
Interactive Editing of Multiresolution Meshes

Frutuoso G. M. Silva and Abel J. P. Gomes
IT - Networks and Multimedia Group

Department of Computer Science and Engineering
University of Beira Interior, Portugal

{fsilva,agomes}@di.ubi.pt

Abstract

This paper presents a new approach for interactive edit-
ing of multiresolution meshes. Editing operations (e.g. scal-
ing and rotation) are confined to mesh regions of interest,
called sub-meshes. Also, intuitive deformation operations
(e.g. tapering and twisting) as required for animation sys-
tems can be used as well, allowing the user to have control
on the local deformations of mesh objects. For that, each
sub-mesh is defined interactively by picking up the cells of
its frontier. Alternatively, a sub-mesh can be delimited by
the shortest path of edges that approximates the intersec-
tion between a mesh and a given cutting plane. In order to
speed up editing operations, the mesh is first simplified, the
target sub-mesh is edited, and finally the whole mesh is re-
fined back to its original resolution. This is particularly im-
portant for large meshes.

1. Introduction

Meshes are useful to represent surfaces in computer
graphics and geometric modeling. Interactive editing and
deformation of meshes is very important for a variety of
applications, ranging from mechanical design to animation
and virtual reality. For example, deforming a parametric
surface can be done by moving at least one of its control
points. In case of a mesh surface, we can get a more intu-
itive control on deformations by directly pulling a vertex.
Alternatively, as proposed in this paper, editing operations
can be confined to sub-meshes. These operations are geo-
metric transformations such as, for example, scaling, rota-
tion, tapering and twisting. When applied to a sub-mesh,
they change the shape of a mesh locally without changing
its overall shape, as required for many animation applica-
tions and game technologies.

Is is important to note that these editing operations are
carried out in the context of multiresolution meshes. Edit-
ing a multiresolution mesh involves a three basics steps.

First, we simplify a mesh to a desirable level of detail reduc-
ing the number of cells. Then, the mesh is subdivided into
sub-meshes in such a way that editing operations can be ap-
plied to them. Finally, the resulting mesh is refined back to
its original resolution using the multiresolution scheme.

The structure of the paper is as follows. Section 2 de-
scribes the related work. Section 3 presents the multiresolu-
tion scheme used. Section 4 describes the interactive edit-
ing of sub-meshes. Some results appear in Section 5. At
last, Section 6 draws some conclusions and discusses fu-
ture work.

2. Related Work

In the last few years much research has been done in
polygonal meshes, particularly in the multiresolution area.
Interactive mesh editing is a recent and interesting area of
research due to the increasing use of meshes in computer
graphics.

Lee [15] proposed a new method for interactive editing
of arbitrary meshes. Basically, the user specifies a rectan-
gular editing area that is mapped onto a plane where the
user can edit mesh vertices. This method is constrained by
the fact that the editing area must be homeomorphic to a
2D disk. However this method does not handle vertices di-
rectly. Instead, it manipulates vertex images in the mapping
area in a way similar to control points of a parametric sur-
face.

Kanai et al. [9] presented a new mesh modeling scheme,
called mesh fusion. This scheme is based on the 3D meta-
morphosis that permits combining two parts of different
meshes in a new mesh. Initially, a correspondence is estab-
lished between two meshes by mapping each point of the
source mesh to a point of the target mesh. Then, it generates
a smooth transition by interpolating corresponding points.

Suzuki et al. [25] proposed a method for dragging a part
of a triangular mesh, changing its position and orientation.
This method is based on an adaptive re-meshing with topo-
logical changes.



Lee and Lee [16] developed a snake-based method for
detecting features on a 3D triangular mesh. A geometric
snake is an active contour model that slithers from its ini-
tial position specified by the user to a nearby feature while
minimizing an energy function. Geometric snakes are simi-
lar to snakes used in image processing [3].

Madi and Walton [19] presented a new method for in-
teractive selection and modification of polyhedral 3D ob-
jects. Their work takes advantage from a new data struc-
ture, called TLDS (Triangle Loop Data Structure), and a
vertex pointer table to rapidly access the neighboring cells
of a given vertex, allowing thus fast shape modification op-
erations.

In the context of multiresolution, Zorin et al. [28] pro-
posed the first editing tool for semi-regular meshes. This
tool combines subdivision and smoothing algorithms to edit
interactive multiresolution meshes.

Kobbelt et al. [12] generalized the previous multiresolu-
tion techniques to arbitrary triangle meshes. However, the
multiresolution representation is created off-line. They in-
troduced a fine-to-coarse geometric hierarchy by using the
simple Umbrella algorithm.

Kobbelt et al. [13] extended the multiresolution hierar-
chies to unstructured triangle meshes, having presented a
new method based on Phong-shading to calculate the de-
tail coefficients. Similar approach was proposed by Guskov
et al. [6], where they applied basic signal processing tools
for irregular connectivity triangle meshes. Their subdivision
and pyramid algorithms use well-known mesh simplifica-
tion methods.

Kobbelt et al. [10] presented a new approach for mul-
tiresolution shape deformations, where the detail informa-
tion is implicitly represented by the geometric difference
between independent meshes. They also proposed a dy-
namic mesh representation that adapts the connectivity dur-
ing the deformation operation in order to preserve a pre-
scribed mesh quality. This operation causes distortion that
can be reduced by dynamically restructuring the mesh.

Biermann et al. [2] proposed a set of intuitive cut-and-
paste operations for multiresolution surfaces at interactive
rates. However, it is difficult to generalize this approach
to pasting regions that are not topologically equivalent to
a subset of a plane.

More recently, Botsch and Kobbelt [4] proposed a new
representation for multiresolution models which uses vol-
ume elements enclosed between the different resolution lev-
els to encode the detail information. Keeping these volumes
locally constant during an editing operation of the original
surface leads to a natural behavior of the detail features.

In summary, several schemes for mesh editing and defor-
mation have been proposed in the literature, some of which
use multiresolution representations. However, editing oper-
ations are normally based on direct manipulation of ver-

tices or control points [1, 8, 20]. Other editing techniques
use axial deformation [14], deformation with lattices [18],
and wire deformation [24]. For example, editing operations
used by Kobbelt et al. [12, 13] are based on the definition of
a region on which the user define a handle. When the user
moves or modify the handle, the region surroundings of the
mesh follow according to a constrained energy minimiza-
tion principle.

3. Multiresolution Scheme

A multiresolution scheme usually provides a sequence of
meshes representing a single object at different resolutions.
It allows us to render a mesh at different levels of resolu-
tion, depending on its projective distance to a virtual viewer.
However, unlike discrete LOD (Level-of-Detail) meshes,
only a single mesh is in memory at a time. Simplifying or
refining it gives rise to another mesh. Our multiresolution
scheme was implemented on the AIF data structure [21],
which has been re-designed to support sub-meshes [22].

Simplifying a polygonal mesh Mi consists of generat-
ing another mesh Mi−1 with a less number of cells. The re-
sulting mesh satisfies a given criterion, which is normally
a measure of a maximum admissible error. This error may
be implicitly given by a desired number of cells. There are
some types of algorithms for simplifying a polygonal mesh,
namely the algorithms based in the following operations:
cell decimation, vertex clustering and edge collapse [17].

Collapsing an edge consists of contracting it and its
bounding vertices into a single vertex. In our case, this ver-
tex is the midpoint of the collapsing edge, but it is not
mandatory to do so. Remarkably, this operation is invert-
ible, which enables the construction of a multiresolution
representation. The inverse operation, vertex split, is used
for refining meshes.

Splitting a vertex into two vertices requires we provide
the coordinates of the new vertex, as well as supplemen-
tary information. Normally, this information is stored dur-
ing the edge collapse operation, allowing us to roll back to
the original mesh.

In this paper, we use an edge collapsing operation for
simplifying meshes. Given an edge bounded by the vertices
v1 and v2, its collapse implies that all remaining edges in-
cident at v1 and v2 are locked against further collapsing.
This disables simplifying the mesh region around the col-
lapsing edge again before completing the same simplifica-
tion step over all the mesh. The next simplified mesh Mi−1

is reached when no more collapses are possible, i.e. when
all edges are locked or the remaining edges do not satisfy
the simplification criterion. The simplification criterion is
based on the planarity of the star of faces around the col-
lapsing edge. Each simplification step removes about 45 %



v4

v5

Ci

v6

v3

v2v1 ei

v6

v5

v4

v3

v2
Cf

a) Before collapsing edge. b) After collapsing edge.

Figure 1. Compute of the detail coefficients.

of faces. More details about our algorithm, including the
simplification times, is available in [23].

To generate a fine-to-coarse hierarchy of meshes, we
have to be able to find a coarser mesh Mi−1 from a given a
mesh Mi, as well as a set D of detail coefficients to allow
us to roll back to Mi, i.e. Mi=DMi−1. However, it is not
clear how to use the detail coefficients in the refinement op-
eration that outputs Mi, because we do not intend to come
back to the original mesh, but an edited mesh that preserves
the global shape of the object it represents.

Each step of the refinement operation (vertex split) con-
sists of a topological operation (vertex insertion) and a ge-
ometric operation that places the re-inserted vertices at new
positions. There is a need in repositioning the re-inserted
vertices because editing operations change the position and
shape of the mesh.

Note that the process of simplification-editing-
refinement is more complicated that simplification-
refinement as usual in multiresolution meshes (e.g. Pro-
gressive Meshes [7]), because we have to reconstruct the
shape of a mesh after editing it.

The main difference between our approach and that one
due to Kobbelt et al. [12, 13] lies in the method that com-
putes the new position of the re-inserted vertices. They store
the detail coefficients using an approximation for the re-
moved points {pi}. This approximation is based on a pa-
rameterization of the geometric constellation of each pi. In
fact, they need to solve a system to compute the coefficients
of the parameterization that minimize some blending en-
ergy function. In contrast, our method uses a linear trans-
formation (translation) to compute the new position of the
re-inserted vertices. This linear function is based on the po-
sition of the vertices, before and after the editing process.
The steps of our method to compute the new position of the
re-inserted vertices are the following:

- For each vertex v bounding the collapsing edge, one
computes the centroid of the polygon defined by the
vertices of the star of faces incident at v, excluding the
second vertex of the collapsing edge. For example, the
centroid for v2 in Figure 1 (a) is defined by the ver-
tices v3, v4, v5 and v6. The centroid yields the geomet-
ric average of the position of a vertex. The centroid Ci

of the polygon around v2 is a detail coefficient.

- Conversely, in the vertex split operation of v2, one
computes the centroid Cf of the polygon defined by
the vertices v3, v4, v5, and v6 (Figure 1 (b)). By taking
the initial position centroid Ci and current or final cen-
troid Cf associated to v2, it is possible to define a lin-
ear transformation (translation). Note that, if the mesh
has not been modified around v2, Ci and Cf coincide,
and the transformation is the identity.

- The linear transformation enables us to compute the
position of the vertex to be re-inserted and also update
the position of the splitting vertex.

The position of re-inserted vertices, in the refinement al-
gorithm, is calculated from the current position of the neigh-
boring vertices of the splitting vertex. Thus it is possible
to edit a coarse mesh (or sub-mesh) by propagating the re-
sults of editing operations to other meshes in the hierarchy.
So, with this strategy, we build an interactive editing tool
for multiresolution meshes. On the contrary, the multireso-
lution representation used by Kobbelt et al. [12] needs an
off-line pre-processing step, during which an incremental
mesh decimation algorithm is applied and the detail coeffi-
cients are computed before editing the mesh.

The next section presents some editing operations that
we have been implemented for multiresolution meshes.
Note that other editing techniques can be easily applied to
sub-meshes using this multiresolution scheme.

4. Interactive Sub-mesh Editing

Kobbelt et al. [11] described the general requirements
that a modeling tool should satisfy. They argued that a mod-
eling tool should be intuitive, independent, and interactive.
This means that sub-mesh editing should be easy to han-
dle and independent of the mesh representation.

In this paper, editing a given multiresolution mesh can
be described as sequence of the following steps:

- Mesh simplification. The mesh is simplified to a desir-
able level of detail to reduce the number of cells and
ease the editing process.

- Sub-mesh creation. The mesh is subdivided into sub-
meshes. This facilitates the editing of specific regions
(sub-meshes) of a mesh without changing the rest of
the mesh.

- Sub-mesh editing. Classical editing operations can be
applied to sub-meshes satisfying the user expectations
about shape deformation.

- Mesh refinement. The result of sub-mesh editing oper-
ations is propagated to a finer mesh using the multires-
olution scheme.



a) Sub-mesh frontier. b) The cutting plane.

Figure 2. Definition of a sub-mesh.

4.1. Sub-mesh creation

In geometric design, an object is normally built up by
combining some sub-objects. But, the outcome is almost al-
ways an object with undistinguishable sub-objects from the
data structure point of view. In fact, a geometric data struc-
ture has no means to distinguish between a cow head vertex
and a cow leg vertex. This makes it difficult to edit and ma-
nipulate meshes. Fortunately, sub-meshes facilitate the ma-
nipulation of meshed objects by applying well-known edit-
ing techniques to some regions locally. Besides, it is always
possible to re-edit them again and again.

The creation of a sub-mesh is done by picking up a collar
of edges or faces (i.e. defining it frontier) as shown in Fig-
ure 2 (a). This process is acceptable for small meshes but it
can be difficult for large meshes. Thus, using the multires-
olution scheme we can create a coarse version of the mesh
that enables us to define sub-meshes easily. For example, in
the mesh of the Figure 3 (a), it is difficult to select a col-
lar of faces to delimit a sub-mesh for a bunny ear. But, it is
easy to do that by using a coarser mesh (Figure 3 (b)) be-
cause it has a smaller number of faces.

Alternatively, the shortest path of edges that approxi-
mates the intersection between a cutting plane and a mesh
can be also used to define the sub-mesh frontier, as illus-
trated in Figure 2 (b).

We must be particulary careful about the consistency
of each sub-mesh frontier during the refinement step of a

a) A bunny mesh. b) A simplified bunny mesh.

Figure 3. A finer and a coarser mesh.

a) b)

vj

vj

vi

vi

vi

vi

f2

f2

f1

f1

f2

f1

vj

c) d)

Figure 4. Vertex splitting operation for a ver-
tex (vi) in the frontier of a sub-mesh.

mesh. In fact, when a mesh is refined as a whole, it may
happen that the re-inserted vertex of a splitting vertex in the
frontier of a coarse sub-mesh falls in or out the counterpart
finer sub-mesh, or it remains on its frontier.

Let us consider the splitting vertex vi in the Figure 4
(a). The frontier is represented by thick edges and vertices.
It separates a sub-mesh (continuous edges) from another
(dashed edges). The re-inserted vertex vj will be placed in
the frontier of both sub-meshes (Figure 4 (b)), or inside the
first sub-mesh (Figure 4 (c)), or inside the second sub-mesh
(Figure 4 (d)). Its classification depends on the classifica-
tion of the splitting vertex as well on the classification of
the neighbour vertices.

The new vertex vj belongs to the frontier if it has neigh-
bour vertices belonging to both sub-meshes. Otherwise,
vj belongs to one of the sub-meshes. The classification
proceeds upwards to edges and faces by classifying their
bounding vertices and edges, respectively, in relation to the
frontier in between. Thus, it is possible to define sub-meshes
for any multiresolution level. This fact allows us to define
a sub-mesh in the coarse mesh, in particular when it is not
easy to define it in the fine mesh. For example, Figure 5
shows a coarse sub-mesh and its finer counterpart for the
bunny ear after the refinement process.

a) A coarse sub-mesh. b) and its finer counterpart.

Figure 5. Sub-mesh of the bunny ear.



Figure 6. Propagation of the deformation.

4.2. Smoothing of the frontier collar

Editing operations can deform considerably the frontier
region (i.e. the frontier collar) of a sub-mesh. Consequently,
it is sometimes necessary to smooth this region. There are
two ways to smooth it:

- by propagating the deformation to various levels of
faces (or collar of faces) beyond the sub-mesh frontier; this
is done during every editing operation.

- alternatively, we can use a smooth operator after ev-
ery editing operation.

So, for every editing operation, we have to specify how
many propagation levels (or collars of faces) will be af-
fected by the deformation.

Let n be the number of propagation levels. If n = 0,
no smoothing operation is carried out in deforming a ver-
tex or a sub-mesh. Otherwise, the deformation is smoothed
for n collars of faces (Figure 6). For example, the num-
ber of propagation levels of the vertex deformation of the
bunny depicted in Figure 7 (a) is equal to 4, and it is 2 for
the bunny eyes in Figure 7 (b). The bunny tongue in Fig-
ure 7 (b) was deformed with a propagation level equal to 0.
That is why it looks so sharp. It is up to the user to control
the propagation extension by specifying a priori the propa-
gation level. Anyway, we can always confine the deforma-
tion to a sub-mesh in such a way that nothing happens be-
yond its boundary, independently of the pre-defined propa-
gation level.

To smooth the frontier region of a sub-mesh after an

a) A single vertex. b) A set of vertices.

Figure 7. Deformation of vertices.

a) Smoothed bunny head. b) Smoothed bunny mesh.

Figure 8. Smoothing operation.

editing operation, we use the Laplacian smooth operator
proposed by Taubin in [26]. Taubin used this operator to
smooth a mesh as a whole, but here it is also used to smooth
sub-meshes and their frontier collars. This is illustrated in
Figure 8 (a) for a sub-mesh and in Figure 8 (b) for all the
mesh. This operation is also very useful for smoothing the
mesh (or sub-mesh) when some irregularities appear in the
mesh due to editing operations or the refinement process.

4.3. Sub-mesh editing

In this paper, editing operations can be applied to iso-
lated vertices or to sub-meshes. This can be done by:

- selecting and pulling a set of vertices along a direc-
tion defined by a 3D vector;

- applying geometric transformations to sub-meshes
such as, scaling, rotation, taper and twisting.

Figure 7 (a) shows a local deformation of the bunny
along a line or vector after picking up a single vertex, while
Figure 7 (b) does the same for the set of vertices of its eyes.
A local deformation depends on the distance between a ver-
tex of the original mesh and its image in the deformed mesh,
as well as the number of propagation levels imposed on the
deformation.

Geometric transformations are normally applied to an
object as a whole. But they can be also applied to sub-
meshes; in particular, the scaling and rotation transforma-
tions [5, 27], as well as their progressive or vanishing coun-
terparts introduced by Barr [1], i.e. tapering and twist-
ing transformations. The idea behind Barr’s approach is to
change the transformation against the position at which it
is applied. In this paper, the Barr’s technique has been also
adapted for editing sub-meshes.

The interactive editing of sub-meshes allows us to di-
rectly observe the outcome of a deformation. An geometric
transformation can be undone by applying its inverse. For
example, scaling a sub-mesh with a factor 2.0 can be un-
done by scaling with the factor 0.5.

Scaling. Scaling changes the size of a sub-mesh. It trans-
forms a sub-mesh with reference to the origin. That is, it
changes the position of all vertices in relation to the origin.



a) With propagation. b) Without propagation.

Figure 9. Sub-mesh scaling.

It can carried out with propagation or not. The propagation
approach tends to smooth the transition collar between a
sub-mesh and its neighboring faces. But, if the scaling does
not involve propagation of the deformation, it has to auto-
matically adjust the position of the sub-mesh to its bound-
ary. This is so because the boundary vertices remain at the
same position, while their neighboring vertices in the sub-
mesh move away in relation to its boundary. Consequently,
the scaled sub-mesh has to be adjusted by moving it back
to the plane that approximates its original boundary in the
mesh. This is illustrated in Figure 9, where we can see the
result of scaling the left ear of bunny with (Figure 9 (a)) and
without (Figure 9 (b)) propagation effects.

Tapering. The tapering operation is a kind of progressive
scaling where the scale factor is not the same for all ver-
tices levels. Even so, we can always apply a tapering opera-
tion only for some propagation levels and keeping the scal-
ing factor constant for the remaining levels. If the number
of propagation levels is maximum, the scaling factor is pro-
gressive for each level. This is the usual tapering (applied to
the bunny head in Figure 10 (a)). Otherwise, the scaling fac-
tor is progressive for some propagation levels, after which
it remains constant (applied to the bunny head in (Figure 10
(b) with propagation level of 20).

Rotation. To rotate a sub-mesh, we need to specify both
an axis and an angle of rotation. A 3D vector defines the ro-
tation axis. This vector is initially a normal vector to a ver-
tex previously chosen by the user, and can be adjusted in-

a) Usual tapering. b) Tapering for some levels.

Figure 10. Tapering with/without propagation.

a) Initial sub-mesh. b) The rotation axis (r).

c) Sub-mesh after rotation. d) Final sub-mesh.

Figure 11. Rotating with a restriction plane.

teractively. The rotation may originate some undesirable re-
sults in the transition region of the sub-mesh; i.e. near the
frontier of the sub-mesh. In fact, we must be careful about
rotating a sub-mesh because that may lead to geometric
overlapping and self-intersections of the transition region
itself. There are two ways to overcome this problem. The
first uses a number of propagation levels with varying rota-
tion angles beyond the sub-mesh frontier in order to smooth
the transition region. Alternatively, we can impose some re-
striction on the rotation in order to minimize undesirable de-
formations. For example, the result of rotating the right ear
of the bunny in Figure 11 (b) about the axis r is shown in
Figure 11 (c). The right bunny ear cells nearest to the left
bunny ear tend to squeeze and self-intersect. For prevent-
ing this, we use a plane that approximates the frontier of the
sub-mesh. This plane works as a barrier for undesirable de-
formations. A vertex positioned beyond or behind it cannot
crosses it after rotating a sub-mesh. This mechanism can be
also propagated to the other levels.

Twisting. Axial twisting is a kind of progressive rotation.
In fact, what is done is scaling the rotation angle along var-
ious levels. This operation permits a smooth transition from
a sub-mesh to its host mesh (Figure 12). Similar to taper-
ing operation, if the propagation level is maximum, the ro-
tation angle is different for all vertex levels (or propagation
levels). This is illustrated in Figure 12 (a), where the left
bunny ear has been twisted from bottom to top in relation
to the original mesh. If the propagation level is not maxi-
mum, the rotation angle progressively changes along vari-
ous propagation levels, after which it remains constant. This
is illustrated in Figure 12 (b), where the left bunny ear has
been partially twisted along 10 propagation levels.



a) Usual twisting. b) Twisting for some levels.

Figure 12. Twisting with/without propagation.

5. Results

All the mesh models used in this paper were edited on
a PC equipped with 1.6GHz Intel Pentium 4, running Win-
dows 2000 OS, 768MB of memory and a GeForce 4 graph-
ics card with 64MB. They include those models shown
in the Figures 13 and 14. In Figure 13, the Venus nose
was changed by pulling away one of it vertices, the ele-
phant trunk and tusks were scaled and rotated, and the
dragon head was tapered. This suggests that it is not diffi-
cult to change the shape of an object locally, as required for
many animation applications and game technologies, with-
out changing its overall shape. Note that the dragon mesh
in Figure 13 has more than 2.5 million of cells (i.e. vertices,
edges and faces).

Figure 14 shows an editing process for a multiresolu-
tion dinosaur mesh. This sequence of pictures shows: (a) the
original mesh; (b) the coarse mesh created by applying our
simplification algorithm; (c)(d) the coarse mesh subdivided
in sub-meshes; (e) the sub-meshes edited through some op-
erations (head, arms and tail were scaled, tapered and ro-
tated); and finally (f) the resulting refined mesh. This is the
usual editing procedure of a mesh (or a sub-mesh) in our
system. First the mesh is simplified to the desirable level
of detail, after which the user defines the sub-meshes that
he/she wants to edit. Then the sub-meshes can be edited
by applying the necessary transformations, and finally the
mesh is refined and smoothed if necessary.

6. Conclusions and Future Work

This paper has presented a new approach for interac-
tive editing of multiresolution meshes using sub-meshes.
In order to edit large meshes, initially the mesh is simpli-
fied to a desirable level of detail. Then, after subdividing a
mesh into sub-meshes interactively, each sub-mesh can be
edited through geometric transformations (e.g. scaling, ro-
tation, tapering, twisting and smoothing). Finally, the over-
all mesh can be refined back. Note that these editing opera-
tions are confined to sub-meshes. So, we are able to deform

Editing the Venus nose.

Editing the elephant trunk and tusks.

Editing the dragon head.

Figure 13. Editing of several models.

a sub-mesh without changing the mesh cells beyond it. Be-
sides, it is always possible edit them again and again.

This multiresolution scheme is supported by the mod-
ified AIF data structure, which is capable of coping with
editing operations at interactive rates, because its perfor-
mance in retrieving topological information holds indepen-
dently of the mesh size.

In the future we expect to implement more editing oper-
ations. For example, the deformation with lattices for sub-
meshes. Other issue to approach in the future is to develop
mechanisms for automatically detecting and preventing dis-
tortions during editing operations.

Acknowledgements

The mesh models are courtesy of Cyberware, Stan-
ford University, Avalon, 3D Cafe, and Polygon Technology
GmbH.

References

[1] A. H. Barr. Global and local deformations of solid primi-
tives. In Proceedings of Siggraph, pages 21–30, 1984.



a) Original dinosaur mesh. b) A coarse version.

c) Subdivision of the mesh. d) Sub-meshes created.

e) Sub-meshes edited. f) Final refined mesh.

Figure 14. Editing of a multiresolution mesh.

[2] H. Biermann, I. M. Martin, D. Zorin, and F. Bernardini. Cut-
and-paste editing of multiresolution surfaces. ACM Transac-
tions on Graphics, 21(3):312–321, 2002.

[3] A. Blake and M. Isard. Active Contours. Springer-Verlag,
1999.

[4] M. Botsch and L. Kobbelt. Multiresolution surface repre-
sentation based on displacement volumes. In Proceedings of
Eurographics, pages 483–491, 2003.

[5] J. Foley, A. V. Dam, and J. H. S. Feiner. Computer Graphics:
Principles and Pratices. Addison-Wesley Publishing Com-
pany, 1996.

[6] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution
signal processing for meshes. In Proceedings of Siggraph,
pages 325–334, 1999.

[7] H. Hoppe. Progressive meshes. In Proceeding of Siggraph,
pages 99–108, 1996.

[8] W. Hsu, J. Hughes, and H. Kaufman. Direct manipulation
of free-form deformations. Computer Graphics, 26(2):177–
184, 1992.

[9] T. Kanai, H. Suzuki, J. Mitani, and F. Kimura. Interac-
tive mesh fusion based on local 3d metamorphosis. In I. S.
MacKenzie and J. Stewart, editors, Proceedings of Graph-
ics Interface, pages 148–156, 1999.

[10] L. Kobbelt, T. Bareuther, and H.-P. Seidel. Multiresolution
shape deformations for meshes with dynamic vertex connec-

tivity. In Proceeding of Eurographics, volume 19(3), page
C249, 2000.

[11] L. Kobbelt, S. Bischoff, M. Botsch, K. Kahler, C. Rossl,
R. Schneider, and J. Vorsatz. Geometric modeling based on
polygonal meshes. In Eurographics Tutorial, 2000.

[12] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. In-
teractive multi-resolution modeling on arbitrary meshes. In
Proceedings of Siggraph, volume 32, pages 105–114, 1998.

[13] L. Kobbelt, J. Vorsatz, and H.-P. Seidel. Multiresolution hier-
archies on unstructured triangle meshes. Computational Ge-
ometry: Theory and Applications, 14, 1999.

[14] F. Lazarus, S. Coquillart, and P. Jancene. Interactive axial
deformations. Technical report, RR-1891, Genova, 1993.

[15] S. Lee. Interactive multiresolution editing of arbitrary
meshes. In Eurographics, Computer Graphics Forum, vol-
ume 18(3), pages 73–92, 1999.

[16] Y. Lee and S. Lee. Geometric snakes for triangular meshes.
In Proceedings of Eurographics, volume 21(3), 2002.

[17] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson,
and R. Huebner. Level Of Detail For 3D Graphics. Morgan
Kaufmann, 2002.

[18] R. MacCracken and K. I. Joy. Free-form deformations with
lattices of arbitrary topology. In Proceedings of Siggraph,
pages 181–188. ACM Press, 1996.

[19] M. Madi and D. Walton. Interactive selection and modifica-
tion of polyhedral 3d objects. In Proceedings of the Inter-
national Conference on Computer Vision and Graphics, vol-
ume 2, pages 510–517, Poland, 2002.

[20] T. W. Sederberg and S. R. Parry. Free-form deformation of
solid geometric models. In Proceedings of Siggraph, vol-
ume 20, pages 151–160, 1986.

[21] F. Silva and A. Gomes. AIF - a data structure for polygonal
meshes. In Proceedings of Computational Science and Its
Applications (ICCSA 03), pages 478–487. LNCS Vol. 2669,
part III, V. Kumar, M. Gravilova, C. Tan and P. L’Ecuyer
(eds.), Springer-Verlag, 2003.

[22] F. Silva and A. Gomes. Interactive editing of arbitrary sub-
meshes. In Proceedings of Computer Graphice International
(CGI 03), pages 218–221. IEEE Computer Society Press,
2003.

[23] F. Silva and A. Gomes. Normal-based simplification algo-
rithm for meshes. In Proceedings of Theory and Practice of
Computer Graphics (TPCG 04), pages 211–218. IEEE Com-
puter Society Press, 2004.

[24] K. Singh and E. Fiume. Wires: A geometric deformation
technique. In Proceedings of Siggraph, pages 405–414,
1998.

[25] H. Suzuki, Y. Sakurai, T. Kanai, and F. Kimura. Interactive
mesh dragging with an adaptive remeshing technique. The
Visual Computer, 16(3/4):159–176, 2000.

[26] G. Taubin. A signal processing approach to fair sur-
face design. Computer Graphics, 29(Annual Conference
Series):351–358, 1995.

[27] A. Watt and M. Watt. Advanced Animation and Rendering
Techniques - Theory and Practice. Addison-Wesley, 1992.

[28] D. Zorin, P. Schröder, and W. Sweldens. Interactive mul-
tiresolution mesh editing. In Proceedings of Siggraph, pages
259–268, 1997.


