
A load-balancing strategy for sort-first distributed rendering

Frederico Abraham, Waldemar Celes, Renato Cerqueira, João Luiz Campos
Tecgraf - Computer Science Department, PUC-Rio

Rua Marquês de São Vicente 225, 22450-900 Rio de Janeiro, RJ, Brasil
{fabraham,celes,rcerq,joaoluiz}@tecgraf.puc-rio.br

Abstract

In this paper, we present a multi-threaded sort-first dis-
tributed rendering system. In order to achieve load balance
among the rendering nodes, we propose a new partition-
ing scheme based on the rendering time of the previous
frame. The proposed load-balancing algorithm is very sim-
ple to be implemented and works well for both geometry-
and rasterization-bound models. We also propose a strat-
egy to assign tiles to rendering nodes that effectively uses
the available graphics resources, thus improving rendering
performance.

1. Introduction

PC-based clusters have been widely used to achieve real-
time rendering of complex scenes, in the place of pow-
erful graphics workstations. While graphics workstations
with shared-memory, multi-processing and multiple syn-
chronized graphics pipelines are very costly, clusters of
commodity PCs, equipped with high-performance graphics
cards, can be built at a reasonable cost. Moreover, the scal-
ability of PC-based clusters is better than that of tightly-
integrated graphics workstations [11].

However, by using a cluster-based distributed rendering
system, we have to face new issues, such as sharing data
among different processors and exchanging rendering infor-
mation [14]. Cluster-based rendering also brings the chal-
lenge of creating partitioning schemes to distribute the load
among the rendering nodes and of developing communica-
tion mechanisms that scale well within the bandwidth and
latency limitations of the underlying network [12].

Over the last years, the rendering performance of PC
graphics processors has been increasing at a notable rate.
However, despite this high-performance gain, nowadays the
flexibility of modern programmable graphics processors has
encouraged the development of sophisticated vertex- and
pixel-based algorithms for achieving high-quality imagery.
Although originally designed to be executed in real time,

such algorithms, when applied to complex scenes, still de-
mand graphics power that a single processor may not be
able to deliver. Examples of such scenarios include scenes
described by a dense and highly tessellated geometry set,
sophisticated per-pixel lighting algorithms and volume ren-
dering.

The purpose of our research is to investigate the use of
PC-based clusters for improving the rendering performance
of such complex scenes, delivering the frame rate usually
required by virtual-reality applications. This goal can be
achieved by combining the graphics power of a set of PCs
equipped with graphics accelerators. Although PC clusters
have also been used for supporting high resolution multi-
display rendering systems [2, 12, 14, 13], in this paper we
focus on the use of a PC cluster for improving rendering
performance for a single display. We also limit the discus-
sion to models that fit on the available memory, not dealing
with out-of-core scene management.

We have opted for a sort-first architecture, where the
screen is partitioned in disjoint tiles that are rendered by the
different rendering nodes. The display node is then respon-
sible for receiving the rendered tiles and composing the fi-
nal image. The main advantage of such architecture is its
relatively small communication requirements. On the other
hand, it is very susceptible to load imbalance [8]. In order
to achieve a good load balance among the rendering nodes,
we propose a new partitioning algorithm. Our algorithm
is very simple to implement and has a negligible running
time, while bringing quite good results. We explore frame-
to-frame coherence and estimate each node load based on
its previous frame time. Differently from previous propos-
als, our algorithm deals well with both static and dynamic
scenes and with both geometry- and rasterization-bound ap-
plications.

For improving the average performance and minimizing
fluctuations in frame rate, we also propose a strategy for as-
signing tiles to rendering nodes in a way that the render-
ing of consecutive frames is overlapped. As a result, we are
able to fully explore the graphics processing power of each
node. This strategy tends to increase display lag, the time

delay between a user action and its displayed results[1], but
experimental results have shown this latency can be kept un-
der acceptable limits.

This paper is organized as follows. In the next section,
we describe related distributed-rendering works. Section 3
describes our proposal in detail, presenting a new load-
balancing algorithm and the strategy we use to assign tiles
to nodes. Section 4 presents experimental results that illus-
trate the efficiency of the proposed system. Finally, in Sec-
tion 5, some concluding remarks are drawn.

2. Related Work

Molnar el al. [8] have classified distributed rendering
based on where the visibility sort occurs: sort-last, sort-
middle, and sort-first. In the sort-last architecture, each
rendering node is responsible for rendering part of the
scene. The display node is responsible for composing depth
images to solve the visibility order. As pointed out by
Mueller [9], sort-last offers excellent scalability in terms of
the number of primitives it can handle and it is less prone
to load imbalance. However, it requires a very high band-
width to support the transmission of several color and depth
buffers. Sort-last is also not able to easily handle scenes with
transparent objects. In the sort-middle architecture, geome-
try processing is separated from rasterization, which makes
it possible to redistribute the primitives between these two
stages. Currently, this approach can only be implemented
using specialized high-end workstations, thus being imprac-
tical for us. In the sort-first architecture, the screen is parti-
tioned into non-overlapping tiles (usually with rectangular
shapes) and the rendering nodes are responsible for all the
rendering computation that affects their respective screen
regions. These rendering nodes then send their images to
the display node that is responsible for the final image com-
position.

One of the main disadvantages of the sort-first architec-
ture is that overlapping primitives must be redundantly ren-
dered by more than one tile. Sort-first scalability is lim-
ited mainly because of such overheads. Sort-first is also
very susceptible to load imbalance and load balancing is
one of the biggest concerns under this architecture [9]. A
naı̈ve approach to better balance the load among the ren-
dering nodes would be to increase the number of tiles (and
each node would be responsible for rendering more than one
tile), but this increases the percentage of overlapping prim-
itives, which is a direct cause of overhead [3, 6, 12].

Mueller [9] has opted for the sort-first architecture for
taking advantage of the frame-to-frame coherence found
in interactive applications. He has introduced an adaptive
load-balancing algorithm based on a hierarchical decompo-
sition of the 3D geometry model, thus making it adequate
for geometry-bound models.

Samanta et al. [12] have proposed three different par-
titioning strategies for sort-first multi-projector rendering
systems. Their algorithms are all based on high-level 3D
primitives, being also applicable only for geometry-bound
models. In order to overcome the limited scalability of sort-
first architectures, Samanta et al. [11] have later proposed an
algorithm for simultaneously decomposing the 2D screen
into tiles and the 3D polygon model into groups, thus build-
ing a hybrid sort-first and sort-last rendering system. The
proposed partitioning algorithm is also based on the 3D
primitive geometry.

Nguyen et al. [10] have presented a toolkit for distributed
rendering on commodity clusters, where the partitioning al-
gorithm is based on image layer decomposition. Their strat-
egy requires the construction of an occlusion graph that can
be very expensive for scenes with moving objects (their ini-
tial proposal only deals with static scenes). Their approach
also increases the rendering overload due to the need for
splitting primitives in order to decompose the scene. Once
the occlusion graph is obtained, it is partitioned into sub-
graphs, based on estimated rendering times and the pixel-
area of each object. The rendering time of each object in the
current frame is estimated by its rendering time in the pre-
vious frame. In order to improve the average frame rate,
they have proposed the use of multi-thread for overlap-
ping the communication of the image layers generated for a
frame with the rendering of the next frame. However, they
have observed that this improvement in average frame rate
may only be feasible at the expense of significantly greater
frame latency. They have also mentioned the importance of
rasterization-bound applications and suggested the investi-
gation of partitioning algorithms for balancing the depth
complexity rather than trying to minimize primitive over-
laps.

Wylie et al. [17] have opted for a sort-last architecture
to build a scalable distributed rendering system based on
PC clusters. By using sort-last, they were able to use rel-
atively simple strategies to partition data for parallel ren-
dering. Their partitioning is done based on the number of
triangles, which have demonstrated in practice to have ex-
cellent load-balancing characteristics. They have also stated
that for a large number of triangles the rasterization imbal-
ance tends to become relatively small.

Different strategies for exchanging rendering informa-
tion among the nodes have also been presented. Chen et
al. [2] have stated that one of the major challenges for
high-resolution displays is to develop scalable algorithms
to partition and distribute rendering tasks effectively un-
der the available network bandwidth. They have compared
three approaches to distribute the data among the rendering
nodes. In the first approach, a copy of the application runs
on each rendering node; the master handles user inputs and
distributes control information. In the second approach, the

master is responsible for handling user inputs and distribut-
ing the primitives among the rendering nodes. The third ap-
proach is only applicable for the use of multi-projectors for
high-resolution displays, because the master is responsible
for the entire rendering, sending compressed final images
for each server to be displayed.

Humphreys et al. [6] have presented Chromium, the suc-
cessor to WireGL [5], a system for manipulating streams
of graphics API commands on a cluster of workstations.
One of its major benefits is the transparent support for
running existing OpenGL applications on a cluster. Van
der Schaaf et al. [13] have compared the use of immedi-
ate mode, such as WireGL, with retained mode rendering
paradigms for scalable tiled displays. They have demon-
strated that immediate mode exposes a scalability problem
that they have tried to solve using retained mode. They
have experimented two approaches: replicating data on the
nodes and broadcasting graphics commands over the net-
work. The replicated-data approach has achieved better per-
formance while the broadcasting approach has eased trans-
parency and input handling. It is worth mentioning that for
reducing the network communication, Samanta et al. [12]
have also opted for replicating the 3D scene on every node.
For transparently managing replicated data, Voß et al. [15]
have extended the OpenSG scene graph system.

Staadt et al. [14] have presented a survey of different
software platforms for rendering in a multi-display envi-
ronment to achieve higher resolution and better immersion.
They have opted for a master-slave model as the strategy to
distribute the data among the nodes. In this approach, the
application runs on every cluster node. Execution must be
synchronized to ensure consistency among all the applica-
tion instances. Typically, the master node is responsible for
handling user inputs and synchronizing state changes be-
tween nodes.

3. Proposed rendering system

We have also opted for a sort-first architecture and for
replicating the model in all nodes. The model’s consis-
tency is maintained by using the dead reckoning technique
as discussed by Ferreira et al. [4]. In order to achieve
load balance, we propose a new partitioning scheme based
uniquely on the rendering time of the previous frame. We
will show that this strategy works well for both geometry-
and rasterization-bound applications, while being very easy
to implement. We also propose a strategy to assign tiles to
nodes that effectively uses the available graphics resources.
Similar to Nguyen et al. [10], we use a multi-threaded ap-
proach to parallelize operations done on the CPU, the GPU
and the network.

3.1. System Overview

Our system is composed by a cluster of PCs with hard-
ware graphics accelerators connected by a local area net-
work, driving a single display. One cluster node (the display
node) is connected to the display and coordinates the ren-
dering among the other cluster nodes (the rendering nodes).

Our sort-first architecture can be conceptually described
as follows. For each frame, the display node partitions the
screen into a set of N non-overlapping rectangular tiles,
which are distributed to the N rendering nodes, one tile
per node. The strategy used to subdivide the screen tries
to balance the load among the rendering nodes. Tile param-
eters are packed into a frame-tile rendering request, which
is composed by the tile dimensions (width and height) and
by the modelview and projection matrices, with the frus-
tum adjusted to cover the desired screen area. Application-
specific parameters, such as the current virtual time needed
to update the scene, can be attached to the frame-rendering
request packets. The rendering nodes then receive the re-
quest and perform the rendering. At each rendering node,
a view-frustum culling algorithm is performed in order to
avoid sending to the graphics pipeline primitives that do not
contribute to the final tile image. Once rendering is com-
plete, the resulting RGB components of the tile image are
sent to the display node. In order to reduce network traffic,
the images can be compressed before being transferred (we
use the LZF library [7]). Once the display node receives all
the frame tiles, it decompresses the tile images, composes
the final image and displays it.

Of course, there are several issues that have to be ad-
dressed in order to effectively use the available resources,
which include the CPU, the GPU and the network infras-
tructure. A naı̈ve approach would misuse the resource by
not fully using their capabilities.

3.2. Use of multiple threads

Because network communication is basically an IO op-
eration, data transfer can happen in parallel with other op-
erations. This parallelism is especially interesting for trans-
ferring large amounts of data such as the tile images. There-
fore, we use a multi-threaded approach to implement the
system on both the display and the rendering nodes. The
rendering node’s implementation has been divided into two
threads: the rendering thread and the sending thread.

The rendering thread is responsible for receiving the dis-
play node request, rendering the tile, reading back the frame
buffer, and sending a ’ready’ message to the display node
signaling that the requested rendering task is concluded.
The resulting image is then placed in a queue accessible by
the sending thread. After that, the rendering thread is ready
to process a new display node request. The sending thread

is responsible for reading tile images from the queue, com-
pressing them, and issuing send() calls to the display node.
The data transfer will only effectively take place when the
display node issues recv() calls to the rendering nodes.

The display node’s implementation has been divided into
three threads: the receiving thread, the composing thread
and the control thread. The receiving thread has a commu-
nication channel with the sending thread of every rendering
node. Through this channel, it receives the compressed tile
images and places them into a tile queue, signaling the com-
posing thread that a new tile has been received.

The composing thread is responsible for displaying the
final image. It gets each tile from the tile queue, decom-
presses it and writes it to the local frame-buffer. Once all
tiles from the current frame have been received, decom-
pressed and written, the composing thread issues a swap-
buffers() call and starts composing the next frame.

The control thread is connected to the rendering thread
of every rendering node. Whenever a ’ready’ signal of the
current frame arrives from any rendering node, this thread
notifies the receiving thread that it can start receiving the
tile. When all the ’ready’ signals related to the current frame
have arrived, this thread computes a screen partitioning for
the next frame and sends the new frame tile parameters to
the rendering nodes. Figure 1 shows the diagram of the mes-
sage exchange between the nodes and their threads.

3.3. Load balancing

The display node has to wait for all rendering nodes
to conclude their rendering task before composing the fi-
nal image. Clearly, the slowest rendering node represents
the bottleneck of the application. In order to achieve good
performance with the sort-first architecture, it is crucial to
apply a partitioning scheme that tries to balance the load
among the rendering nodes.

An effective partitioning algorithm should be designed
to achieve different goals:

• Balancing the load among the rendering nodes;

• Minimizing primitive overlaps to avoid redundant ren-
derings;

• Being general and effective for both geometry- and
rasterization-bound models;

• Being efficiently evaluated not to impose an additional
burden to the application performance.

These are conflicting goals and an optimal solution to
meet all of them may not be feasible. For this reason, re-
searchers focus on finding good heuristic methods [12]. Our
heuristics takes advantage of frame-to-frame coherence and
tries to balance the load based on the time each node took
to render the previous frame. The partitioning is not based

Figure 1. Message exchange between the dis-
play and rendering node threads: (1) the dis-
play node requests a frame tile rendering;
(2) the rendered tile buffer is placed into a
queue; (3) the display node’s control thread
is signaled; (4) the display node’s receiving
thread is signaled; (5) the frame tile buffer is
sent; (6) after the tile is received, the display
node’s composing thread is signaled; (7) the
tile is decompressed and written to the local
frame-buffer.

on the 3D geometry model; nevertheless, we will show
that the resulting percentage of primitive overlaps is within
reasonable limits. Its main advantages are that it is rather
simple to implement, works well for both geometry- and
rasterization-bound applications, and requires a negligible
running time. Experiments show that the proposed heuris-
tic algorithm results in good load-balancing among the ren-
dering nodes.

The screen is initially subdivided into a set of N disjoint
tiles, where N represents the number of rendering nodes.
The algorithm uses the previous frame time to adjust the
tile sizes in order to achieve load balancing for the next
frame. The overall effort needed for rendering one frame
is measured by summing the rendering time of all tiles. For
each tile, we consider, at first, that its rendering load is uni-
formly distributed over the tile region. Therefore, we esti-
mate a rendering cost per pixel within each tile. We then re-
size the tiles in order to have all tiles with the same amount
of load, based on the previous frame. The tiles are resized
by moving their boundary edges.

Mueller [9] has pointed out that natural choices to subdi-
vide the screen include horizontal strips, vertical strips, and
more rectangular shapes. Square shapes are often the pre-
ferred choice because they minimize the total region bound-
aries, thus minimizing the percentage of overlapping primi-

tives. Let us first consider that the screen is subdivided into
horizontal strips, with each strip representing a tile. Our al-
gorithm computes each tile load (in fact, its rendering time)
and moves the horizontal edges to achieve load balancing.
For a perfect balancing, each tile should have a load equal to
the overall frame time over the number of rendering nodes.
By computing the load associated to each screen line, we
are able to reposition the tile edges. From top to bottom, we
sum the load of each line until the desired load for each tile
is reached, delimiting the tile boundary edges.

In order to minimize tile boundaries, we first subdivide
the screen into horizontal strips and then subdivide each
strip into vertical (sub-) strips. The total number of ver-
tical (sub-)strips, considering all horizontal strips, equals
the number of rendering nodes. The load of each horizon-
tal strip is then obtained by summing all its vertical (sub-
)strips. The algorithm first repositions the horizontal strips
then repeats the balancing procedure for the vertical (sub-
)strips within each horizontal strip. For partitioning each
horizontal strip, the rendering time per pixel of each tile
must be considered, since pixels from different horizontal
strips of the last frame can be present in the new horizon-
tal strip. Pixel columns and their rendering times must be
added until the desired load for each tile is reached, delim-
iting the tiles’ vertical boundary edges. Figure 2 illustrates
how we have chosen to arrange the subdivision for differ-
ent number of tiles.

Figure 2. Subdivisions for different tile num-
bers.

The algorithm takes a negligible running time because
its complexity is proportional to the number of tiles. By not
being based on primitive counts or any other information
derived from the model, it can be directly used for a vari-
ety of applications, from geometry-based scene descriptions
to volume rendering. Using the past frame to compute the
next screen division does not represent a severe problem.
Because of frame-to-frame coherence, consecutive frames
have similar load distribution, even for dynamic scenes.

On the other hand, the algorithm assumes that the ren-
dering load of a tile is uniformly distributed over the en-
tire tile region, which is a coarse assumption in many cases.
In order to overcome this limitation, we try to explore spa-

tial coherence by using the load-balancing algorithm only
to guide the tile edge’s movements. As soon as a complete
frame is rendered, we run the balancing algorithm as de-
scribed above, but, instead of displacing the tile edges ac-
cording to the computed balanced subdivision, we use the
algorithm’s result to apply velocities to the tile edges. The
edges then start moving in the direction of a load-balanced
screen subdivision. The applied velocities should be cho-
sen in a way to take advantage of spatial frame-to-frame co-
herence and to avoid severe load imbalances. In our experi-
ments, we have used a velocity that would require 5 frames
for the edges to reach the balanced screen subdivision.

The heuristic algorithm reduces the difference in render-
ing time among the rendering nodes, thus improving the
overall rendering performance. But, of course, it is not able
to ensure a perfect balance, resulting in frame-rate fluctu-
ation. Watson et al. [16] have showed that fluctuations in
frame rate can degrade the performance of interactive tasks,
especially when the frame rate is low. Their experiments
have demonstrated that for frame rates above 20 Hz, devia-
tions up to 40% do not significantly affect task performance,
but for applications where frame time consistency require-
ments are strict, frame time variations should be kept below
10%.

3.4. Tile-assignment strategy

In order to decrease fluctuations in frame rate and also
to maximize the use of the graphics resources of all render-
ing nodes, we propose a strategy to interchange tile-node
assignments.

Let us first consider the absence of a load-balancing al-
gorithm. If the tiles are maintained as originally set (for
instance, subdividing the screen in regions with the same
area), due to frame-to-frame coherence we expect that the
load of each tile remains similar for consecutive frames.
We can take advantage of such coherence by interchang-
ing tile-node assignments. As soon as the fastest rendering
node concludes its current task, the display node can re-
quest the rendering of a tile for the next future frame. In
order to improve overall performance, the currently fastest
node should be requested for rendering the most demanding
tile of the next frame. This most demanding tile is chosen
based on the rendering time of the previous frame. When
another rendering node concludes its task, it receives a re-
quest for the second most demanding tile, and so on. By in-
terchanging tile-node assignments this way, we are able to
achieve overall performance close to the one that would be
achieved if the tile loads were perfectly balanced, because
the rendering nodes will be always busy. Figure 3 shows a
diagram which illustrates the tasks performed by each node
along the time.

However, for severe load imbalances, this strategy would

Figure 3. A temporal diagram of the tile as-
signment technique.

cause prohibitive latency, which would drastically degrade
user performance [1]. We then combine both the load-
balancing algorithm and this tile-assignment strategy to
achieve better performance while keeping the latency within
reasonable limits. The load-balancing algorithm avoids se-
vere load imbalances, but still preserves tile-load coherence
because the tile’s edges move slowly to the balanced posi-
tion.

In order to keep the latency under control, we do not al-
low the system to start rendering frame i + 2 while frame i

is not complete.
It is worth mentioning that this tile-assignment strategy

only works well for homogeneous clusters, since it is ex-
pected that a given tile takes approximately the same time
on any rendering node. Also, this strategy is not adequate
for out-of-core scene management, because each node has
to render different regions of the model (which would re-
quire bringing another part of the model to memory).

4. Experimental Results

We have tested our system on a cluster composed by 10
PCs, each one with an Intel Pentium 4 1.8 GHz processor,
512 MB of RAM and equipped with a Geforce 4 Ti 4200
graphics card. The 10 PCs were connected by a switched
Gigabit Ethernet network, running on Linux operating sys-
tem. We have implemented the parallel rendering algorithm
and the applications using C++ and OpenGL.

The distributed visualization system was tested using
two different models, shown in Figure 4:

• Platforms: a geometry-bound model, composed
mainly by six black-oil platforms with a big poly-
gon count: the entire scene has 1,884,844 triangles
distributed among 11,811 objects.

• VolRender: a rasterization-bound model composed by
a volume data representing an engine. The engine data
is stored in a 256x256x110 3D texture visualized by
379 quadrilateral slices.

Platforms: geometry-bound model.

VolRender: rasterization-bound model.

Figure 4. Models used during the tests

The Platforms model was visualized through a path that
performs a navigation around the set of objects and then
zooms in, from t=60s to t=75s, to have a close view of one
platform. For the VolRender model, we have applied a set of
rotations and translations to the engine, seeing it from dif-
ferent points of view.

In order to avoid limiting the performance due to net-
work traffic, we chose a screen resolution of 600x600 for
Platforms and of 800x600 for VolRender. We also turned
compression off.

4.1. Load-balancing algorithm

In order to test the proposed load-balancing algorithm,
we measure the load imbalance obtained for visualizing
both models. As Mueller [9], we measure load-imbalance
as the ratio of the maximum processor load over the av-
erage load. Mueller [9] considered a load-balance reason-
able if the maximum/average load ratio was 1.5 or less. As
shown in Figure 5, the proposed algorithm provided a ra-
tio below 1.4 for both models along the entire paths, with
an average value below 1.2.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 20 40 60 80 100 120

A
ve

ra
ge

 L
oa

d
Im

ba
la

nc
e

Time (s)

VolRender
Platforms

Figure 5. Load imbalances for both applica-
tions.

We then tested the system’s scalability. Sort-first scal-
ability is limited mainly due to the percentage of over-
lapping primitives that has to be redundantly rendered by
more than one tile [3, 6, 9, 11, 12]. In order to analyze the
system’s scalability, we measure, for the geometry-bound
model, primitive overlaps, subdividing the scene into dif-
ferent number of tiles (4, 16, 36, and 64 tiles). As in Mol-
nar et al. [8], we define overlap factor as the average number
of tiles a primitive overlaps. As shown in Figure 6, this fac-
tor is less than 2 along the path even for 64 tiles, except dur-
ing the interval where we have a close view of a platform.
Note, however, that the total number of primitives needed to
visualize a close view of an object is far smaller than the to-
tal number of primitives that compose the entire scene, due
to the applied frustum culling technique.

4.2. Tile-assignment strategy

For both models, we compare the frame time achieved
using the cluster against the frame time using a single lo-
cal machine. Figure 7 illustrate the gain for both Platforms

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

P
rim

iti
ve

 o
ve

rla
p

ra
tio

Time (s)

4 tiles
16 tiles
36 tiles
64 tiles

Figure 6. Primitive overlap factor for Plat-
forms.

and VolRender models, respectively. While using the clus-
ter, we also compare the performance achieved by using
the tile-assignment strategy against the performance using
uniquely the load-balancing algorithm. As we can note, the
tile-assignment strategy provides a gain in performance and
decreases frame-time fluctuations.

We have also measured the latency introduced by using
the tile-assignment strategy. For both models, the additional
latency, when compared to the use of the load-balancing al-
gorithm in isolation, is negligible (average values of 2.6 ms
for Platforms and of 4.8 ms for VolRender, with standard
deviations of 2.4 ms and 7.6 ms, respectively).

5. Conclusion

We have presented a sort-first distributed rendering sys-
tem based on a PC cluster implemented using a multi-
threaded approach to parallelize operations done on the
CPU, the GPU and the network. Experiments have demon-
strated that the system provides a significant gain in render-
ing throughput.

We have proposed a new load-balancing algorithm
for the sort-first distributed rendering system. The pro-
posed algorithm has shown to provide good results for
both geometry- and rasterization-bound models, while be-
ing very simple to implement. Combined with the
load-balancing algorithm, we have also proposed the use of
a new tile-assignment strategy to fully explore the graph-
ics processing power of each node, thus improving render-
ing performance.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

A
ve

ra
ge

 fr
am

e
tim

e
(m

s)

Time (s)

9 nodes + load balancing + assignment strategy
9 nodes + load balancing

local

Platforms

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 fr
am

e
tim

e
(m

s)

Time (s)

9 nodes + load balancing + assignment strategy
9 nodes + load balancing

local

VolRender

Figure 7. Average frame time for both appli-
cations.

6. Acknowledgements

The first author was supported by CNPq. Tecgraf is a lab-
oratory in PUC-Rio mainly funded by PETROBRAS. We
thank Marcio Pereira de Araujo and Sergio Alvares R. de S.
Maffra for their help in the scene setups.

References

[1] R. S. Allison, L. R. Harris, M. Jenkin, U. Jasiobedzka, and
J. E. Zacher. Tolerance of Temporal Delay in Virtual Envi-
ronments. In IEEE Virtual Reality International Conference,
pages 247–254, 2001.

[2] H. Chen, Y. Chen, A. Finkelstein, T. Funkhouser, K. Li,
Z. Liu, R. Samanta, and G. Wallace. Data Distribution Strate-
gies for High-Resolution Displays. Computers & Graphics,
25(5):811–818, Oct. 2001.

[3] M. Cox and N. Bhandari. Architectural Implications of
Hardware-accelerated Bucket Rendering on the PC. In Pro-
ceedings of the Eurographics workshop on Graphics hard-
ware, pages 25–34, 1997.

[4] A. Ferreira, R. Cerqueira, W. Celes, and M. Gattass. Multiple
Display Viewing Architecture for Virtual Environments over
Heterogeneous Networks. In Proceedings of SIBGRAPI’99,
pages 83–92, Campinas, Brazil, 1999. SBC.

[5] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett,
and P. Hanrahan. WireGL: A Scalable Graphics System for
Clusters. In Proceedings of the annual conference on Com-
puter graphics and interactive techniques, pages 129–140,
2001.

[6] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P. D. Kirchner, and J. T. Klosowski. Chromium: A Stream-
Processing Framework for Interactive Rendering on Clus-
ters. In Proceedings of the annual conference on Computer
graphics and interactive techniques, pages 693–702, 2002.

[7] M. Lehmann. Liblzf Data Compression Library.
http://www.goof.com/pcg/marc/liblzf.html.

[8] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting
Classification of Parallel Rendering. IEEE Computer Graph-
ics & Applications, 14(4):23–32, 1994.

[9] C. Mueller. The Sort-First Rendering Architecture for High-
Performance Graphics. In Proceedings of Symposium on In-
teractive 3D graphics, pages 75–ff., 1995.

[10] T. D. Nguyen, C. Peery, and J. Zahorjan. DDDDRRaW: A
Prototype Toolkit for Distributed Real-Time Rendering on
Commodity Clusters. In Proceedings of the International
Parallel and Distributed Processing Symposium, May 2001.

[11] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid
Sort-First and Sort-Last Parallel Rendering with a Cluster
of PCs. In Proceedings of the Eurographics workshop on
Graphics hardware, pages 97–108, 2000.

[12] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh.
Load Balancing for Multi-Projector Rendering Systems. In
Proceedings of the Eurographics workshop on Graphics
hardware, pages 107–116, 1999.

[13] T. van der Schaaf, L. Renambot, D. Germans, H. Spoelder,
and H. Bal. Retained Mode Parallel Rendering for Scalable
Tiled Displays. In Proceedings of the Immersive Projection
Technology Workshop, Orlando, Florida, Mar. 2002.

[14] O. G. Staadt, J. Walker, C. Nuber, and B. Hamann. A Sur-
vey and Performance Analysis of Software Platforms for In-
teractive Cluster-based Multi-screen Rendering. In Proceed-
ings of the workshop on Virtual environments, pages 261–
270, 2003.

[15] G. Voß, J. Behr, D. Reiners, and M. Roth. A Multi-Thread
Safe Foundation for Scene Graphs and its Extension to Clus-
ters. In Proceedings of the Eurographics Workshop on Par-
allel Graphics and Visualization, pages 33–37, 2002.

[16] B. Watson, V. Spaulding, N. Walker, and W. Ribarsky. Eval-
uation of the Effects of Frame Time Variation on VR Task
Performance. In Proceedings of the Virtual Reality Annual
International Symposium, page 38, 1997.

[17] B. Wylie, C. Pavlakos, V. Lewis, and K. Moreland. Scalable
Rendering on PC Clusters. IEEE Computer Graphics & Ap-
plications, 21(4):62–70, 2001.

