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Abstract. Active contours approach is a very used family of techniques in image analysis. This work presents
a comparative study between two active contour approaches for image segmentation. Level sets method and de-
formable contours under B-spline representation are compared. These image segmentation methods have different
features and are difficult to compare in terms of performance, accuracy and initialization conditions. Both are im-
plemented and a way to calculate the approximation error is developed. As a conclusion of this work a theoretical
comparison and a comparative characterization of the approximation error for each method are presented.

1 Introduction

Image feature extraction is required for several applications
such as medical image analysis, audio-visual speech analy-
sis, computer assisted design and robotics.

Active contours approach applied to image segmenta-
tion was introduced by Kass [4] and it was a new approach
in feature extraction. Active contours are curves that evolve
within the image until they find the boundaries of the in-
terest object. Based on the original work, different flavors
have been developed in literature in order to improve stabil-
ity, flexibility and accuracy.

Level sets´ active contour approach, originally presented
in [6], is based on a curve representing an interface between
two inmisible fluids (see [10]). The evolution of the in-
terface is modeled in time by means of partial differential
equations. This technique is used due to its flexibility and
accuracy. On the other hand B-splines deformable mod-
els approach, originally developed by Blake (see [1]), seg-
ments an image finding object boundaries by B-spline curve
fitting. This technique main advantages rely on the balance
between accuracy and low computational cost.

The methods of level set and B-spline deformable con-
tours have different features and are difficult to compare
in terms of performance, accuracy and initialization condi-
tions. In this work a comparative study between both active
contour methods is presented. In the first place a theoreti-
cal introduction for these techniques is presented. Secondly
both methods are compared over a set of random gener-
ated images measuring the approximation error, hence each
method advantages and drawbacks are exhibited.

The organization of this paper is as follows: section 2
describes the level set model for contour detection, charac-
terizes the curve evolution and presents the numerical im-
plementation. Section 3 gives an introduction to B-Spline
curve fitting, specifies the criterion used to determine the

transition points and explains the region fitting algorithm.
Section 4 shows the obtained results and finally, section 5
presents a comparative study of both techniques and the ad-
vantages and disadvantages of each method.

2 The level set approach for contour detection

In this section we present level set methods and their nu-
merical representation (see [7]).

The mathematical front evolution model proposed by
[7] and [9] is the following:

let

C : [0, S]× R+ → R2

C(s, t) = (x(s, t), y(s, t))

where s and t are the spatial and temporal parameters, sat-
isfying the differential equation:

Ct(s, t) = �F (1)

where Ct is the time derivative and �F is a vectorial function.
Considering the tangential �CT and normal �CN com-

ponents of the curve, the equation (1) is rewritten as:

Ct(s, t) = �CT (s, t)F�T (s) + �CN (s, t)F �N (s)

and in turn, according to the parameterized curve evo-
lution theorem (see [9]), it becomes into the equation:

Ct(s, t) = �CN (s, t)F (s)

where F : R → R is the projection of �F along the normal
direction of the curve �CN .
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Figure 1: Front propagation according to normal velocities

An example of front propagation under normal curve
evolution is shown in Figure 1 where curve parameteriza-
tion is taken that the normals lines are external.

Given an initial curve C0(s), front propagation is mod-
eled by following the equations:

Ct(s, t) = �CN (s, t)F (s)
C(s, 0) = C0(s)

2.1 Curve evolution characterization

The speed function F of any point in the evolving curve,
can be characterized as depending on three kinds of proper-
ties (see [9]), local curve properties (normal direction, cur-
vature), global curve properties (area) and properties that
are external to the curve.

Curve evolution in time is formulated using the fun-
damental theorem of plane curves ([3]), which states that
two plane curves which have the same curvature differ only
by an Euclidean motion, i.e. translation and rotation. The
equation (2) can be written as:

Ct(s, t) = F (k(s, t))C �N (s, t)

where k(s, t) is the curvature at any point, in a moment t.

2.2 Numerical implementation

A natural approach is to consider a Lagrangian formulation
of the problem, obtaining the motion equations for x(s, t)
and y(s, t). In this approach the parameterization is dis-
cretized into a set of marker particles over the domain pa-
rameterization. These particles are updated in time approxi-
mating spatial derivatives and thus changing their locations.
Finally, propagating front will then be reconstructed us-
ing these particles. Nevertheless, this approach has several
flaws discussed in [9]. Firstly small errors in the computed

location of the particles are deeply amplified in the curva-
ture estimation thus leading the model to numerical insta-
bility. Secondly if there is no smoothing term for the cur-
vature (viscosity) in the differential equation, singularities
will develop on the propagating front and an entropy con-
dition must be applied in order to obtain a weak solution of
the differential equation. Finally topology changes on the
curve are hard to handle.

As an alternative, the level set approach proposed by
Sethian and Osher in [10] and [7] represents the front C(s, t)
as a level set of a function φ which is one dimension higher
than C(s, t). Thus, given a closed curve C(s, t) which
evolves in time, the given front in a moment t will be given
by the set Γ(t) = {�x ∈ R2 : φ(�x, t) = c}.

Therefore an Eulerian mathematical model for front
evolution is stated: let γ(t) = C(s, t) be the front evolving
along its normals with speed F , and let φ(�x, t = 0), �x ∈ R2,
satisfying

φ(�x, t = 0) = ±d

where d is the signed distance from s to γ(t = 0) and the
sign is chosen according to the point position inside or out-
side of the curve.

Thus, the evolution equation for φ(�x, t) is obtained,
([6]):

φt + F |∇φ| = 0 (2)

where F can have several parameters including, among oth-
ers, curvature or normal direction.

An advantage to this formulation is that φ will remain
a function as long as F is smooth, hence the level set Γ(t)
can change its topology, merge, split and develop sharp
edges as φ evolves, see [7].

A second advantage concerns numerical approxima-
tion. Because φ remains a function as it evolves, a discrete
grid in the domain and finite differences numerical approxi-
mations to the temporal and spatial derivatives can be used.

However, there are cases where the solution to the dif-
ferential equation can lose its differentiability in a moment
tp and the solution curves for t > tp lack interpretation as a
propagating front. An example of this problem is presented
(see [9]) for the initial curve with a constant evolution speed
F (k(s, t)).

{
C(s, 0) =

(
1 − s, 1+cos(2πs)

2

)
F (k(s, t)) = 1

The evolution of this curve for t = 0; 0.05; . . . ; 0.20 is
shown in Figure 2. There a “sharp corner” can be devised
in t = 0.05, the curvature and the normal cease to exist at
(s, t) = (0.5, 0.05). Beyond, for t > 0.05 the curve passes
through itself and its interpretation as an interface becomes
uncertain.
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Figure 2: Curve evolution(2.2), s ∈ [0, 1]

In order to solve this problem an entropy condition is
invoked, i.e. a property based in the knowledge of the “or-
der” that the particles in the front should have:

Definition 1 (Entropy condition [5]) In the process of in-
ward deformation, once a point is dislodged from the inner
part of the curve, it remains disjoint from it forever. Simi-
larly, in the process of outward deformation, once a point
becomes part of the interior of the curve, it remains a part
of it forever.

Following [10] choosing a speed function F (k) = 1 −
εk, ε ∈ R, ε > 0 (viscosity solution) makes the curve
evolution respect the entropy condition, thus the curve will
remain smooth and the constant speed solution is obtained
when ε → 0. Replacing this function in the equation (2):

φt + (1 − εk)|∇φ| = 0

then

φt + H0(φx, φy , t) =
= εH1(φxx, φyy, φxy, φx, φy, t)

where

H0(φx, φy, t) =
√

φ2
x + φ2

y

H1(φxx, φyy, φxy, φx, φy, t) =

φxxφ2
y − 2φxφyφxy + φyyφ2

x

(φ2
x + φ2

y)
3
2

√
φ2

x + φ2
y

This is a Hamilton-Jacobi second order equation whose nu-
merical solution can be found in [7].

Taking a curvature linear dependent velocity F (k) =
F0 − F1k, F0, F1 ∈ R, the equation 2 can be rewritten:

φt + (F0 − F1k)|∇φ| = 0

φt + F0|∇φ| − F1k|∇φ| = 0 (3)

The second term of the equation (3) is known as advection
or constant movement term, whereas the thirds is known as
diffusion or curve smoothing term (see [10]).

Conversely a discretization, where ∆t is the temporal
step, φn

ij is the value of the function φ at (i, j), in the mo-
ment n, is taken, namely.

φn+1
ij − φn

ij

∆t
+ (F0∇ijφ

n
ij) − F1k(∇ijφ

n
ij) = 0.

The discretized advection term, F0(∇ijφ
n
ij) is com-

puted with an upwind scheme{
(max(F0, 0)∇+

ij))
2 + (min(F0, 0)∇−

ij)
2
} 1

2

where

∇+
ij =[max(D−x

ij , 0)2 + min(D+x
ij , 0)2

+ max(D−y
ij , 0)2 + min(D+y

ij , 0)2]

∇−
ij =[max(D+x

ij , 0)2 + min(D−x
ij , 0)2

+ max(D+y
ij , 0)2 + min(D−y

ij , 0)2].

The foward and backward finite difference approximation
to the spatial derivatives over x, D+x

ij and D−x
ij are stated

as

D+x
ij =

φi+1,j − φi,j

∆x

D−x
ij =

φi,j − φi−1,j

∆x

where ∆x is the spatial step over x; the derivatives over y
are analogously defined.

The diffusion term F1k|∇φ| is discretized using cen-
tral differences

F1k
√

(Dx
ij)2 + (Dx

ij)2

where the approximation to the derivative of φ over x is
stated as:

Dx
ij =

φi+1,j − φi−1,j

2∆x

and the derivative over y is analogously defined. Finally the
curvature k defined using the mean curvature:

k =
φxxφ2

x − φxyφxφy + φyyφ2
y

(φ2
x + φ2

y)
3
2

is discretized using central finite differences for first and
second derivatives:

kij =
Dxx

ij (Dx
ij)

2 − Dxy
ij Dx

ijD
y
ij + Dyy

ij (Dy
ij)

2

((Dx
ij)2 + (Dy

ij)2)
3
2

.



where the central approximation to the second derivative
over x is defined as

Dxx
ij =

φi+1,j − 2φi,j + φi−1,j

∆x2

and the approximations to the second derivatives over y and
over x and y are defined analogously.

The third advantage of this formulation is that the in-
trinsic geometric properties of the front may be easily de-
termined from the level set function φ, (i.e, curvature, en-
closed area, etc.).

Finally the fourth advantage is the easiness to general-
ize this approach to higher dimensional models by changing
φ’s domain.

2.3 Boundary detection using front propagation

In this section a description of the level set technique appli-
cation for boundary detection is given. In the first place the
interface is taken as representing the boundary of a shape
that evolves in time. Given that the goal is to detect several
objects´ boundary in an image, the evolution of the interface
must be forced to a halt when it reaches the boundary. Fi-
nally the contour of the object is defined as the set of points
that belong to the interface when all of them have come to
a halt.

The definition of a curve evolution speed function F
such that the evolution stops when the curve reaches the
boundary is the objective now. Thus the equation (3) is
restated:

φt(�x, t) + g(�x)(F0|∇φ(�x, t)| − F1k(�x, t)|∇φ(�x, t)|) = 0
(4)

where g(�x) is a function that becomes zero as long as the
interface approaches a border and is at the most one at any
other point of the domain. If I is the image a classical
choice for g is ([6])

g(�x) =
1

1 + |∇(Gσ ∗ I(�x))|2

where Gσ ∗ I is the convolution of the image I with a filter
Gσ which removes the image noise.

Following the revision stated in [11], the equation (4),
has two segmentation problems: firstly g does not suffice to
stop completely the interface at the boundary, and secondly
if the interface crosses the border there is no term which
can pull it back with enough strength for it to came back to
the boundary. In [2] a new term is added which makes the
algorithm more robust and solves this problems:

φt(�x, t) + g(�x)(F0|∇φ(�x, t)| − F1k(�x, t)|∇φ(�x, t)|)
+ ∇g(�x) · ∇φ(�x, t) = 0

3 Boundary detection under Bspline Deformable Con-
tours

In this section a contour extraction B-spline curve based
method is developed. A brief theoretical review of B-spline
representation and a boundary detection method are pre-
sented.

3.1 Bspline Representation

A brief theoretical review of B-spline representation of con-
tours is presented; for more details see [1, 8].

Let {Q0, ..., QNB−1} be a set of control points, where
Qn = (xn, yn)t ∈ R2, 0 ≤ n ≤ NB − 1, and let {s0 <
s1 < s2 < · · · < sL−1} ⊂ R be a set of L knots. A B-
spline curve of order d is defined as a weighted sum of NB

polynomial basis functions Bn,d(s) of degree d− 1, within
each interval [si, si+1] with 0 ≤ i ≤ L−1. The constructed
spline function is r(s) = (x(s), y(s))t, 0 ≤ s ≤ L − 1,
being

r(s) =
NB−1∑
n=0

Bn,d(s)Qn,

and

x(s) = Bt(s).Qx (5)

y(s) = Bt(s).Qy (6)

where the basis functions vector B(s) of NB components is
given by B(s) = (B0,d(s), . . . , BNB−1,d(s))t. The weight
vectors Qx and Qy give the first and second components of
the Qn, respectively.

The curves used in this work are closed of order d = 3
or d = 4 specified by periodic B-spline basis functions.

The problem of determining a polygon that generates a
fitting B-spline curve with known number of control points,
NB , was studied by [8]. We now present a brief review of
this subject.

A set of k data points in the image plane is given by
{D0, D1, . . . , Dk−1}, where Di = (xi, yi)t, i = 0, . . . , k−
1, and the spline curve that best-fits them is sought. Then,
by equations 5 and 6, the components D i must satisfy

xi = Bt(ti)Qx,

yi = Bt(ti)Qy,

for certain values of ti, where i = 0, . . . , k − 1, and NB ≤
k.

This linear system is more compactly written in ma-
trix form as D = K(Qx Qy), where the k × NB ele-
ments of the real matrix K are given by K ij = Bj,d(ti),
with i = 0, . . . , k − 1, j = 0, . . . , NB − 1, and D =
(D0, D1, . . . , Dk)t. In the most general case NB < k and,
therefore, K is not a square matrix. In this case, the pseudo-
inverse matrix form (Qx Qy) = K+D is used to find the
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Figure 3: Radial straight lines ai separated an angle θi.

B-spline fitting curve. A useful set of values for the param-
eters {t0, . . . , tk−1} is given by

t0 = 0, ; t� =
∑�

i=1 ‖Di − Di−1‖∑k−1
i=1 ‖Di − Di−1‖

, � ≥ 1.

The knot set to build the B-spline basis functions is arbi-
trarily chosen.

3.2 Boundary detection

In this section we describe an algorithm developed for bound-
ary detection using B-spline deformable contours. Let E be
a scene made up by the background B and a region R with
its respective boundaries ∂R. We want to find the curve
CB that fits boundary ∂R in the image. We define an initial
search area, which is specified by polygons, the vertexes
of which are control points that generate a B-spline curve.
Once the initial search zone is determined the centroid is
calculated.

If a point belongs to the object boundary, then a sam-
ple taken from the neighborhood of that point exhibits a
change in the intensity level of image and it is considered to
be a transition point. Then N segments ai, i ∈ {1, ..., N}
with the form ai = OPi are considered. Here O is the
centroid of the initial region, the extreme P i is a point out-
side of the region and θi = ang (ai, ai+1) ∀i is the angle
between two consecutive segments as it can be seen in Fig-
ure 3. The segment ai is an array of m elements coming
from a discretization of the straight line on the image. In
this work all the experimental results are binary images, so
the border point on each segment is found convolving the
data of the segment with a mask given by [−1, 1]. Once the
set of border points A = {b1, ..., bN} is found, the method
builds the interpolating B-spline curve as its explained in
section 3.1. This method can generate redundant contour
points, and generally it does not need to use all of them
for obtaining the interpolating curve. An algorithm to find
significant boundary points in the description of the same

curve, is now presented. Given the set of border points
A, the points with maximum curvature (critical points) are
chosen. This method was proposed by P. Zhu (see [12])
in order to detect critical points in A. Let D be the set of
critical points of A and E the set of redundant points of A,
then

D ∩ E = ∅
D ∪ E = A

We consider the polar coordinates of each point b i ∈
A:

bi = (ρi, αi)

where ρi and αi are the length and the orientation of b i,
respectively. A is an ordering sequence, then each point b i

has only two geometrical neighbors b i−1 and bi+1.
If bi−1, bi and bi+1 are consecutive points then there

is a critical point if

sign(ρi − ρi−1) = sign(ρi+1 − ρi)

or

sign(αi − αi−1) = sign(αi+1 − αi)

hold. In this manner, a subset

M = {bc1 , . . . , bcm}

of critical points is obtained. Then, for each pair of adya-
cent points bcj , bcj+1 of M , an interpolating straight line Sj

is considered. Then the distances di between bi ∈ A − M
and Sj are computed. The points with maximum and mini-
mum distances that verify the following condition:

sign(di − di−1) = sign(di+1 − di)

for cj < i < cj+1, are selected.

We define Γ =
{
b̃0, b̃1, ..., b̃r−1

}
the set of r points

that verify equation (3.2).
Let C0 = sort(M ∪ Γ) be the ordering set of pseudo

critical points. In order to select the critical points from C0,
we define a critical level l for each point bi:

l(bi) = area(
∆

bi−1, bi, bi+1).
Finally, taking the critical point set

D = {bi ∈ C0�l(bi) ≥ L} ,

where L is a threshold defined as L = min
{

l(bi)
3 , bi ∈ A

}
,

a new interpolating B-spline curve is obtained.
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Figure 4: Parameters α and γ as seen on the flower equation
(7)

4 Results

This section presents the obtained results of the segmenta-
tion methods applied to images which are randomly gener-
ated. The approximation error for both methods, B-spline
and level set approach is characterized and compared.

The algorithms are applied to 500 synthetic images
(flowers) generated by means of the parametric curve in po-
lar coordinates:

f(s; α, β, γ) = (θ(s), ρ(s; α, β, γ)), s ∈ [0, S]

θ(s) = s
2π

S
ρ(s; α, β, γ) = α − γcos(θ(s)β)

(7)

where α is the mean radius of the flower, β is the number
of petals and 2γ is the height of the petals, see Figure 4. α,
β and γ are considered independent random variables with
uniform distribution. The variation ranges for each variable
are given by: α ∈ [5, 20], β ∈ [15, 50], γ ∈ [2, 10].

In order to compute the approximation error, ∂R the
boundary of the region of interest and C the approximating
curve are considered. Let aj be the jth radial straigth line,
see Figure 3, which equation is given by:

aj : λ�uj + O j = 1, . . . , N

where �uj is the straight line unit vector and O is the centroid
of the region R. Let �Vj the intersection point between the
curve C and the straight line aj , and �Wj the intersection
point between the boundary ∂R and the straight line a j:

aj ∩ C = �Vj

aj ∩ ∂R = �Wj

Then, a distance between C and ∂R is defined as

d(∂R, C) =
1
N

√√√√ N∑
j=1

∥∥∥�Vj − �Wj

∥∥∥2

(8)

Figure 5 (bs1) to (bs4) shows boundary detection with
B-spline method and (ls1) to (ls4) boundary detection with
level set method, in both cases as a white curve. The two
methods applied to four synthetic images generated from
the equation (7). Shapes from (bs1) and (ls1) generated
with α = 10, β = 38 and γ = 5, (bs2) and (ls2) with
α = 6, β = 50 and γ = 10, (bs3) and (ls3) with α = 8,
β = 38 and γ = 9 and (bs4) and (ls4) with α = 12, β = 15
and γ = 3. Figure 6 shows the histograms of the B-spline
and level set approximation error.

5 Conclusions and Further Work

Comparing the exhibited results in Section 4 from a vi-
sual perspective the segmentation achieved with level sets
method is more accurate than the one achieved with B-
splines. Furthermore, using the measure defined in (8) over
500 generated samples, we noticed that more than 50% of
the segmented shapes using the level sets method, presented
an error less or equal than 0.05 and more than 85% an error
less or equal than 0.1. On the other hand, less than 20%
of the samples segmented using the B-spline technique pre-
sented an error lower than 0.1 and less than 84% were seg-
mented with an error lower than 0.3. These results can be
seen in table 5, corresponding to the accumulated frequen-
cies of the approximation errors of the B-spline and level
set methods, respectively. This fact can also be noticed on
the error histograms shown in Figure 6.

In this work we established a comparing method for
segmentation techniques. Finally, as a conclusion of this
work we present in a comparative manner the advantages
and drawbacks of each segmentation method compared:

• Level set method

1. Boundary fitting accuracy depends only on the
ratio between the advection and diffusion param-
eters. Furthermore, Eulerian evolution instead of
Lagrangian implies higher accuracy on the dif-
ferential equation resolution, hence better fitting
results are achieved.

2. Front topology can change during the evolution,
thus supervised initialization is not required.

3. The result is a discretization over the domain of
a function whose zero level set is the boundary.
Therefore, in order to obtain a continuous repre-
sentation of the boundary it is necessary to ex-
tract the isocontour and interpolate it.
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Figure 5: The B-spline approximation curve (bs1) to (bs4).
Level set approximation curve (ls1) to (ls4). (bs1) and (ls1)
generated with α = 10, β = 38 and γ = 5, (bs2) and (ls2)
with α = 6, β = 50 and γ = 10, (bs3) and (ls3) with
α = 8, β = 38 and γ = 9 and (bs4) and (ls4) with α = 12,
β = 15 and γ = 3

4. The smoothing level of corners depends on the
diffusion parameter and can be omitted. Then,
this approach can handle sharp edges effortlessly.

−0.05
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 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1

B−spline
Level sets

Figure 6: Histogram of the approximation errors for the B-
spline and level set methods.

5. High computational cost.

6. Easy to generalize to 3D and more dimensional
models. The mathematical formulation has a di-
rect implementation.

• B-spline

1. The number of control point and the B-spline or-
der have to be known a priori and determines the
accuracy of the results.

2. It is mandatory to specify an initial area of inter-
est, often in a supervised manner, for each con-
tour in the image. In addition, the topology of
the solution must be known beforehand.

3. The result is a parametric equation of the bound-
ary determinated by a set of control points.

4. Smoothes out corners.

5. Low computational cost.

Finally, as it was exposed previously in this section, the
level set method is more accurate than the B-spline method.

As further work we propose to improve the error char-
acterization of both methods by performing this analysis on
samples of synthetic and real textured images, hence parti-
tioning the sample sets according to the geometrical proper-
ties of the shapes. In order to decide which method is more
convenient for a particular problem, a statistical description
of the approximation error for each method will be studied.
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