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Rua do Matão, 1010 - Cidade Universitária
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Abstract

This paper presents a technique that gives a minimal
window � for the estimation of a W-operator from train-
ing data. The idea is to choose a subset of variables �
that maximizes the information observed in a set of training
data. The task is formalized as a combinatorial optimiza-
tion problem, where the search space is the powerset set of
the candidate variables and the measure to be minimized is
the mean entropy of the estimated conditional probabilities.
As a full exploration of the search space requires an enor-
mous computational effort, some heuristics of the feature
selection literature are applied. The proposed technique is
mathematically sound and experimental results show that it
is adequate in practice.

1. Introduction

A W-operator is a binary image transformation that is
locally defined inside a window � and translation invari-
ant [1]. This means that it depends just on shapes of the
input image seen through the window � and that the trans-
formation rule applied is the same for all image pixels. A
remarkable property of a W-operator is that it is charac-
terized by a Boolean function which depends on ����� vari-
ables, where � ��� is the cardinality of � . Examples of W-
operators include erosion, dilation, opening, closing, edge
detection, hit-miss, median filtering and skeletonization.

W-operators are used in practically any application of
binary image processing from image restoration to pattern
recognition. An important practical problem is designing
W-operators to perform these tasks in specific contexts.
There are several heuristic approaches to do that. A for-
mal approach consists in estimating the target operator from
collections of input-output image pairs, called training data,
that describe the result of the desired transformation in some
typical images of the considered domain. Technically, this

problem is equivalent to the design of supervised classi-
fiers, in statistical pattern recognition theory, or the learning
of Boolean functions, in computational learning theory [2].
This kind of technique has been successfully applied, for
example, in the digital documents industry.

Estimating a W-operator from training data is an opti-
mization problem. The training data gives a sample of a
joint distribution of the observed shapes and their classifi-
cation (i.e., Boolean value associated to the observed shape
in the output image). A loss function measures the cost of
a shape miss classification. An operator error is the ex-
pectation of the loss function under the joint distribution.
Given a set of W-operators, the target operator is the one
that has minimum error. As, in practice, the joint distribu-
tion is known just by its samples, it should be estimated.
This imply that operators error should also be estimated
and, consequently, the target operator itself should be es-
timated. Estimating a W-operator is an easy task when the
sampling of the joint distribution considered is large. How-
ever, this is rarely the case. Usually, the problem involves
large windows with non concentrated probability mass joint
distributions, which requires prohibitive amount of training
data.

An approach for dealing with the lack of training data
is constraining the considered space of operators. In fact,
when the number of candidate operators decreases, it is nec-
essary less training data to get good estimations of the best
candidate operator [3]. Usually, the operator space is con-
strained based on some prior knowledge about desired char-
acteristics of the target operator.

In this paper, we propose a formal technique for estimat-
ing a constrained operator space from training data. The
idea is to estimate an optimal sub-window ��� that max-
imizes the available information about the unknown joint
distribution, from a given window � and the available
training data from the images through � . Choosing a sub-
window is equivalent to clustering examples of the train-



ing data, since different shapes may become the same when
seen by the sub-window. This, on one hand, decreases the
estimation error of the joint distribution by making equiva-
lent rarely observed shapes and, on other hand, increases
its estimation error introducing noise in shape classifica-
tion. The best window � � should balance properly both
effects. The constrained search space will be the set of �	� -
operators.

The search space of this problem is the powerset of � ,
denoted 
��
��� . The criterion to be minimized is the degree
of mixture of the observed classes, i.e. when there is more
agreement about what class should be attributed to an ob-
served shape, we should be looking to a better sub-window.
A measure that reflects this property of a joint distribution
is the mean conditional entropy. The important property of
entropy explored here is that when the probability mass of
a distribution becomes more concentrated somewhere in its
domain, the entropy decreases. In other words, when there
is a strong probability for a given class in the classifica-
tion of a shape, the entropy of the conditional distribution
should be low. Thus, the optimization algorithm consists in
estimating the mean conditional entropy for the joint distri-
bution estimated for each sub-window and choosing the one
that minimizes this measure.

Each observed shape has a probability and a correspond-
ing conditional distribution from which the entropy is com-
puted . The mean conditional entropy is the mean of the
computed entropies, weighted by the shape probabilities.

As 
��
��� has an exponential size in terms of the car-
dinality of � , we adopted some heuristics to explore
this space in reasonable computational time. The adopted
heuristics were the SFS and SFFS feature selection algo-
rithms [4].

Following this Introduction, Section 2 recalls the mathe-
matical fundamentals of W-operators design. Section 3 in-
troduces the definitions and properties of the mean condi-
tional entropy and presents the proposed technique for gen-
erating the minimal window and, consequently, choosing
a minimal family of W-operators. Section 4 presents some
experimental results of the application of the proposed tech-
nique. Finally, Section 5 presents some concluding remarks
and perspectives of future researches on this subject.

2. W-operator definition and design

In this section, we recall the notion of W-operator and
the main principles for designing W-operators from training
data.

2.1. W-operator definition and properties

Let � denote the integer plane and � denote the transla-
tion on � . The opposite of � is denoted � . A binary image
or, simply, image is a function � from � to ��������� . An im-

age � can be represented, equivalently, by a subset � of �
by the following relation � �"!#�$�%�&!'�)(*�+�,�-�/.0� .

The translation of an image �21�� by a vector 34!5�
is the image �"67.8���#!#�	9:�;�<3&!'�5� .

Let 
$�,�7� be the powerset of � . An image transforma-
tion or operator is a mapping = from 
��,�>� into itself.

An operator = is called translation invariant iff (i.e., if
and only if), for every 3&!#� ,

=>�?�'6@�A.B=>�?�C�%6 .

Let � be a finite subset of � . An operator = is called
locally defined in the window � iff, for every �&!#� ,

�&!D=>�?�<�E(*�&!D=>�?�GF'�<H:� .
An operator is called a W-operator if it is both translation

invariant and locally defined in a finite window � . Any W-
operator = can be characterized by a Boolean function I
from 
��
��� to ���J�K�L� through the relation, for every �"!#� ,

�"!D=>�?�C�+(MIN�?�#O HPF&���A.Q�:R
Therefore, choosing a W-operator = is equivalent to choose
its corresponding Boolean function I .

2.2. W-operator design

Designing an operator means choosing an element of a
family of operators to perform a given task. One formaliza-
tion of this idea is as an optimization problem, where the
search space is the family of candidate operators and the
optimization criteria is a measure of the operator quality. In
the commonly adopted formulation, the criteria is based on
a statistical model for the images associated to a measure of
images similarity, the loss function.

Let S and T be two discrete random sets defined on � ,
that is, realizations of S or T are images obtained according
with some probability distribution on 
��,�7� . Let us model
image transformations in a given context by the joint ran-
dom process �US/�%T�� , where the process S represents the in-
put images and T the output images. The process T depends
on the process S according to a conditional distribution.

Given a space of operators V and a loss function W from
��,�7�YXZ
��[�7� to \^] , the error �N_�`a=cb of an operator =8!'V
is the expectation of Wd�
=>�USe�f�gTK� , that is,�N_J`h=cbi.j��` W��
=>�USk�f�gTK�[b . The target operator =ml,npo is the
one of minimum error, that is, �N_J`h=ml,nKo,b+qr�N_J`h=cb , for every=s!'V .

A joint random process �US/�%T�� is jointly stationary in re-
lation to a finite window � , if the probability of seeing a
given shape in the input image through � together with a
given Boolean value in the output image is the same for ev-
ery translation of � , that is, for every �"!#� ,


��%�
t/Fu�<Hv�gwx�,�-�%�y.z
��%�
t/Fu�{�gwx�,|:�%� ,



where t is a realization of S , w is the Boolean function
equivalent to a realization of T , and | is the origin of � .

For making the model usable in practice, from now on
suppose that �US/�%TK� is jointly stationary in relation to the fi-
nite window � . Under this hypothesis, the error of pre-
dicting an image from the observation of another image can
be substituted by the error of predicting a pixel from the
observation of a shape through � and, consequently, the
optimal operator =ml,npo is always a W-operator. Thus, the op-
timization problem can be, equivalently, formulated in the
space of Boolean functions defined on 
��
�Q� , with joint
random processes on �,
��
�Q�f�p����������� and loss functions W
from ���J�K�L�mX{���J�K�L� to \ ] .

In practice, the distributions on �,
��
���f�p���J�K�L�d� are un-
known and should be estimated, which implies in estimat-
ing �N_J` IPb and IPl,nKo itself. When the window is small or
the distribution has a probability mass concentrated some-
where, the estimation is easy. However, this almost never
happens. Usually, we have large windows with non concen-
trated mass distributions, what require prohibitive amount
of training data.

An approach for dealing with the lack of data is con-
straining the search space. The estimated error of an oper-
ator in a constrained space can be decomposed as the ad-
dition of the error increment of the optimal operator (i.e.,
increase in the error of the optimal operator by the reduc-
tion of the search space) and the estimation error in the
constrained space. A constraint is beneficial when the con-
straint estimation error decreases (i.e., in relation to the esti-
mation error in the full space) more than the error increment
of the optimal operator. The known constraints are heuris-
tics proposed by experts.

3. Window design by conditional entropy min-
imization

Information theory has its roots in Claude Shannon’s
works [5] and has been successfully applied in a multitude
of situations. In particular, mutual information is a useful
measure to characterize the stochastic dependence among
discrete random variables [6, 7, 8]. It may be applied to
feature selection problems in order to help identifying good
subspaces to perform pattern recognition [9, 10]. For in-
stance, Lewis [11] explored the mutual information con-
cept for text categorization while Bonnlander and Weigend
used similar ideas for dimensionality reduction in neural
networks [12]. Additional works that may also be of in-
terest include [13, 14]. An important concept related to the
mutual information is the mean conditional entropy, which
is explored in our approach.

3.1. Feature selection: problem formulation

Given a set of training samples } where each sample is
a pair �?~y����� , a function I from ����������� to ���J�K�L� , called a

binary classifier, may be designed.
Feature selection is a procedure to select a subset � of� .8�:�:�����KR�R�R��U�A� such that �"� be a good subspace of � to

design a binary classifier I from ���J�K�L��� � � to ��������� .
The choice of � creates a constraint search space for de-

signing the binary classifier I . � is a good subspace, if
the classifier designed in � from a training sample } has
smaller error than the one designed in the full space from
the same training sample } .

Clearly, there are too many possible subsets � of
�

and
two different aspects involves searching for most suitable
ones: a criterion function and a search algorithm (often
based on heuristics in order to cope with the combinatorial
explosion) [15].

Next section explains how we explore the mean condi-
tional entropy as a criterion function to distinguish between
good and bad feature subsets.

3.2. Mean conditional entropy as criterion func-
tion

Let � be a random variable and 
 be its probability
distribution. The entropy of � is defined as:

� �?�<�A.��z�Hd��� 
��,�-�[�,|��:��
��,�-� (1)

Similar definitions hold for random vectors � . The mo-
tivation for using the entropy as a criterion function for fea-
ture selection is due to its capabilities of measuring the a-
mount of information about labels ( � ) that may be extracted
from the features ( � ). The more informative is � w.r.t. � ,
the smaller is

� �,��� �&� . The basic idea behind this method
is to minimize the conditional entropy of � w.r.t the in-
stances ~+�J� of �"� .

This is illustrated in Figure 1 which shows the proba-
bility 
��,�;� ��.�~+�J��� for some instance ~+�J� . For the hy-
pothetical situation 1(a) the conditional entropy

� �,�;� ~E�J�
�
is small since 
��,�"� �;��.�~+� � � is concentrated around a
peak. In other words, � may be predicted from � � with
good confidence. On the other hand, in the case depicted by
Figure 1(b) the entropy

� �,�;� ~+�J�
� should be large because
it is obviously difficult to predict the value to be assumed
by � when ���4.r~+��� is observed.

In order to define a criterion function, we average the
conditional entropy for all possible instances ~E� � weighted
by the number of occurrences of each instance in the train-
ing set. We have estimated the mean conditional entropy of� given �"� , as shown in Equation 2:

��$` � �,�;� �"�P�[b-. ��� �Y�� ���E�
�� �,�;� �"�J�
�+ @�,| � �5¡A�¡/� � � � �4¢ (2)
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Figure 1. (a) low entropy; (b) high entropy

where
�� �,�"� �"�J�
� is the entropy of the estimated condi-

tional probability
�
��,�"� �"�J�[� , | � is the number occurrences

of �"��� in the training set, ¢ is the total number of train-
ing samples, � � � � is the number of possible instances of� � and ¡ is a weight factor used to model 
��,� � � and
so circumvent problems when some instances of �'�J� are
not observed in the training data. When �'�J� is not ob-
served,

�
��,�"� �"�J�,� is considered uniform and
�
��,�"�J�[�".¡A£��,¡A� � � � �z¢�� . Thus, the mass of non observed shapes is�
� � � � �¥¤D��¡A£��,¡A� � � � �B¢U� , where ¤ is the number of ob-

served shapes. With these considerations, Formula 3 sim-
plifies to

��;` � �,��� �"�P�[b-. �
� � � � �<¤D��¡¡A� � � � �¦¢ ��§� ���E�
�� �,�"� �"� � �+ :�,| � �¦¡A�¡A� � � � �¦¢

(3)
, since

� �%` �JRh¨��%�JRh¨�b?�E.�� .
Usually ¤ is small relatively to � � � � and so��;` � �,��� �"�P�[b is easy to compute. We have adopted ¡4.	�

in our experiments.

3.3. Minimal components determination

Minimizing the mean conditional entropy ��` � �,�;� �&�[b
is equivalent to maximizing the mean mutual information.
Therefore, feature selection may be defined as an optimiza-
tion problem where we search for � � 1 �

such that:

� � 9 � �,�"� �"�A©��/.zª�«,�e�u¬-­®� ��$` � �,�;� �"�P�[b,� (4)

with
� .8�:�:�����KR�R�R��U�A� .

Usually, it is impossible to evaluate all subsets of
�

in
order to calculate the optimum defined by Equation 4. In-
stead, a heuristic search algorithm is applied. There are
many of such algorithms proposed in the literature and the
author should refer to [16] for a comparative review. In this
work we have explored the Sequential Forward Search ap-
proach (SFS), as explained below (we have also explored
the SFFS algorithm, though these results are not shown he-
re). The basic principle of this algorithm is very simple:
given a subspace � of components which is supposed to be
the best set found until that step, look for a variable �;¯ such
that �z°D�p±�� is the best set among �z°²�K«%�@�K�³q¥«^q¥� and� itself. The algorithm stops and returns � when there is
no longer ± such that �8°<�p±�� is better than � . In our ap-
proach, ¨being better than¨ means presenting lower entropy
as defined by Equation 2.

3.4. Minimal window determination

Section 2.2 explained the importance of selecting a suit-
able shape for the window � in the design of a W-operator.
In order to explore the entropy concept described in the pre-
vious section to design � , the window positions that form
its shape are taken as variables that compose a random vec-
tor � . Hence, designing a � can be viewed as a feature se-
lection problem that uses

��;` � �,�$� �"�®�[b as a criterion func-
tion. Figure 2 illustrates this concept by showing two pos-
sible shapes for � . In that figure, the selected variables�"� are indicated as black cells, thus 5 variables have been
selected in 2(a) while 13 have been selected in 2(b).

The estimation of Equation 2 is carried out from a train-
ing set consisting of input-output image pairs.

4. Experimental Results

Dimensionality reduction is intimately related to the so
called U-curve problem where classification error is plotted
against feature vector dimension (for an a priori fixed train-
ing set dimension). This plot leads to a U-shaped curve, im-
plying that an increasing dimension initially improves the
classifier performance. Nevertheless, this process reaches a
minimum after which estimation errors degrades the classi-
fier performance [15]. As it would be expected, the mean
conditional entropy reflects this fact, thus corroborating its
use for feature selection. Controlled experiments with a
priori known distributions have been carried out and Fig-
ure 3 shows the plot of

���` � �,�;� ���P�[b�X dimensionality, for
a fixed amount of training data, illustrating the U-curve ef-
fect for the entropy.

The application of the mean conditional entropy to de-
sign � has been carefully analyzed in several binary im-
age filtering experiments. Salt-and-pepper noise has been
added to binary images and W-operators for filtering the



Figure 2. Windows with (a) 5 variables and (b) 13 variables

Figure 3. Plot of ´µ·¶ ¸'¹»º³¼ ½³¾E¿?À[Á dimensionality

noisy images have been generated using the aforementioned
methodology. Figure 4 presents an example of an original
image and its noisy version.

In the first experiment we have analyzed the mean abso-
lute error (MAE) for the image in Figure 4. We have chosen
a simple image with added noise so that we could control
all parameters in order to analyze MAE as a function of
two variables: (1) the size of the training set used to select

(a) (b)

Figure 4. (a) ideal image; (b) observed image with salt and
pepper noise (10%).

the best window for the W-operator and (2) the size of the
training set used to design the W-operator. Four increasing
sizes have been used: 1/4 of an image, 1/2 of an image, 1
image and 3 images (actually, pairs of images, since the pro-
cess requires pairs of noisy-ideal images). Each experiment
consisted of selecting a window and training the W-operator
with training sets of increasing sizes and then applying to 10
noisy images generated by the same noise model. Table 1
resumes the MAE results ( Â�ÃZ�ÅÄ � � means the minimum
MAE for all 10 tries, while Â�ÃZ�ZÆ�Ç�È indicates the aver-
age from these 10 tries). It is important to note that using
larger training sets to select the window and to train the W-
operator improves the filter performance, as expected.

Table 1. Mean absolute error table for the filtering exper-
iment: É4Ê µPË/ÌÎÍ means the minimum MAE for all 10 tries,
while É4Ê µPÏgÐ%Ñ indicates the average from these 10 tries;
TSSS: training set size used to select the window for the
W-operator; TSSW: training set size used to design the W-
operator.

TSSS
1/4 1/2 1 3 TSSWÉ4Ê µ ËAÌaÍ 0.0056 0.0080 0.0057 0.0099 1/4É5Ê µPÏ�Ð%Ñ 0.0070 0.0087 0.0071 0.0118É4Ê µ ËAÌaÍ 0.0046 0.0048 0.0036 0.0050 1/2É5Ê µPÏ�Ð%Ñ 0.0055 0.0058 0.0052 0.0067É4Ê µ®ËAÌaÍ 0.0036 0.0031 0.0029 0.0040 1É5Ê µPÏ�Ð%Ñ 0.0050 0.0038 0.0036 0.0045É4Ê µ®ËAÌaÍ 0.0038 0.0024 0.0027 0.0020 3É5Ê µPÏ�Ð%Ñ 0.0047 0.0035 0.0035 0.0030

It is important to analyze the selected window for these
experiments, which is illustrated in Figure 5. Each image in
this figure is associated to the series of 10 window selection
runs for a respective training set size. An accumulator array
has been created where each cell corresponds to a variable
in the window. For each run, the selected variables were
incremented in the accumulator array (this is analogous to



the voting scheme of the traditional Hough transform [17]).
The images in Figure 5 show the corresponding accumula-
tor arrays with the gray-level coding the number of votes
each cell received (darker gray-levels correspond to more
voted cells). As it can be noted, the well voted cells form
a window with a cross pattern (i.e. ¨+¨), which is the best
window to design a W-operator for the considered type of
image and noise. Note also that increasing the amount of
training data improves the definition of the correct window.
Besides, the subsets of more voted pixels in an increasing
sequence of sample sizes form a sequence of included sub-
sets. The other filtering experiments (explained below) lead
to selected windows with its shape adapted to each par-
ticular case. This effect is used to define a more suitable
window for designing the W-operator as follows: in the « -
th experiment, the set of Ò � variables, corresponding to the
minimum of the U-shaped mean conditional entropy curve
(Figure 3), is selected. The final number of variables is the
(floor) average of all Ò � , denoted as ÓÒ , i.e. the ÓÒ most voted
variables are selected.

(a) (b)

(c) (d)

Figure 5. Accumulator arrays after 10 iterations. (a) 1/4 se-
lection image; (b) 1/2 selection image; (c) 1 selection image;
(d) 3 selection images

Salt-and-pepper noise is commonly cleaned in image
processing by median filtering and we have compared this
traditional technique to the proposed approach. Table 2
shows the MAE results for two increasing size median fil-
ters. Comparing these results with those presented in Ta-
ble 1 indicates the superior performance our approach.

Some image filtering results are shown in Figures 6, 7
and 8. They show the original image, its noisy version
and results produced by median filter and W-operator. Is

Table 2. MAE results for median filtering
median Ô$X'Ô median ¨³X#¨Â�Ãc�ÅÄ � � 0.0044 0.0080Â�ÃZ�ZÆgÇ�È 0.0059 0.0097

is worth noting that median filtering severely affects thin
patterns in the image, much more than the W-operator
(see Figure 8 where Â�ÃZ�j.Õ��R��L�v¨�Ô for Figure 8(a) andÂ�Ãc�Q.Ö�JR �:�:�L× for Figure 8(b)).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. (a-b) Ideal images; (c-d) images with 10% salt
and pepper noise; (e-f) final result by applying Ø Á Ø median
filter; (g-h) final result obtained by W-operators.



(a)

(b)

Figure 7. (a) ideal image; (b) image with 3% salt and pep-
per noise

5. Concluding Remarks

This paper presents a technique that gives a minimal
window � for the estimation of a W-operator from training
data. For applying this technique, it is necessary that the
conditional probabilities of the pattern recognition problem
studied have mass concentrated in one class, what is a rea-
sonable hypothesis when the problem has a good solution.
Experimental results corroborating our approach have been
presented.

The problem of designing an window for a W-operator
was approached recently by Dougherty et al [18] through
the Coefficient of Determination (COD) concept. The COD
is a kind of relative error of the estimated operator, that is
used to measure the quality of the windows. Thus, it de-
pends on an operator estimation algorithm. This approach
may have two drawbacks: 1 - it does not separate the joint

(a)

(b)

Figure 8. (a) final result by applying Ø Á Ø median filter; (b)
final result by applying our method using 10 iteractions with
1 selection image each to obtain the accumulator array and
1 training image

distribution estimation of the operator estimation; 2 - it may
be very expensive computationally, since the operator de-
sign algorithm should be applied to every window in the
search space. The approach proposed here sees the win-
dow design problem by a different perspective: to choose
the window that gives the best estimation for the joint dis-
tribution under the hypothesis that the pattern recognition
problem has a good solution. Thus, it does not have the
drawbacks of the COD approach.

For the estimation of the mean conditional entropy, it
is required the estimation of the conditional probabilities,
��,��� �&� , and of the prior distribution, 
��,�&� . The condi-
tional probabilities 
��,�"� �&� are estimated based on simple
counting of the observed classifications (i.e., the pixel ob-
servation in the ideal image) of a given shape. The entropy



for � is computed from the estimated distribution
�
��,�"� �<� .

Whenever there is no observations of � , the distribution
��,�"� �&� is considered uniform. Better estimations of 
��,�&�
require a model for representing the distribution of � , but
modeling is very specific for each family of images. In this
paper, we supposed that the probability is distributed uni-
formly outside the range of observed shapes and the per-
centage of the observed shapes probability mass is a param-
eter of the model. In the examples presented, this parameter
was fixed in 1 (i.e. ¡ in Equation 2). An interesting im-
provement of this research would be estimating ¡ from the
training data.

In the next steps of this research, we will also compare
some heuristics to explore the search space and study the
possibility of creating a kind of branch and bound algorithm
for the full search.

It is important to note that, though this paper only pre-
sented binary image filtering experiments, the proposed
technique is general and may be applied in several image
processing problems such as texture segmentation, gray-
level and color image processing, document analysis, etc.
Some initial experiments for gray-level texture segmenta-
tion have lead to encouraging results and further advances
on this will be reported in due time.
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