Efficient Edgebreaker for surfaces of arbitrary topology
THOMAS LEWINER!2, HELIO LOPES, JAREK ROSSIGNAC® AND ANTONIO WILSON VIEIRALA

!PUC-Rio — Departamento de Matétita — Rio de Janeiro — Brazil
2INRIA — Geonetrica Project — Sophia Antipolis — France
3GATECH — GVU Center — Atlanta — USA
4UNIMONTES — CCET — Montes Claros — Brazil

Abstract. The typical surfaces models handled by contemporary Computer Graphics applications have millions

of triangles and numerous connected component, handles and boundaries. Edgebreaker and Spirale Reversi are
examples of efficient schemes to compress and decompress their connectivity. A surprisingly simple linear-time
implementation has been proposed for triangulated surfaces homeomorphic to a sphere and was subsequently
extended to surfaces with handles. Here, we further extend its scope to surfaces with multiple components, handles,
and multiple boundaries. The result is a simple and efficient compression/decompression solution for the broad
class of orientable manifold surfaces.
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1 Introduction approach[1Q] computes a uniquely defined traversal for a
given mesh, leading to asymptotically optimal results for
the worst case. However, it is restricted to meshes without
boundary and without handle.

The Spirale Reversi algorithr] enhanced the Edge-

The Edgebreaker scheni®] encodes the connectivity of
any manifold triangle mesh homeomorphic to a sphere with
a guaranteed worst case code of 1.83 bits per triai@jle [

The Spirale Reversi algorithriB][enhanced the Edgebreaker breaker original decompressidf] and the Wrap&Zip de-

decompression worst—case complexity frém?) to O(n). : ..
P plexity ) (n) compression13]. It reconstructs the connectivity encoded

But the true value of Edgebreaker and Spirale Reversi lies. = .
in the efficiency and in the simplicity of their implemen- in theclersstring in only one pass, and performing the same

tations [, which is very concise. They can be simply tests as the compressor. However, it needs to read itin are-

. . verse way.
implemented on a reduced topological data structure (the . .
Corner—Table) which only uses two arrays of integers to i dTget Edf%e_bret?ker algo?thmf has bgte;]nhpre(\j/;oggly ex
represent the connectivity of the mesh. This simple algo- ended to efficiently support surfaces with handlesi |

rithm has been extended to deal with surfaces with handles'mrOdUCIng thenandlestream to store in an efficient way

in [8]. Because of its simplicity, Edgebreaker is viewed as two edges for each handle on the surface. Those edges

the emerging standard for 3D compressid][and may together with theclers string are sufficient to recover all
provide an alternative for the current MPEG—4 standard the surface connectivity. This extension doesn’t add a new

S . symbol to the Edgebreaker origiraérsset.
which is based on the Topological Surgery approd [ / Surfaces wit?] boundary a?e usually encoded by clos-

ing each boundary curve, using a dummy vertex to maintain
Prior Works.  There are many different compression schenibe triangular structured] [14]. This is a very simple but
for triangular meshes. In order to encode efficiently their expensive solution: first, it requires encoding each bound-
geometry, the best known methods traverse the cells of theary edge with a useless triangle; second, it requires extra
mesh, and differ in the way they encode this traversal. Thecode to localize the dummy vertex; and third, it gives bad
Edgebreaker scheme has been enhanced and adapted froggometrical predictors on the boundary. The original Edge-
the Topological Surgeryll| to yield an efficient but ini-  breaker encodes boundary curves with an extra symhol
tially restricted algorithm[I4], and subsequently extended and writing the length of each boundary curve. This allows
to more general meshes, [7]. Edgebreaker encodes the a better geometrical prediction, but gives a complex imple-
connectivity of the mesh by producing tleers string of mentation with an implicit representation of the topology,
symbols taken from the set C,L,E,R,S. A different approach and it requires extra codes which harm the coding of the
encodes the connectivity of the mesh by the valence of itsclers string. The scheme introduced here does not require
vertices [L7, [1]. Valence-based compression approachesmore symbol than the original Edgebreaker for closed sur-
are very efficient, especially for regular meshes and it canfaces, and encode each boundary with only two integers.
also be extended to general polygonal meshes. Another



Contributions.  In this paper, we provide efficient and ro- open disks removed. The numigé8&) is called thegenus
bust extensions of the Edgebreaker compression and of thef S, and b(S) its number of boundary curves. The Eu-
associated Spirale Reversi decompression schemes for suter characteristicy(S) of S is equal tox(S) = |7(S)| —
faces with an arbitrary topology. This new approach is [E(S)| + |[V(S)| =2 — 2 g(S) — b(S).

based on a new semantics, which enables us to use the

Edgebreaker 5—symbotders string to encode the connec-

tivity of an orientable surface, possibly having several con-
nected components, handles or boundary curves. To do
so, we exploit a topological analogy between handles and 9 > =

boundaries, and capitalize on the simplicity with which edges

may be identified in théopologystream. Moreover, the re-
sulting compression format represents separately the topol-
Figure 1:Handlebody decomposition of a torigj.[

ogy, the local connectivity and the geometry of the surface,
leading to a simple and robust implementation.

Paper outline. Sectiorintroduces some basic concepts.
Section3 describes the Corner-Table data structure. Sec-
tiondlestablishes some notation and presents important prop-
erties that connect the surface duality to the Edgebreaker
algorithm. Sectioft] presents the algorithm overview. Sec-
tionsd and(Z introduce, respectively, the enhanced Edge- Each torus of the connected sum above is composed by
breaker compression and the extendgd Splrale'ReverS| defo 1-handles, as shown on Fig{@eThis decomposition
compression algorithms. The theoretical analysis of the al'can be generalized using the Handlebody theBFySince
gorithm is presented in Secti@h Finally, Sectiorf@ shows

it d . ith f Edaebreaker al this concept of handle contains a complete representation of
Zgrr?tﬁl;esu S and comparison with former EAgebreaker al-y, ., nqaries, it will play a fundamental role in our algorithm.

. 3 Corner-Table Data Structure
2 Basic concepts

The Corner-Table is a very concise data structure for tri-
angular meshes. It uses the conceptaierto represent
he association of a triangle with one of its bounding ver-
tices, or equivalently the association of a triangle with its
bounding edge opposite to that corner: it may be viewed as
a compact version of the half-edge representation of trian-
gular meshes.

We will consider an orientable triangulated combinatorial
surface. This is the general case of manifold triangle meshe
embedded ifR3, but we are only concerned with their con-
nectivity, e.g., the triangle/vertex incidence and the triangle/-
triangle adjacency information.

Definition 1 (Combinatorial surface) A triangle meshS
is a combinatorial surface if:

— Every edge ir§ is bounding either one or two trian-
gles.

— The link of a vertex is is homeomorphic either to an
interval or to a circle.

The set of edges ¥ incident to only one triangle

is called theboundaryof S, denoted byd(S). A bound- Figure 2:Corner notations.

ary curveof a surface is a maximal connected set of adja-

cent edges of the boundary. Each boundary curve is closed.  In this data structure, the corners, the vertices and the

From now on, we denote b¥(S), £(S) andV(S) the set  triangles are indexed by non—negative integers. Each trian-

of triangles, edges and vertices®f gle is represented by 3 consecutive corners that define its
orientation. For example, corners 0, 1 and 2 correspond to

Theorem 1 (Surface classification) [[2] Any compact ori- the first triangle; the corners 3, 4 and 5 correspond to the

ented connected surfac® is homeomorphic to a sphere second triangle and so on... Consequently, a corner with

(9(S) = 0) or a connected sum af(S) tori (¢(S) > 0), indexc is associated with the triangle of index = ¢ + 3.

in both cases with possibly some finite numiget) > 0 of Assuming a counter—clockwise orientation, for each corner



c of a trianglec.t, the next ¢.n) and previousd.p) corners

of c.t are obtained by the use of the following expressions:
en =3-ct+ (c+1)mod3, andep = 3-ct+ (c+

2) mod 3.

The Corner—Table data structure represents the geome-
try of a surfaceS by the association of each cornrewith its
geometrical vertex indexv. The edge—adjacency between
the neighboring triangles & is represented by associating
with each corner its opposite cornet.o, which has the
same opposite geometrical edge (formally.v = c.o.p.v Figure 4:(left): the primal graph and (right): the dual graph
andc.o.0 = ¢, see Figur@). This information is stored in  of a triangulated sphere.
two integer arrays, called the V and O tables. For conve-
nience, we define the left corner obsc.l = c.p.o and the
right corner ofc asc.r = c.n.o.

Corner Otable V table

0 3 0
8 1 10 1
2 7 2
1 3 0 3 . . . i

4 6 5 Figure 5: (left): a dual spanning tre®(S) extracted from

5 11 1 the dual graph of Figuié(b} (right): the primal remainder
I'(S) of ©(S), which is a subgraph of the primal graph of

6 4 0 i =V

0 ) 3 Figured(al

8 9 1
face duality. They extract a spanning ti®@éS) of the dual

190 ? g graph ofS (see Figur§&(a) by traversing and encoding the

11 5 0 triangles ofS in a spiral way. This encoding describes si-

multaneously the primal remainder (see Fidb(B)): The
primal remainderis the maximal subgraph of the primal

Figure 3: A tetrahedron with its corners and its Corner— graph ofs which does not interse@(S), in other words:

Table.
Definition 2 (primal remainder) Given a connected sur-
To illustrate the data structure tables consider the tetra-faceS and a spanning tre®(S) of the dual graph o, the
hedron of Figur@ During the decompression, the corners primal remaindef (S) is the simple graph whose nodes are
will be enumerated in the order they were visited furing the the vertices’(S) and whose lines are the edgesivhich
compression. are not in©(S).

_ The following theorem relates the Euler characteristic
4 Surface Duality and the Edgebreaker of the surface to the connectivity of the primal remainder.

In this section we prr(])wde_”sgme n(ﬁatlodns an_g mtro(;juce Ilm- Theorem 2 For any connected surfac®and any dual span-
portant properties that will be used to describe and analyzenq tree@(sS), the primal remainde (S) is a connected

the algorithm. : :
_ _ _ graph with|V(S)| nodes andV(S)| — x(S) + 1 lines. In
The primal graphof a surfaceS is the swpple graph particular, I'(S) is a tree if and only ifS is homeomorphic
whose nodes are the verticeéS) and whose lines are the ;- sphere.

edge<£ (S) (e.g., aline connect adjacent vertices). Thal

graphof a surfaceS is the graph whose nodes are the trian- Proof. ClearlyI'(S) is connected, although the formal proof

gles7 (S) and whose lines represent the edgés) (e.g., can involve basic topological techniques as thickenBg [

a line connect adjacent triangles). For example, Fig{ag or cell collapse (the fundamental group is unchanged by re-

and4(b)represents the primal and the dual graph of a trian- moving a dual spanning tre@]). By definition, ©(S) is

gulated sphere. a tree with|7 (S)| nodes, hence, it hdd (S)| — 1 lines.
Edgebreaker algorithms encode the dual and primal Also by definition,I'(S) has|V(S)| nodes, and the num-

graphs of a triangular mesh by an efficient use of sur-  ber of lines of©(S) andT'(S) together iSE(S)| . Hence,



the number of lines of(S) is |E(S)| — (|7(S)|—1) =
[V(S)| — x(8) + 1. Then,T'(S) is a tree if and only if

its number of nodes equals its number of lines plus one:
V(S)| = (JV(S)| — x(S) + 1) + 1. That s, iff the Euler
characteristic ofS is 2, e.g., iffS is a sphere (see Theo-
rem[). [ |

Figure 6: (left): a primal remainder on a torus (genus 1):

the topmost and bottommost horizontal edges are identified,

v Left Right
C | notvisited | not visited | not visited
L visited visited not visited
R visited not visited |  visited
E visited visited visited
S visited not visited | not visited
v Y X
/X L y
1> f f
Y Y Y
J .
g A £
NV )

Figure 7:The Edgebreaker encoding.

To have a concise implementation of the Edgebreaker,

and so do the leftmost and rightmost ones. (right) a primal the compression is done by the use of a recursive procedure

remainder on an annulus (two boundary curves).

that traverses the surface. The recursion starts only at trian-

gles that are of typ& and compresses the branch adjacent

For example, in the case of a sphere, the primal re- to the right edge of such a triangle. When the correspond-

mainder is a tree (see FigUséb)). For a mesh with genus
one or two boundaries, the primal remainder is a graph with
two cycles (see Figurg&a)andg(b)). We can deduce the
following theorem:

Theorem 3 For every spanning tre@(S) extracted from
I'(S), the number of edges that areli{S) but not in®(S)
willbe 2 - g(S) + b(S).

Proof. We know thatl'(S) has|V(S)| nodes. ¥(S) is a
spanning tree of(S), then it also ha$)(S)| nodes and
[V(S)| — 1 lines. Therefore, the number of lines BfS)
that are notint' (S) is (|V(S)|—x(S)+1)—(|V(S)|—-1) =
2—x(S8)=2-g(S) +b(S). [ ]

5 Algorithm overview

Original Edgebreaker The Edgebreaker algorithm tra-
verses spirally the dual graph of a surface in order to gen-

erate a spanning tree. At each step, a decision is made to

move from a triangl&” to an adjacent triangl&’. To per-
form this decision, all visited triangles and their incident
vertices are marked. Let Left and Right denote the other
two triangles that are incident upon X. Lete the vertex
common toX, Left, and Right. The edge opposedutads
called thegate Five situations are distinguished according
to Figurelll Those cases are denoted by the let@rs,

E, R andS. The arrow indicates the direction to the next
triangle. Previously visited triangles are filled in gray.

ing E triangle is reached, the branch traversal is complete
and the routine returns from the recursion to pursue the left
branch.

The original Edgebreaker does not handle surfaces with
genus, and gives two options to compress the boundary
curves. The first onég] consists in closing each bound-
ary curve by adding a dummy vertex, and joining it to the
boundary vertices to form dummy triangles. The mesh does
not have anymore boundary, and can be compressed using
the algorithm described above. This is a very simple but
expensive solution: first, it requires encoding each bound-
ary edge a useless triangle; second, it requires extra code to
localize the dummy vertex; and third, it gives bad geomet-
rical predictors on the boundary. The second optibd] [
encodes the first triangle that reaches the boundary with an
extra symboM and sends the length of the boundary curve.
At this step of the compression, encoding and removing this
M triangle joins the boundary curve reached with the exter-
nal boundary curve, and the resulting mesh has one less
boundary curve.

Handles When the surface has genug(S) > 0, the
primal remainded’(S) is not a tree anymore (see Theo-
rem[?). For a surface without boundaty(S) has|V(S)| —
X(S)+1 = V&) —1+2-¢g(S) lines: there are -

g(S) lines in exces<d]. These edges have been simply de-
tected and efficiently encoded [8][ preserving the original
Edgebreaker compression scheme. When the Edgebreaker
traversing procedure finds &triangle, the recursion starts



(a) Reaching firs§ triangle (b) Reaching seconfitriangle (c) The lower—rightE triangle (d) The upper-lefE triangle
closes the handle. closes the handle.

Figure 8:Coding of a torus: the creation of tw@ndleS triangles: the first and the secoBdymbols.

and two situations are now distinguished. If the Left tri- curve is encoded as above. All the vertices of ithter-
angle has not been visited during the right branch traversalnal boundary are marked as visited. Consequently, the first
(case of norma$), we move to the left neighbor and con- triangle to reach a boundary curve will always beSaii-
tinue our encoding of the left branch. Otherwise (case of angle and we encode the opposite corners of its left edge in
a handleS) the pair of opposite corners separated by the thetopologystream. According to Theorelf at the end of

left edge of theS triangle are sent to a stream or a file the compressiort - ¢(S) + b(S) — 1 edges will be stored
calledtopologyand the routine returns. These corners will in this separate stream.

be matched during decompression to reconstruct the han-

dle. The encounter of af that does not match ghagain )

terminates the compression process of the connected com® Compression

ponent. The compression processes successively each surface com-
ponent. When the component has a boundary, the compres-
Boundaries The work presented here extends these prior sion encodes explicitly the first triangle, and the boundary
results to surfaces with handles, multiple boundary curvescontaining an edge of this first triangle will be chosen as
and multiple components. The former techniques for en- the external one. The vertices of this external boundary are
coding boundaries and holes introduced(1d][are more encoded first during the component compression.
costly, since they are using extra symbols or encoding more The compression of a component follows a dual span-
elements. In particular, they do not guarantee anymore thening tree©(S). A stack stores th& triangles, e.g. the
worst—case 1.83 bit per symbol. To improve the concise- branchings oB(S), above the node being processed. After
ness of our codification, we distinguish two distinct cases: an S triangle has been pushed, the algorithm compresses
a connected component with one boundary curve, and withfirst the branch adjacent to the right edge of Shérian-
more than one boundary curve. gle, until the corresponding triangle is reached. At this
Consider first a surface componehtvith genusg(S) point, two situations are distinguished. If the Left triangle
and only one boundary curve. We will close this component has not been visited during the right branch traversal (case
by adding a face incident to each boundary edg®g, aflled normalS), we move to the left neighbor (popping the stack)
theinfinite face The resulted surfacé* has no boundary, and continue our encoding of the left branch until we reach
and the same genus, i.e(S1) = ¢(S). We could almost  anotherE. Otherwise, the triangle will be calledrandle
use the extended Edgebreaker algorithmi8)ftp encode S or boundaryS depending whether the triangle touches
ST. However, the infinity face is not a triangle. In the same an unvisited boundary or not. The left edge ohandle
way that the first triangle of the Edgebreaker classical algo- or boundaryS is encoded in théopologystream, and the
rithm is not encoded, we will not encode the infinity face, stack is popped. When the stack is empty, the connected

and start the compression from this one (see Fifad. component has been entirely compressed.
As in the original Edgebreaker algorithm, we encode first To illustrate the algorithm, consider firstly the surface

all its vertices, e.g., all the vertices belonging to the bound- given by the model for a triangulated torus as shown on
ary of S. Therefore, we only need to know if the surface Figure[B Identifying the edges on the opposite sides of
component has a boundary or not. the rectangle, one can build a simplicial complexHA

Now, consider a surface component with more than whose polyhedron is homeomorphic to the torus. Fi@ire
one boundary curve. We distinguish arbitrarily one of them illustrate the labels of all triangles defined by the Edge-
as theexternalboundary, and call the othergernalbound- breaker compression algorithm. At the end of the algo-
ary curves (holes) (see Figu®. The external boundary rithm, theclersstring obtained for the torus surfaceGE-



normalS ones by their left corner, which has been assigned
while reading theopologystream. We do not consider han-
dle Ssymbols as open parentheses, as they do not match an
E symbol. We notice here the power of Edgebreaker that
explicitly labels each corner of the mesh by the position of
its symbol in theclersstring.

After this preprocessing step, we read thers string
backwards, as Spirale Reversi does. For each symbol, we
decode the adjacency of the corresponding gate. When a

(a) The first triangle is cho- (b) An unvisited boundary boundaryS symbol is read when a new component with
sen adjacent to a boundary. is reached: the correspond- boundary is processed, the geometry corresponding bound-
The vertices of the central  ing Striangle is aboundary ary curve is read (backwards) from thertexstream. When
infinite face are encoded. Striangle.

aC symbol is read, we close the star of the active cotner
Figure 9:Coding of an annulus: initialization and creation and assign the corresponding corners to a new decoded ver-
of boundaryS triangles. tex. At the end of this procedure, the connectivity and the
geometry of the mesh is entirely restored in linear time.

CCRCSCRSSRLSEEE As one can observe, in this ex-
ample, there are four triangles labeled w&hin the string
sequence, the last twd are normal, since their right and From the graph theory point of view, the connectivity of a
left branches are traversed in the compression algorithm.surfaceS is completely described by the dual ti@éS) and
On the other hand, the left branches of the first and of the the primal remaindelr(S), and the way they are interlaced.
secondStriangles are not traversed since their left adjacent We will justify here why the algorithm presented here can
triangle have been visited during their right branch traver- reconstruct those graphs, and consequently, the surface con-
sal. Therefore, the two opposite corners of each left edgenectivity.
drawn in red are encoded separately intthgologystream. The strategy of the original Edgebreak@d] builds

On Figurdd, the onlyhandleStriangle is the first tri- ~ simultaneously a spanning tré¥S) on the dual graph and
angle with a vertex on the internal boundary that we en- implicitly encodes a spanning tre(S) on the primal re-
counter during the traversal. As said before, there2are ~ mainderI’'(S). Branches or©(S) are created with sym-
g(S) + b(S) — 1 suchhandleS triangles for each surface  bol S, and ended by symb@ that corresponds to a leaf in
component with genug(S) andb(S) boundary curves. ©(S). The other symbolsG, L andR) create the internal
nodes of the dual tre@®(S).

Each symboC also creates the nodes of the tdegS).
The left edges of alC triangles are lines 0¥ (S). If the sur-
The decompression procedure proposed here is an extengce component being encoded has no boundary, two edges
sion of the Spirale Reversi algorithrb][ which decodes  of the starting triangle also belongdd(S) [8]. The lines of
theclersstring in a one—pass reverse order, allowing the de- e primal remaindeF (S) that are not on’(S) are stored
compression to perform exactly the same tests as the comjp, thetopologystream.
pression. First, we read thepologystream, extracting the Concluding, theclersstream encodes expliciti®(S)
number of vertices, triangles and components with bound-and implicitly ¥ (S). And by the use of theopologystream
ary. Then, we assign opposite vertices over the handles reag,e explicitly encoded the edges that are missing to recon-
from thetopologystream. Then, we parse tersstring  stryctI'(S). As those graphs are encoded simultaneously,

for reverse reading and for the component detection. We ac+pe way©(S) andI'(S) are interlaced is obvious and the
tually process backwards thders string, and hence parse connectivity ofS can be reconstructed.

it only once, but we will expose two passes for the sake of
clarity. The symbolsS andE acts as parentheses, and each
new component opens a parentheses. When all the openeg Results

parentheses are closed (at a symbpla new component  We encoded the Edgebreaker symbols using a range en-
begins on the next symbol. When the number of compo- coder B, [11], which is a one—pass approximation of the
nents exceeds the number of components with boundaryentropy coder. This gives very good results for big meshes
read in theopologystream, we add an extFssymbol atthe  (on the contrary of the ‘sphere’ model of Taflleor meshes
beginning of the component, because the first triangle of awith high auto—similarity (like the model ‘cathedral’ of Ta-
component without boundary is not explicitly encoded. The ble[l).

handleandboundaryStriangles are distinguished from the Our experimental results are recorded on Tdbénd

8 Theoretical Analysis

7 Decompression



Model [V(S)| |7(S)|] | Dum Ori Ours | Ori/Ours Dum/Ours

sphere 1848 926| 3.39 339 345 0.98 0.98
violin 1508 1498| 3.16 221 225 0.98 1.41
pig 3560 1843| 326 324 313 1.03 1.04
rose 3576 2346| 3.37 295 264 1.12 1.28
cathedral| 1434 2868| 2.25 1.00 0.19 5.27 11.86
blech 7938 4100 3.25 3.18 240 1.33 1.35
mask 8 288 4291 319 312 193 1.62 1.65
skull 22104 10952 3.51 351 3.30 1.06 1.06
bunny 29783 15000f 3.36 3.34 1.27 2.62 2.64
terrain 32768 16641 3.03 3.00 0.40 7.43 7.51
david 47753 24085 345 3.85 3.07 1.25 1.12
gargoyle | 59940 30059| 3.28 3.27 211 1.55 1.55

Table 1:Comparative results on different models (drawn on Fiffilje ‘Dum’ stands for the dummy vertex method to en-

code meshes with boundari@&},[and ‘Ori’ stands for the original Edgebreakéd], and ‘Ours’ for the algorithm introduced

here. The size of the compressed symbols (columns ‘Dum’, ‘Ori’ and ‘Ours’) is expressed in bit per vertex. Our algorithm
has a compression ratio in weighted average 2.5 better than the other two. The ‘sphere’ model has the same encoding in a
the above algorithms, but the range coder used has a lower performance since there are few symbols to encode. The ‘cathe
dral’ model is the output of an architecture modeling program, which is almost unstructured: all the connected components
are pairs of triangles.

FigurelId We compared with the original Edgebreaker im- encoding. The decompression scheme is an extension of
plementation with the Huffman encoding @]] and our Spirale Reversi, which ensures a linear complexity and a
encoding with a simple arithmetic coder. Our experimen- one—pass decompression complexity. This guarantees less
tal results are always better than the original Edgebreakerthan 2 bits per triangle connectivity compression, with a
mainly due to the range encoder. However, the entropy of 2 - log, (|7 (S)|) bits over—cost for each half handle and for
our codes is always better than the other implementationseach boundary curve, and bests previous Edgebreaker’s en-

of Edgebreaker (see Figyi®(b). coding for surfaces with boundaries. Moreover, the use of a
range encoder significantly improves the final compression
/ results.
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(a) sphere (b) violin (135 comps, 138
bdries)
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genus 1)

(e) cathedral (717 comps)

(i) bunny (5 bdries) (j) terrain (k) david () gargoyle

Figure 11:Some of the models used for the experiments, with the beginning of the dual spanning tree generated by Edge-
breaker.
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