q) is optimum
for every pixel q ∈ DI . In the forest, there are three impor-
tant attributes for each pixel: its predecessor in the optimum
path, the cost of that path, and the corresponding root (or
some label associated with it). The IFT-based image oper-
ators result from simple local processing of one or more of
these attributes.

For a given seed set S ⊂ DI , the concept of strength of
connectedness [20, 16, 10] of a pixel q ∈ DI with respect
to a seed s ∈ S can be interpreted as an image property
inversely related to the cost of the optimum path from s to
q according to the max-arc path-cost function fmax:

fmax(〈q〉) =

{

0, if q ∈ S,
+∞, otherwise.

fmax(π · 〈p, q〉) = max{fmax(π), δ(p, q)}, (1)

where (p, q) ∈ A, π is any path ending at p and starting in
S, and δ(p, q) is a non-negative dissimilarity function be-
tween p and q which depends on image properties, such as
brightness and gradient (see Figures 1b and 1c).

One may think of smoothness as a more general defini-
tion for strength of connectedness. In this work, we dis-
cuss only fmax because the comparison with previous ap-
proaches and our practical experience in region-based seg-
mentation, which shows that fmax often leads to better re-
sults than other commonly known smooth cost functions.

3. Seed competition with κ-connectivity

We assume given a seed set S either interactively, by
simple mouse clicks, or automatically, based on some a
priori knowledge about the approximate location of the
object. The adjacency relation A is usually a simple 8-
neighborhood, but sometimes it is important to allow farther
pixels be adjacent. This may reduce the number of seeds re-
quired to detect nearby components of a same object, such
as letters of a word in the image of a text. Some examples
of δ functions for fmax are given below:

δ1(p, q) = K
(

1 − e(
−1

2σ2 (I(p)−I(q))2)
)

(2)

δ2(p, q) = G(q) (3)

δ3(p, q) = K

(

1 − e

“

−1

2σ2 ( I(p)+I(q)
2 −I(s))

2
”
)

(4)

δ4(p, q) = min
∀s∈S

{δ3(p, q)} (5)

δ5(p, q) = aδ1(p, q) + bδ3(p, q) (6)

where K is a positive integer (e.g. the maximum image
intensity), σ is an allowed intensity variation, G(q) is a gra-
dient magnitude computed at q, and I(s) is the intensity of
a seed s ∈ S, such that s = org(P ∗(p)) in δ3 and δ4 con-
siders all seeds in S. The parameters a and b are constants
such that a + b = 1.

Functions δ1 and δ2 assume low inhomogeneity within
the object. They represent gradient magnitudes with differ-
ent image resolutions and lead to smooth functions. In fact,
fmax is smooth whenever δ(p, q) is fixed for any (p, q) ∈ A.
The IFT with these functions becomes a watershed trans-
form [12]. Function δ3 exploits the dissimilarity between
object and pixel intensities, being the object represented by
its seed pixels, but fmax may not be smooth for the general
case with multiple seeds [5] (i.e. the IFT results a span-
ning forest, but it may be non-optimal). This problem was
the main motivation for δ4 [17]. However, sometimes δ3

provides better segmentation results than δ4 (see Section 5).
Function δ3 may also limit the influence zones of the seeds,
when the intensities inside the object vary linearly toward
the background. Function δ5 reduces this problem, and δ3

can be replaced by δ4 in Equation 6 to ensure smoothness.
Other interesting ideas of dissimilarity functions for fmax

are presented in [20, 10, 18, 17].
The basic differences between the formulations proposed

in [10] and [17] are that (i) the former assumes δ(p, q) =
δ(q, p) for all (p, q) ∈ A, and requires smooth path-cost
functions, and (ii) the later allows asymmetric dissimilar-
ity relations (e.g. δ2), and non-smooth cost functions (e.g.
fmax with δ3 and multiple seeds). The strength of connect-
edness between image pixels in (i) is a symmetric relation,
while it may be asymmetric in (ii).

In [17, 10], seeds are selected inside and outside the ob-
ject, and the object is defined by the subset of pixels which
are more strongly connected to its internal seeds than to any
other. We define the object as the subset of pixels which are
more strongly κ-connected to its internal seeds than to any
other. That is, the seeds will compete among themselves
for pixels reached from more than one seed by paths whose
costs are less than or equal to κ. In which case, the pixel is
conquered by the seed whose path cost is minimum. Note
that, even the internal seeds compete among themselves,
and a distinct value of κ may be required for each seed.
When the seed competition fails, these thresholds should
limit the influence zones of the seeds avoiding connection
between object and background, and the pixels do not con-
quered by any seed should be considered as belonging to
the background.

In general, the use of distinct values of κ reduces the
number of seeds required to complete segmentation. Fig-
ure 2a also illustrates an example where many seeds have
to be carefully selected in the background to detect the ob-
ject. The segmentation fails when some of these seeds are
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(a) (b) (c)

Figure 2. Segmentation by seed competition
of the eye ball in a CT image of the eye or-
bit. (a) One internal seed and many exter-
nal seeds are required for segmentation, us-
ing fmax with δ4. (b) Segmentation fails when
some external seeds are removed. (c) A value
of κ limits the influence zone of the internal
seed where the seed competition fails.

removed (Figure 2b), but it works when we limit the extent
of the internal seed to some value of κ (Figure 2c).

The algorithms and the problem of determining these
thresholds for the internal seeds are addressed next.

4. Algorithms

The IFT computes three attributes for each pixel p ∈
DI [5]: its predecessor P (p) in the optimum path, the cost
C(p) of that path, and the corresponding root R(p). In the
algorithms presented in this section, we do not need to cre-
ate the predecessor map P . The IFT propagates wavefronts
Wcst of same cost cst around each seed, following the or-
der of the costs cst = 0, 1, . . . , K. This process is exploited
to compute the values κs of each seed s ∈ S automatically
and interactively.

4.1. Automatic computation of κs

First consider the wavefronts around a seed s selected
inside a given object. All pixels p in the wavefront Wcst

around s have optimum cost C(p) = cst, 0 ≤ cst ≤ K. If
the object is a single κ-connected component with respect
to s, then there exists a threshold κs, 0 ≤ κs ≤ K, such
that the object can be defined by the union of all wavefronts
Wcst, for cst = 0, 1, . . . , κs. We can specify a fixed κs for
this particular application, but this is susceptible to intensity
variations. Another alternative is to search for matchings
between the shape of the object and the shape of the wave-
fronts. One drawback is the speed of segmentation, but this
may be justified in some applications. A more complex sit-
uation occurs when the object definition requires more than
one seed pixel. Each seed defines its own maximal extent
inside the object and we need to match the shape of the ob-

(a) (b) (c)

Figure 3. A CT image of the eye orbit with one
seed inside the eye ball. (a) A wavefront of
cost κ which leads to the maximum extent of
this seed inside the eye ball. (b) The wave-
front of cost κ + 1 shows a large area growth
when it invades the background. (c) The pixel
propagation order provides smoother wave-
front transitions for interactive selection of κ.

ject with the shape of the union of their influence zones. The
approach presented here is much simpler and yet effective.
It stems from the following observation.

The effectiveness of segmentation using fmax depends
on assigning lower values of δ(p, q) to arcs inside (and
outside) the objects and higher values to arcs across
their boundaries. As consequence, the wavefronts usually
present a considerable increase in number of pixels when
they cross the object boundaries (Figures 3a and 3b). That
is, many pixels in the background are reached by optimum
paths whose cost is the value δ(p, q) of some arc (p, q)
across the boundary.

We substitute the choice of one value κs for each seed
s ∈ S by a threshold T (i.e. a percentage of the total number
of pixels divided by the number of internal seeds), which
limits the maximum size of their wavefronts. The region
growing process of a seed s must stop when the size of its
wavefront of cost cst is greater than T , and the value of κs

is determined as max{cst− 1, 0}. The algorithm presented
below computes κs for multiple object definition with seed
competition.

Algorithm 1 OBJECT DEFINITION WITH AUTOMATIC κs

DETECTION

INPUT: Image Î = (DI , I), adjacency A, size thresh-
old T , and a labeled image L̂ = (DI , L), where
L(p) = i for seed pixels inside object 0 <

i ≤ k, L(p) = 0 for seeds in the background,
L(p) = −1 otherwise.

OUTPUT: A labeled image L̂ = (DI , L), where L(p) = i,
0 ≤ i ≤ k.

AUXILIARY: Priority queue Q and maps C, R, κ, size, and
cst defined in DI to store cost and root of each
pixel and threshold, wavefront size, and wave-
front cost of each seed, respectively.
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1. For every pixel p ∈ DI , do
2. R(p)← p, size(p)← 0, cst(p)← 0, κ(p)← +∞.
3. If L(p) = −1, then set C(p)← +∞ and L(p)← 0.
4. Else , set C(p)← 0 and insert p in Q.
5. While Q 6= ∅, do
6. Remove a pixel p from Q such that C(p) is minimum.
7. If κ(R(p)) = +∞ and L(R(p)) 6= 0, then
8. If C(p) 6= cst(R(p)), then
9. Set size(R(p))← 1 and cst(R(p))← C(p).
10. Else , set size(R(p))← size(R(p)) + 1.
11. If size(R(p)) > T , then
12. Set κ(R(p))← max{cst(R(p))− 1, 0}.
13. If C(p) ≤ κ(R(p)), then
14. For every q ∈ A(p), such that C(q) > C(p), do
15. Set tmp← max{C(p), δ(p, q)}.
16. If tmp < C(q), then
17. If C(q) 6= +∞, then remove q from Q.
18. Set C(q)← tmp, R(q)← R(p).
19. Insert q in Q.
20. For every pixel p ∈ DI , do
21. If C(p) ≤ κ(R(p)), then set L(p)← L(R(p)).

The priority queue Q can be implemented as described
in [6, 8], such that each instance of the IFT will run in time
proportional to the number |DI | of pixels. The root map
is used to find in constant time the root of each pixel in S.
The influence zone of a seed s ∈ S is limited either when it
meets the influence zone of other seed at the same minimum
cost or when the value κs of s is found.

4.2. Interactive computation of κs

A first approach is to initially compute the optimum cost
C(p) and root R(p) ∈ S for each pixel p ∈ DI . Then,
the user moves the cursor of the mouse over the image, and
for each position q of the cursor, the program displays the
influence zone of the corresponding root s = R(q) ∈ S

defined by pixels p ∈ DI , such that C(p) ≤ C(q) and
R(p) = R(q). This interactive process can be repeated until
the user selects a pixel q to confirm the influence zone of
s (i.e. κs = C(q)). The user can repeat this interactive
process for each seed s ∈ S.

One drawback of the method above is the abrupt size
variations of the wavefronts (Figures 3a and 3b) which
makes the selection of pixel q sometimes difficult. We cir-
cumvent this problem by exploiting the propagation order
O(p) (a number from 1 to |DI |) of each pixel p removed
from Q during execution of the IFT. Note that, a pixel p

propagates before a pixel q (i.e. O(p) < O(q)) when it is
reached by an optimum path from S, whose cost C(p) is
less than the cost C(q) of the optimum path that reaches q.
When C(p) = C(q), we assume a first-in-first-out (FIFO)
tie-breaking policy for Q. That is, among all pixels with
the same minimum cost in Q, the one first reached by an

optimum path from S is removed for propagation. There-
fore, we compute the propagation order O(p) of each pixel
p ∈ DI . When the user moves the cursor to a position q,
the program displays the influence zone of the correspond-
ing root s = R(q) ∈ S defined by pixels p ∈ DI , such that
O(p) ≤ O(q) and R(p) = R(q). The rest of the process
is the same. Note that, although κs = C(q), only the pix-
els p in the wavefront WC(q) which have O(p) ≤ O(q) are
selected as belonging to the influence zone of s. This pro-
vides smoother transitions between consecutive wavefronts
(Figure 3c) as compared to the first idea. The algorithm is
presented below.

Algorithm 2 OBJECT DEFINITION WITH INTERACTIVE
κs DETECTION

INPUT: Image Î = (DI , I), adjacency A, and a labeled
image L̂ = (DI , L), where L(p) = i for seed
pixels inside object 0 < i ≤ k, L(p) = 0 for
seeds in the background, L(p) = −1 otherwise.

OUTPUT: A labeled image L̂ = (DI , L), where L(p) = i,
0 ≤ i ≤ k.

AUXILIARY: Priority queue Q and maps C, R, O defined in
DI to store cost, root and propagation order of
each pixel, respectively.

1. Set ord← 0.
2. For every pixel p ∈ DI , do
3. Set R(p)← p.
4. If L(p) = −1, then set C(p)← +∞ and L(p)← 0.
5. Else , set C(p)← 0 and insert p in Q.
6. While Q 6= ∅, do
7. Remove a pixel p from Q such that C(p) is minimum.
8. Set O(p)← ord + 1 and ord← ord + 1.
9. For every q ∈ A(p), such that C(q) > C(p), do
10. Set tmp← max{C(p), δ(p, q)}.
11. If tmp < C(q), then
12. If C(q) 6= +∞, then remove q from Q.
13. Set C(q)← tmp, R(q)← R(p).
14. Insert q in Q.
15. While the user is not satisfied, do
16. The user can select a pixel q on the image.
17. For every pixel p ∈ DI , do
18. If O(p) ≤ O(q) and R(p) = R(q), then
19. Set L(p)← L(R(p)).

The selection of a pixel q in line 16 is done based on the
propagation order as described above.

One advantage of the these algorithms as compared to
classical segmentation methods based on seed competition
occurs when the object contains several background parts
(holes) inside it. In this case, the use of κs usually elimi-
nates the need for at least one background seed at each hole.
On the other hand, some small noisy parts of the object may
not be conquered by the internal seeds due to the use of κs.
The labeled image can be post-processed, such that holes
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Object Description Modality # of Slices
O1 left eye ball CT-orbit 15
O2 left caudate nucleus MR-brain 15
O3 lateral ventricles MR-brain 15
O4 corpus callosum MR-brain 10
O5 patella CT-knee 15
O6 femur CT-knee 15
O7 white matter MR-brain 15

Table 1. Description, imaging modality and
number of slices for each object used in the
experiments.

with area below a threshold are closed [13]. The area clos-
ing operator has shown to be a very effective complement
for the presented algorithms. In many situations, the objects
do not have holes and high area thresholds can be used to
reduce the number of internal seeds. These algorithms are
compared to the classical segmentation approach based on
seed competition in the next section.

5. Evaluation

We have selected 100 images from Magnetic Resonance
(MR) and Computerized Tomography (CT) data sets of 7
objects for evaluation (see Table 1 and Figure 4). Each ob-
ject consists of some slices that represent different degrees
of challenge for segmentation. The original images have
been pre-processed to increase the similarities between pix-
els inside the objects and the contrast between object and
background. Each of four users have performed segmenta-
tion over the 100 images using each of two methods:

M1. Object detection with seed competition and automatic
κs computation;

M2. Object detection with seed competition and without κs

computation.

The experiments aimed to compare these methods with re-
spect to the number of user interactions required to com-
plete segmentation. Although interactive κs detection
might reduce the number of external seeds in M1, we de-
cided to avoid it in order to evaluate the combination of seed
competition and automatic κs detection with respect to M2.

In order to show the robustness of these approaches, we
have chosen the best dissimilarity function for each situa-
tion and fixed the parameters of segmentation. We used the
8-neighborhood as adjacency relation A. The size thresh-
old T was set to 1%, except for O2 where T = 0.2% in
M1. Since objects from O1 to O6 do not have holes, we
set the area closing threshold to some arbitrary high value

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. (a)-(g) Results of slice segmentation
of the objects from 1 to 7, respectively, over-
laid with the pre-processed images.

(e.g. 500 pixels). The only exception was O7, whose area
threshold could not be higher than 3 pixels due to its holes.
Table 2 shows the most suitable dissimilarity function found
for each pair of object and method. In function δ2, we used
the magnitude of the Sobel’s gradient. The value of σ was
20 for all cases involving δ3 and δ4. Note that we chose δ3

in some situations, despite fmax not being smooth.
In Medical Image Analysis, it is common to use as

ground truth the results of manual segmentation performed
by an expert user. This methodology is questionable, be-
cause the experts usually make mistakes when they delin-
eate the same object twice. In most cases, the results look
like the same but there are small differences along the ob-
ject boundaries. These small differences, however, seem to
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Object M1 M2
O1 δ2 δ2

O2 δ4 δ2

O3 δ3 δ3

O4 δ4 δ2

O5 δ4 δ4

O6 δ3 δ2

O7 δ3 δ3

Table 2. The dissimilarity functions used for
each combination of object and method.

be acceptable in many applications. This similarity measure
was defined as follows.

Each object was represented by a set of l binary slices
L̂i = (DI , Li), i = 1, 2, . . . , l, where Li(p) = 1 for object
pixels and 0 otherwise. Let L̂i and L̂′

i be the binary images
resulting from the segmentation of a same object slice using
different methods. The similarity between these results was
measured by:

1 −
∑i=l

i=1

∑

∀p∈DI
Li(p) ⊕ L′

i(p)
∑i=l

i=1

∑

∀p∈DI
Li(p) +

∑i=l

i=1

∑

∀p∈DI
L′

i(p)
(7)

where ⊕ is the “exclusive or” operation. In the case of man-
ual segmentation by an expert user, it has been shown that
the similarity values are around 0.96 [7]. Since none of the
users is an expert, we required from them acceptable re-
sults from the expert’s point of view with similarity values
around 0.90 between distinct segmentations of a same ob-
ject, using different methods.

Method M2 represents the classical approach based on
relative fuzzy connectedness/watershed transform [17, 12].
The number of user interactions in both methods is the total
number of seeds selected inside (NIS - Number of Internal
Seeds) and outside (NES - Number of External Seeds) the
object. Method M1 is the proposed variant of relative fuzzy
connectedness. The number of seeds is expected to be much
less with M1 than with M2, due to the automatic κs detec-
tion.

Table 3 shows the average number of interactions and
similarity values among all users, for both methods. Note
that O3 was detected with a same value of κ, but the other
objects required from 6.8% to 92.4% of different κs val-
ues. O5 did not count because it was segmented with only
one seed per slice. On average, M2 required 2.8 more user
interactions than M1.

Table 4 shows in detail the average values of NIS, NES,
and AKD for each object and method. Note that the num-
ber of automatic κs varied from 59% to 100% of NIS (88%
on average). This demonstrates the effectiveness of the pro-
posed approach for automatic κs detection and explains the

M1 M2 M1,M2
O1 29.5 77.6 0.962
O2 29.3 38.8 0.915
O3 31.3 61.3 0.935
O4 27.5 46.8 0.918
O5 15.0 61.0 0.946
O6 26.3 37.8 0.981
O7 46.3 284.8 0.930

Table 3. The average numbers of user inter-
actions for each object and method, and the
average similarity values between both meth-
ods for a same object.

M1 M2
NIS NES AKD NIS NES

O1 18.0 11.5 13.0 26.8 50.8
O2 25.3 4.0 24.3 18.8 20.0
O3 30.3 1.0 30.3 30.3 31.0
O4 22.3 5.2 19.8 22.3 24.5
O5 15.0 0.0 15.0 44.0 17.0
O6 26.3 0.0 15.5 22.8 15.0
O7 46.0 0.3 46.0 66.0 218.8

Table 4. Average numbers of internal seeds
(NIS), external seeds (NES), and automatic κs

detections (AKD).

reduction of user interactions and external seeds in M1 with
respect to M2. This is an important result for future au-
tomation, since seed competition is sensitive to the location
of the external seeds due to the heterogeneity of the back-
ground.

6. Conclusions

We presented two IFT-based algorithms for object de-
tection based on κ-connected components with seed com-
petition. They differ from the previous approaches in the
following aspects: computation of different values of κ

for each seed, effective automatic κs detection, and user-
friendly κs computation, where the user moves the cursor
of the mouse to indicate the pixel whose propagation order
defines the object. The use of the propagation order rather
than the pixel cost is important to create smoother transi-
tions between possible objects, facilitating the user’s work.
The new methods have considerably reduced the number
of user interactions in medical image segmentation with re-
spect to the previous approaches. We believe that these re-
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sults are extensive to other image types by suitable choice
of pre-processing and dissimilarity function.

We are currently investigating two approaches for 3D
segmentation of medical images: (i) automatic segmenta-
tion with only internal seeds and automatic κs detection,
and (ii) interactive segmentation with automatic κs detec-
tion, where the user can add/remove internal and external
seeds, and subsequent IFTs are executed in a differential
way [2].
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