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Abstract. The typical surfaces models handled by contemporary Computer Graphics applications have millions
of triangles and numerous connected component, handles and boundaries. Edgebreaker and Spirale Reversi are
examples of efficient schemes to compress and decompress their connectivity. A surprisingly simple linear–time
implementation has been proposed for triangulated surfaces homeomorphic to a sphere and was subsequently
extended to surfaces with handles. Here, we further extend its scope to surfaces with multiple components, handles,
and multiple boundaries. The result is a simple and efficient compression/decompression solution for the broad
class of orientable manifold surfaces.
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1 Introduction

The Edgebreaker scheme [14] encodes the connectivity of
any manifold triangle mesh homeomorphic to a sphere with
a guaranteed worst case code of 1.83 bits per triangle [6].
The Spirale Reversi algorithm [5] enhanced the Edgebreaker
decompression worst–case complexity fromO(n2) toO(n).
But the true value of Edgebreaker and Spirale Reversi lies
in the efficiency and in the simplicity of their implemen-
tations [12], which is very concise. They can be simply
implemented on a reduced topological data structure (the
Corner–Table) which only uses two arrays of integers to
represent the connectivity of the mesh. This simple algo-
rithm has been extended to deal with surfaces with handles
in [8]. Because of its simplicity, Edgebreaker is viewed as
the emerging standard for 3D compression [15] and may
provide an alternative for the current MPEG–4 standard
which is based on the Topological Surgery approach [16].

Prior Works. There are many different compression schemes
for triangular meshes. In order to encode efficiently their
geometry, the best known methods traverse the cells of the
mesh, and differ in the way they encode this traversal. The
Edgebreaker scheme has been enhanced and adapted from
the Topological Surgery [16] to yield an efficient but ini-
tially restricted algorithm [14], and subsequently extended
to more general meshes [5, 7]. Edgebreaker encodes the
connectivity of the mesh by producing theclers string of
symbols taken from the set C,L,E,R,S. A different approach
encodes the connectivity of the mesh by the valence of its
vertices [17, 1]. Valence–based compression approaches
are very efficient, especially for regular meshes and it can
also be extended to general polygonal meshes. Another

approach [10] computes a uniquely defined traversal for a
given mesh, leading to asymptotically optimal results for
the worst case. However, it is restricted to meshes without
boundary and without handle.

The Spirale Reversi algorithm [5] enhanced the Edge-
breaker original decompression [14] and the Wrap&Zip de-
compression [13]. It reconstructs the connectivity encoded
in theclersstring in only one pass, and performing the same
tests as the compressor. However, it needs to read it in a re-
verse way.

The Edgebreaker algorithm has been previously ex-
tended to efficiently support surfaces with handles in [8],
introducing thehandlestream to store in an efficient way
two edges for each handle on the surface. Those edges
together with theclers string are sufficient to recover all
the surface connectivity. This extension doesn’t add a new
symbol to the Edgebreaker originalclersset.

Surfaces with boundary are usually encoded by clos-
ing each boundary curve, using a dummy vertex to maintain
the triangular structure [4, 14]. This is a very simple but
expensive solution: first, it requires encoding each bound-
ary edge with a useless triangle; second, it requires extra
code to localize the dummy vertex; and third, it gives bad
geometrical predictors on the boundary. The original Edge-
breaker encodes boundary curves with an extra symbolM ,
and writing the length of each boundary curve. This allows
a better geometrical prediction, but gives a complex imple-
mentation with an implicit representation of the topology,
and it requires extra codes which harm the coding of the
clers string. The scheme introduced here does not require
more symbol than the original Edgebreaker for closed sur-
faces, and encode each boundary with only two integers.



Contributions. In this paper, we provide efficient and ro-
bust extensions of the Edgebreaker compression and of the
associated Spirale Reversi decompression schemes for sur-
faces with an arbitrary topology. This new approach is
based on a new semantics, which enables us to use the
Edgebreaker 5–symbolsclersstring to encode the connec-
tivity of an orientable surface, possibly having several con-
nected components, handles or boundary curves. To do
so, we exploit a topological analogy between handles and
boundaries, and capitalize on the simplicity with which edges
may be identified in thetopologystream. Moreover, the re-
sulting compression format represents separately the topol-
ogy, the local connectivity and the geometry of the surface,
leading to a simple and robust implementation.

Paper outline. Section2 introduces some basic concepts.
Section3 describes the Corner–Table data structure. Sec-
tion4establishes some notation and presents important prop-
erties that connect the surface duality to the Edgebreaker
algorithm. Section5 presents the algorithm overview. Sec-
tions 6 and7 introduce, respectively, the enhanced Edge-
breaker compression and the extended Spirale Reversi de-
compression algorithms. The theoretical analysis of the al-
gorithm is presented in Section8. Finally, Section9 shows
some results and comparison with former Edgebreaker al-
gorithm.

2 Basic concepts

We will consider an orientable triangulated combinatorial
surface. This is the general case of manifold triangle meshes
embedded inR3, but we are only concerned with their con-
nectivity, e.g., the triangle/vertex incidence and the triangle/-
triangle adjacency information.

Definition 1 (Combinatorial surface) A triangle meshS
is a combinatorial surface if:

– Every edge inS is bounding either one or two trian-
gles.

– The link of a vertex inS is homeomorphic either to an
interval or to a circle.

The set of edges inS incident to only one triangle
is called theboundaryof S, denoted by∂(S). A bound-
ary curveof a surface is a maximal connected set of adja-
cent edges of the boundary. Each boundary curve is closed.
From now on, we denote byT (S), E(S) andV(S) the set
of triangles, edges and vertices ofS.

Theorem 1 (Surface classification) [2] Any compact ori-
ented connected surfaceS is homeomorphic to a sphere
(g(S) = 0) or a connected sum ofg(S) tori (g(S) > 0),
in both cases with possibly some finite numberb(S) ≥ 0 of

open disks removed. The numberg(S) is called thegenus
of S, and b(S) its number of boundary curves. The Eu-
ler characteristicχ(S) of S is equal toχ(S) = |T (S)| −
|E(S)|+ |V(S)| = 2− 2 · g(S)− b(S).

Figure 1:Handlebody decomposition of a torus [8].

Each torus of the connected sum above is composed by
two 1–handles, as shown on Figure1. This decomposition
can be generalized using the Handlebody theory [8]. Since
this concept of handle contains a complete representation of
boundaries, it will play a fundamental role in our algorithm.

3 Corner–Table Data Structure

The Corner–Table is a very concise data structure for tri-
angular meshes. It uses the concept ofcorner to represent
the association of a triangle with one of its bounding ver-
tices, or equivalently the association of a triangle with its
bounding edge opposite to that corner: it may be viewed as
a compact version of the half–edge representation of trian-
gular meshes.

Figure 2:Corner notations.

In this data structure, the corners, the vertices and the
triangles are indexed by non–negative integers. Each trian-
gle is represented by 3 consecutive corners that define its
orientation. For example, corners 0, 1 and 2 correspond to
the first triangle; the corners 3, 4 and 5 correspond to the
second triangle and so on. . . Consequently, a corner with
indexc is associated with the triangle of indexc.t = c÷ 3.
Assuming a counter–clockwise orientation, for each corner



c of a trianglec.t, the next (c.n) and previous (c.p) corners
of c.t are obtained by the use of the following expressions:
c.n = 3 · c.t + (c + 1) mod 3, andc.p = 3 · c.t + (c +
2) mod 3.

The Corner–Table data structure represents the geome-
try of a surfaceS by the association of each cornerc with its
geometrical vertex indexc.v. The edge–adjacency between
the neighboring triangles ofS is represented by associating
with each cornerc its opposite cornerc.o, which has the
same opposite geometrical edge (formallyc.n.v = c.o.p.v
andc.o.o = c, see Figure2). This information is stored in
two integer arrays, called the V and O tables. For conve-
nience, we define the left corner ofc asc.l = c.p.o and the
right corner ofc asc.r = c.n.o.

Corner O table V table

0 3 0
1 10 1
2 7 2

3 0 3
4 6 2
5 11 1

6 4 0
7 2 3
8 9 1

9 8 2
10 1 3
11 5 0

Figure 3: A tetrahedron with its corners and its Corner–
Table.

To illustrate the data structure tables consider the tetra-
hedron of Figure3. During the decompression, the corners
will be enumerated in the order they were visited furing the
compression.

4 Surface Duality and the Edgebreaker

In this section we provide some notations and introduce im-
portant properties that will be used to describe and analyze
the algorithm.

The primal graphof a surfaceS is the simple graph
whose nodes are the verticesV(S) and whose lines are the
edgesE(S) (e.g., a line connect adjacent vertices). Thedual
graphof a surfaceS is the graph whose nodes are the trian-
glesT (S) and whose lines represent the edgesE(S) (e.g.,
a line connect adjacent triangles). For example, Figure4(a)
and4(b) represents the primal and the dual graph of a trian-
gulated sphere.

Edgebreaker algorithms encode the dual and primal
graphs of a triangular meshS by an efficient use of sur-

Figure 4:(left): the primal graph and (right): the dual graph
of a triangulated sphere.

Figure 5: (left): a dual spanning treeΘ(S) extracted from
the dual graph of Figure4(b). (right): the primal remainder
Γ(S) of Θ(S), which is a subgraph of the primal graph of
Figure4(a).

face duality. They extract a spanning treeΘ(S) of the dual
graph ofS (see Figure5(a)) by traversing and encoding the
triangles ofS in a spiral way. This encoding describes si-
multaneously the primal remainder (see Figure5(b)): The
primal remainderis the maximal subgraph of the primal
graph ofS which does not intersectΘ(S), in other words:

Definition 2 (primal remainder) Given a connected sur-
faceS and a spanning treeΘ(S) of the dual graph ofS, the
primal remainderΓ(S) is the simple graph whose nodes are
the verticesV(S) and whose lines are the edges ofS which
are not inΘ(S).

The following theorem relates the Euler characteristic
of the surface to the connectivity of the primal remainder.

Theorem 2 For any connected surfaceS and any dual span-
ning treeΘ(S), the primal remainderΓ(S) is a connected
graph with|V(S)| nodes and|V(S)| − χ(S) + 1 lines. In
particular, Γ(S) is a tree if and only ifS is homeomorphic
to a sphere.

Proof. ClearlyΓ(S) is connected, although the formal proof
can involve basic topological techniques as thickening [2]
or cell collapse (the fundamental group is unchanged by re-
moving a dual spanning tree [3]). By definition, Θ(S) is
a tree with|T (S)| nodes, hence, it has|T (S)| − 1 lines.
Also by definition,Γ(S) has|V(S)| nodes, and the num-
ber of lines ofΘ(S) andΓ(S) together is|E(S)| . Hence,



the number of lines ofΓ(S) is |E(S)| − (|T (S)| − 1) =
|V(S)| − χ(S) + 1. Then,Γ(S) is a tree if and only if
its number of nodes equals its number of lines plus one:
|V(S)| = (|V(S)| − χ(S) + 1) + 1. That is, iff the Euler
characteristic ofS is 2, e.g., iffS is a sphere (see Theo-
rem1). ¥

Figure 6: (left): a primal remainder on a torus (genus 1):
the topmost and bottommost horizontal edges are identified,
and so do the leftmost and rightmost ones. (right) a primal
remainder on an annulus (two boundary curves).

For example, in the case of a sphere, the primal re-
mainder is a tree (see Figure5(b)). For a mesh with genus
one or two boundaries, the primal remainder is a graph with
two cycles (see Figures6(a)and6(b)). We can deduce the
following theorem:

Theorem 3 For every spanning treeΨ(S) extracted from
Γ(S), the number of edges that are inΓ(S) but not inΨ(S)
will be 2 · g(S) + b(S).

Proof. We know thatΓ(S) has|V(S)| nodes. Ψ(S) is a
spanning tree ofΓ(S), then it also has|V(S)| nodes and
|V(S)| − 1 lines. Therefore, the number of lines ofΓ(S)
that are not inΨ(S) is (|V(S)|−χ(S)+1)−(|V(S)|−1) =
2− χ(S) = 2 · g(S) + b(S). ¥

5 Algorithm overview

Original Edgebreaker The Edgebreaker algorithm tra-
verses spirally the dual graph of a surface in order to gen-
erate a spanning tree. At each step, a decision is made to
move from a triangleY to an adjacent triangleX. To per-
form this decision, all visited triangles and their incident
vertices are marked. Let Left and Right denote the other
two triangles that are incident upon X. Letv be the vertex
common toX, Left, and Right. The edge opposed tov is
called thegate. Five situations are distinguished according
to Figure7. Those cases are denoted by the lettersC, L ,
E, R andS. The arrow indicates the direction to the next
triangle. Previously visited triangles are filled in gray.

v Left Right
C not visited not visited not visited
L visited visited not visited
R visited not visited visited
E visited visited visited
S visited not visited not visited

Figure 7:The Edgebreaker encoding.

To have a concise implementation of the Edgebreaker,
the compression is done by the use of a recursive procedure
that traverses the surface. The recursion starts only at trian-
gles that are of typeS and compresses the branch adjacent
to the right edge of such a triangle. When the correspond-
ing E triangle is reached, the branch traversal is complete
and the routine returns from the recursion to pursue the left
branch.

The original Edgebreaker does not handle surfaces with
genus, and gives two options to compress the boundary
curves. The first one [6] consists in closing each bound-
ary curve by adding a dummy vertex, and joining it to the
boundary vertices to form dummy triangles. The mesh does
not have anymore boundary, and can be compressed using
the algorithm described above. This is a very simple but
expensive solution: first, it requires encoding each bound-
ary edge a useless triangle; second, it requires extra code to
localize the dummy vertex; and third, it gives bad geomet-
rical predictors on the boundary. The second option [14]
encodes the first triangle that reaches the boundary with an
extra symbolM and sends the length of the boundary curve.
At this step of the compression, encoding and removing this
M triangle joins the boundary curve reached with the exter-
nal boundary curve, and the resulting mesh has one less
boundary curve.

Handles When the surfaceS has genusg(S) > 0, the
primal remainderΓ(S) is not a tree anymore (see Theo-
rem2). For a surface without boundary,Γ(S) has|V(S)| −
χ(S) + 1 = |V(S)| − 1 + 2 · g(S) lines: there are2 ·
g(S) lines in excess [8]. These edges have been simply de-
tected and efficiently encoded in [8], preserving the original
Edgebreaker compression scheme. When the Edgebreaker
traversing procedure finds anS triangle, the recursion starts



(a) Reaching firstS triangle (b) Reaching secondS triangle (c) The lower–rightE triangle
closes the handle.

(d) The upper–leftE triangle
closes the handle.

Figure 8:Coding of a torus: the creation of twohandleS triangles: the first and the secondS symbols.

and two situations are now distinguished. If the Left tri-
angle has not been visited during the right branch traversal
(case of normalS), we move to the left neighbor and con-
tinue our encoding of the left branch. Otherwise (case of
a handleS) the pair of opposite corners separated by the
left edge of theS triangle are sent to a stream or a file
calledtopologyand the routine returns. These corners will
be matched during decompression to reconstruct the han-
dle. The encounter of anE that does not match anS again
terminates the compression process of the connected com-
ponent.

Boundaries The work presented here extends these prior
results to surfaces with handles, multiple boundary curves
and multiple components. The former techniques for en-
coding boundaries and holes introduced in [14] are more
costly, since they are using extra symbols or encoding more
elements. In particular, they do not guarantee anymore the
worst–case 1.83 bit per symbol. To improve the concise-
ness of our codification, we distinguish two distinct cases:
a connected component with one boundary curve, and with
more than one boundary curve.

Consider first a surface componentS with genusg(S)
and only one boundary curve. We will close this component
by adding a face incident to each boundary edge ofS, called
the infinite face. The resulted surfaceS+ has no boundary,
and the same genus, i.e.,g(S+) = g(S). We could almost
use the extended Edgebreaker algorithm of [8] to encode
S+. However, the infinity face is not a triangle. In the same
way that the first triangle of the Edgebreaker classical algo-
rithm is not encoded, we will not encode the infinity face,
and start the compression from this one (see Figure9(a)).
As in the original Edgebreaker algorithm, we encode first
all its vertices, e.g., all the vertices belonging to the bound-
ary of S. Therefore, we only need to know if the surface
component has a boundary or not.

Now, consider a surface component with more than
one boundary curve. We distinguish arbitrarily one of them
as theexternalboundary, and call the othersinternalbound-
ary curves (holes) (see Figure9). The external boundary

curve is encoded as above. All the vertices of theinter-
nal boundary are marked as visited. Consequently, the first
triangle to reach a boundary curve will always be anS tri-
angle and we encode the opposite corners of its left edge in
thetopologystream. According to Theorem3, at the end of
the compression,2 · g(S) + b(S) − 1 edges will be stored
in this separate stream.

6 Compression

The compression processes successively each surface com-
ponent. When the component has a boundary, the compres-
sion encodes explicitly the first triangle, and the boundary
containing an edge of this first triangle will be chosen as
the external one. The vertices of this external boundary are
encoded first during the component compression.

The compression of a component follows a dual span-
ning treeΘ(S). A stack stores theS triangles, e.g. the
branchings ofΘ(S), above the node being processed. After
an S triangle has been pushed, the algorithm compresses
first the branch adjacent to the right edge of theS trian-
gle, until the correspondingE triangle is reached. At this
point, two situations are distinguished. If the Left triangle
has not been visited during the right branch traversal (case
normalS), we move to the left neighbor (popping the stack)
and continue our encoding of the left branch until we reach
anotherE. Otherwise, the triangle will be called ahandle
S or boundaryS depending whether the triangle touches
an unvisited boundary or not. The left edge of ahandle
or boundaryS is encoded in thetopologystream, and the
stack is popped. When the stack is empty, the connected
component has been entirely compressed.

To illustrate the algorithm, consider firstly the surface
given by the model for a triangulated torus as shown on
Figure 8. Identifying the edges on the opposite sides of
the rectangle, one can build a simplicial complex inR3

whose polyhedron is homeomorphic to the torus. Figure8
illustrate the labels of all triangles defined by the Edge-
breaker compression algorithm. At the end of the algo-
rithm, theclersstring obtained for the torus surface isCC-



(a) The first triangle is cho-
sen adjacent to a boundary.
The vertices of the central
infinite face are encoded.

(b) An unvisited boundary
is reached: the correspond-
ing S triangle is aboundary
S triangle.

Figure 9:Coding of an annulus: initialization and creation
of boundaryS triangles.

CCRCSCRSSRLSEEE. As one can observe, in this ex-
ample, there are four triangles labeled withS. In the string
sequence, the last twoS are normal, since their right and
left branches are traversed in the compression algorithm.
On the other hand, the left branches of the first and of the
secondS triangles are not traversed since their left adjacent
triangle have been visited during their right branch traver-
sal. Therefore, the two opposite corners of each left edge
drawn in red are encoded separately in thetopologystream.

On Figure9, the onlyhandleS triangle is the first tri-
angle with a vertex on the internal boundary that we en-
counter during the traversal. As said before, there are2 ·
g(S) + b(S) − 1 suchhandleS triangles for each surface
component with genusg(S) andb(S) boundary curves.

7 Decompression

The decompression procedure proposed here is an exten-
sion of the Spirale Reversi algorithm [5], which decodes
theclersstring in a one–pass reverse order, allowing the de-
compression to perform exactly the same tests as the com-
pression. First, we read thetopologystream, extracting the
number of vertices, triangles and components with bound-
ary. Then, we assign opposite vertices over the handles read
from the topologystream. Then, we parse theclers string
for reverse reading and for the component detection. We ac-
tually process backwards theclers string, and hence parse
it only once, but we will expose two passes for the sake of
clarity. The symbolsS andE acts as parentheses, and each
new component opens a parentheses. When all the opened
parentheses are closed (at a symbolE), a new component
begins on the next symbol. When the number of compo-
nents exceeds the number of components with boundary
read in thetopologystream, we add an extraP symbol at the
beginning of the component, because the first triangle of a
component without boundary is not explicitly encoded. The
handleandboundaryS triangles are distinguished from the

normalSones by their left corner, which has been assigned
while reading thetopologystream. We do not consider han-
dleSsymbols as open parentheses, as they do not match an
E symbol. We notice here the power of Edgebreaker that
explicitly labels each corner of the mesh by the position of
its symbol in theclersstring.

After this preprocessing step, we read theclersstring
backwards, as Spirale Reversi does. For each symbol, we
decode the adjacency of the corresponding gate. When a
boundaryS symbol is read when a new component with
boundary is processed, the geometry corresponding bound-
ary curve is read (backwards) from thevertexstream. When
a C symbol is read, we close the star of the active cornerv
and assign the corresponding corners to a new decoded ver-
tex. At the end of this procedure, the connectivity and the
geometry of the mesh is entirely restored in linear time.

8 Theoretical Analysis

From the graph theory point of view, the connectivity of a
surfaceS is completely described by the dual treeΘ(S) and
the primal remainderΓ(S), and the way they are interlaced.
We will justify here why the algorithm presented here can
reconstruct those graphs, and consequently, the surface con-
nectivity.

The strategy of the original Edgebreaker [14] builds
simultaneously a spanning treeΘ(S) on the dual graph and
implicitly encodes a spanning treeΨ(S) on the primal re-
mainderΓ(S). Branches onΘ(S) are created with sym-
bol S, and ended by symbolE that corresponds to a leaf in
Θ(S). The other symbols (C, L andR) create the internal
nodes of the dual treeΘ(S).

Each symbolC also creates the nodes of the treeΨ(S).
The left edges of allC triangles are lines ofΨ(S). If the sur-
face component being encoded has no boundary, two edges
of the starting triangle also belong toΨ(S) [8]. The lines of
the primal remainderΓ(S) that are not onΨ(S) are stored
in thetopologystream.

Concluding, theclersstream encodes explicitlyΘ(S)
and implicitlyΨ(S). And by the use of thetopologystream
we explicitly encoded the edges that are missing to recon-
structΓ(S). As those graphs are encoded simultaneously,
the wayΘ(S) andΓ(S) are interlaced is obvious and the
connectivity ofS can be reconstructed.

9 Results

We encoded the Edgebreaker symbols using a range en-
coder [9, 11], which is a one–pass approximation of the
entropy coder. This gives very good results for big meshes
(on the contrary of the ‘sphere’ model of Table1, or meshes
with high auto–similarity (like the model ‘cathedral’ of Ta-
ble1).

Our experimental results are recorded on Table1 and



Model |V(S)| |T (S)| Dum Ori Ours Ori/Ours Dum/Ours
sphere 1 848 926 3.39 3.39 3.45 0.98 0.98
violin 1 508 1 498 3.16 2.21 2.25 0.98 1.41
pig 3 560 1 843 3.26 3.24 3.13 1.03 1.04
rose 3 576 2 346 3.37 2.95 2.64 1.12 1.28
cathedral 1 434 2 868 2.25 1.00 0.19 5.27 11.86
blech 7 938 4 100 3.25 3.18 2.40 1.33 1.35
mask 8 288 4 291 3.19 3.12 1.93 1.62 1.65
skull 22 104 10 952 3.51 3.51 3.30 1.06 1.06
bunny 29 783 15 000 3.36 3.34 1.27 2.62 2.64
terrain 32 768 16 641 3.03 3.00 0.40 7.43 7.51
david 47 753 24 085 3.45 3.85 3.07 1.25 1.12
gargoyle 59 940 30 059 3.28 3.27 2.11 1.55 1.55

Table 1:Comparative results on different models (drawn on Figure11). ‘Dum’ stands for the dummy vertex method to en-
code meshes with boundaries [6], and ‘Ori’ stands for the original Edgebreaker [14], and ‘Ours’ for the algorithm introduced
here. The size of the compressed symbols (columns ‘Dum’, ‘Ori’ and ‘Ours’) is expressed in bit per vertex. Our algorithm
has a compression ratio in weighted average 2.5 better than the other two. The ‘sphere’ model has the same encoding in all
the above algorithms, but the range coder used has a lower performance since there are few symbols to encode. The ‘cathe-
dral’ model is the output of an architecture modeling program, which is almost unstructured: all the connected components
are pairs of triangles.

Figure10. We compared with the original Edgebreaker im-
plementation with the Huffman encoding of [6], and our
encoding with a simple arithmetic coder. Our experimen-
tal results are always better than the original Edgebreaker,
mainly due to the range encoder. However, the entropy of
our codes is always better than the other implementations
of Edgebreaker (see Figure10(b)).

(a) Size of the compressed file
vs complexity of the model.

(b) Entropy vs complexity of
the model.

Figure 10:Comparison of the final size and of the entropy
of the Edgebreaker’s symbols: for the range encoder, those
parameters depends more on the regularity than on the size
of the model, but our algorithm really enhance the previous
results.

10 Conclusion

We introduced here a simple, efficient and robust algorithm
to code and decode the connectivity of an orientable mani-
fold surface. The compression scheme is based on Edge-
breaker, although we use only the 5 original symbols to
encode topological features, maintaining explicit labeling
of vertices and the ability to use a geometric predictive

encoding. The decompression scheme is an extension of
Spirale Reversi, which ensures a linear complexity and a
one–pass decompression complexity. This guarantees less
than 2 bits per triangle connectivity compression, with a
2 · log2(|T (S)|) bits over–cost for each half handle and for
each boundary curve, and bests previous Edgebreaker’s en-
coding for surfaces with boundaries. Moreover, the use of a
range encoder significantly improves the final compression
results.
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(a) sphere (b) violin (135 comps, 138
bdries)

(c) pig (6 bdries) (d) rose (51 comps, 64 bdries,
genus 1)
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(i) bunny (5 bdries) (j) terrain (k) david (l) gargoyle

Figure 11:Some of the models used for the experiments, with the beginning of the dual spanning tree generated by Edge-
breaker.
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