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Abstract. Many applications of geometry processing and computer vision relies on geometric properties of curves,
particularly their curvature. Several methods have been proposed to estimate the curvature of a planar curve, most
of them for curves in digital spaces. This work proposes a new method for curvature estimation based on weighted
least square fitting and local arc–length approximation. Convergence analysis of this method and noise impact
on the estimator accuracy are given. Numerical robustness issues are addressed with practical solutions. The
implementation of the method is compared to other curvature estimation methods.
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1 Introduction

Many applications of geometry processing and computer
vision relies on geometric properties of curves. In particu-
lar, the curvature measures how a curve bends, which is one
of the most characteristic property of a curve considered for
theoretical analysis and practical applications. For exam-
ple in CAGD [11] and in Computer Vision [20], curvature
motion [10], curve reconstruction [16, 1], curve compres-
sion [15], and adaptive curve approximation [17] requires
accurate curvature estimators.

Several methods have already been proposed for cur-
vature estimation, most of them in the particular case of
digital spaces, i.e. curves extracted from images [2]. In this
work, we shall consider piecewise–linear approximation of
planar curves, which is a general framework that includes
those digital curves. This approach leads to a clear theoreti-
cal analysis and serves directly to applications to geometric
modeling and computer graphics.

Problem statement. Discrete curves proceed from dif-
ferent sources: digital curves [2], parametric or implicit
curves [17], curve reconstruction [16, 1]. . . Piecewise–
linear approximations, provides a general framework that
includes the above cases. A piecewise–linear approxima-
tion P of a planar curver is a finite sequence ofm sam-
ple points{p1,p2, ...,pm} of r. We admit the presence of
noise. In this paper, we will try to estimate accurately the
tangent line and the curvature of the curver at a pointpj

of P.

Contributions. In this paper, we introduce a new method
for curvature estimation based on weighted least square fit-
ting and local arc–length approximation. More precisely,
we fit a second–order polynomial for each coordinate, con-
sidered as a function of the arc–length. We prove the con-

vergence of our estimations under reasonable conditions
over the sampling of the curve and the amplitude of the
noise. We provide a practical implementation of this method,
addressing numerical issues with simple solutions. The pre-
liminary results show that our methods compare nicely to
the state–of–the–art, and that it has a strong stability over
different conditions of noise and sampling.

Paper outline. Section2 introduces the concepts and no-
tations from differential geometry of curves that will be
used in this work. Section3 discusses the previous and re-
lated works. The theoretical analysis of our method is pre-
sented in Section4. Section5 details the implementation of
our schemes, and introduces improvements on the method
numerical robustness. Our algorithm is finally compared to
the state–of–the–art in the last section.
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Figure 1: The arc–lengths(t) helps defining the tangent
and the normal vectorsT(t) andN(t).

2 Curvature of a planar parametric curve

A parametric curvein the plane is a functionr : I ⊂ R →
R2, t 7→ (x(t), y(t)), wherex andy are functions fromI to
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Figure 2: The curvature is the inverse of the radius of the
osculating circle. Its sign corresponds to the local convexity
of the curve.

R. The curver is said to beregular if x andy areC1 and
ṙ(t) = dr

dt (t) never vanishes onI.
From now on, let us suppose thatr is a regular param-

eterized curve. Thearc–lengths from the pointr(t0), t0 ∈
I, to a given pointr(t), t ∈ I, is by definition s(t) =∫ t

t0
‖ṙ(t)‖dt. When the curve is regular,s(t) is strictly in-

creasing, and has therefore an inverset(s). The curve can
beparameterized by the arc–lengthby consideringr(s) =
r ◦ t(s). Along this paper, we will denote the derivation
with relation to the arc–lengths with a prime (r′), and the
derivation with relation tot by a dot (̇r).

The vectorT(s) = r′(s) is called thetangent vec-
tor. Thenormal vectorN(s) is directly orthogonal to the
tangent vectorT(s): N(s) = (−y′(s), x′(s)) (see Fig-
ure1). Observe thatT′(s) andN(s) are colinear, because
‖T(s)‖ = 1 is constant. Ifr is a curve of classC2 param-
eterized by the arc–length, then the analytical definition of
the curvatureκ(s) follows the Frenet’s formula:κ(s) =
T′(s) ·N(s). When the curver(t) is not parameterized by
the arc–length, the curvature is given by:

κ(t) =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)

(ẋ2(t) + ẏ2(t))
3
2

(1)

Theradius of curvatureρ(s) is the radius of the oscu-
lating circle atr(s) (see Figure2). The absolute value of
the curvature can also be defined geometrically by|κ(s)| =
1/ρ(s). The sign ofκ(s) indicates whether the curve is
concave or convex at that point.

The curvature also corresponds to the variation of the
tangent direction with respect to the arc–length:κ(s) =
θ′(s), whereθ(s) = ∠(T(s), (1, 0)).

3 Previous and related works

Several methods have already been proposed for estimat-
ing the curvature at pointpj , most of them in the particular
case of digital spaces, i.e. curves extracted from images [2].

In this section, we will review the most significant to us.
We implemented those methods for the comparison of Sec-
tion 6. Those approaches are classified in three groups, ac-
cording to which definition of curvature they are using (as
done in [6]): tangent direction, osculating circle, derivation.
Most methods use a sliding window of2q + 1 points cen-
tered aroundpj .

Methods based on the tangent direction The methods
of the first group estimate the derivative of the tangent di-
rection with respect to the arc–length, i.e.κ(s) = θ′(s).
For digital images, this requires to estimate the gradient of
a polygonal approximation of an implicit curve. This is
done in [6] in three ways.

The first method (referred asline fitting) estimates the
tangent direction at the sides of a samplej by a Gaussian–
weighted linear fit centered at the left point atj − 1 and
right point atj + 1. The curvature is then estimated as the
difference of orientation divided by the distance between
the points atj−1 andj +1. This method is not very robust
due to the numerical imprecision on angle computation.

The second method (referred aschain codein [6]) eval-

uates the local anglêθ(pi) = tan−1
(

yi+1−yi

xi+1−xi

)
around j :

i = j − q . . . j + q. The derivation is done by convolution
with a derived Gaussian KernelGσ: κ̂ = θ̂ ∗ Ġσ.

However, the curvature equals the derivation with re-
spect to the arc–length. Therefore, the third method ( re-
ferred asresamplingin [6]) first performs a resampling of
the curve by linear interpolations on the curve segments.
This introduces a bias of1.107 which is explicitly corrected.

In [9], the angle is estimated as the external angle around
the sample points. This improves numerically the results
of [6] by avoiding right angles in the computation. This last
method only uses 3 points for the approximation.

Methods based on the radius of curvature. The second
group of methods compute the curvature by estimating the
osculating circle touching the curve (κ(s) = 1/ρ(s)).

In [8], the radius of the circle passing throughpj−q, pj

andpj+q is estimated by:̂κ(pj) = ∠(pj−qpj ,pjpj+q)
‖pj−qpj‖+‖pjpj+q‖ .

This result was improved in [8] by the area formula for
the radius of the circle circumscribed to a triangle:

κ̂(pi) =
√

(b+c)2−a2·
√

a2−(b−c)2

abc , wherea, b and c are,
respectively, the norm of the vectorspjpj−q, pjpj+q, and
pj−qpj+q.

In [7], the osculating circle is approximated by a di-
rect least–square fitting of a circle, using an intermediate
Cholewsky decomposition for the optimisation [5].

Methods based on coordinate functions derivation. Fi-
nally, methods of the last group are based on the first and
second derivative estimation of the curve (see Equation1).
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Figure 3:Sampled curve with noise.

In [6], the path method obtains the derivatives by a
convolution with a derived Gaussian kernel.

In [18], the derivatives are estimated as weighted local
differences among three points centered atpj .

In [3], the derivatives are estimated by an imaginary
multiplication in the frequency domain of a closed curve.
This approach combines efficiently with a multi–scale anal-
ysis by convoluting the curve with different Gaussian ker-
nels.

In [12], one coordinate of the curve is approximated
by a polynomial in the second coordinate through a least–
square fitting, and the derivatives are estimated by the co-
efficient of that polynomial. Our method also use least–
square fitting, but we approximate the curve with a rotated
parabola, whereas [12] restricts the parabola to be parallel
to thex or y axis. More generally, our method fits each
coordinate as a quadratic function of the arc–length, and
estimates the curvature by derivation of that function.

4 Theoretical framework

In this section, we describe our model and approach to solve
the problem of tangent line and curvature estimation.

4.1 Model and notations

Consider a piecewise–linear approximationP of aC3 curve
r in R2: P = {p1,p2, ...,pm}. We admit some noise in
the samples. In this theoretical analysis, we will assume
that the curve is parameterized by arc–length, although the
samplespi need not to be equally spaced. We will try to
estimate the first and second derivatives of the coordinate
functionsx(s) andy(s).

Assuming thatpj is the origin of the curve, i.e.,r(0) =
pj , we can write:

{
x(s) = x(0) + x′(0) s + 1

2 x′′(0) s2 + g1(s)s3

y(s) = y(0) + y′(0) s + 1
2 y′′(0) s2 + g2(s)s3

with gi(s) → 0 when s → 0. Sincepi = (xi, yi) are
samples of the curve associated to the value of arc–length
si, we can write

{
xi = xj + x′j si + 1

2 x′′j s2
i + g1(si) s3

i + ηx,i

yi = yj + y′j si + 1
2 y′′j s2

i + g2(si) s3
i + ηy,i

Figure 4:Second–order weighted least square fitting.

whereηi = (ηx,i, ηy,i) is the noise corresponding to the
point pi. We shall assume that the random variablesηi

are independent and identically distributed (i.i.d.) with zero
mean and varianceσ2 (see Figure3). We aim to estimate
x′j , y

′
j , x

′′
j andy′′j from the samples, i.e., the first and second

order derivatives ofr atpj . To obtain those values we shall
use a weighted least squares (WLS) approach.

4.2 The weighted least squares approach

First, we need an estimate for the arc–lengthsi. Define
∆lk as the length of the vectorpkpk+1, wherek ranges
from 1 to (m − 1). Since we have assumed thatpj is the
origin of the curve, the arc–length estimator frompj to pi

is defined as∆lji =
∑i−1

k=j ∆lk, wheni > j, and∆lji =
−∑j−1

k=i ∆lk, wheni < j.
In our approach we will restrict our calculus to a slid-

ing window of2q + 1 points centered aroundpj : we will
only use the sample pointspj−q, ...,pj+q of P. We will
now describe how to obtain the estimations of the deriva-
tivesx′j andx′′j , and the same solution is used to obtainy′j
andy′′j .

Considering the distinct abscissas∆ljj−q, ..., ∆ljj+q at
which ordinatesxj−q−xj , ..., xj+q−xj , yj−q−yj , ..., yj+q−
yj are assigned. We will look for the quadratic functions.{

x(s) = xj + x′j s + 1
2 x′′j s2

y(s) = yj + y′j s + 1
2 y′′j s2

that better fits these data in the weighted least squares sense
(see Figure4). In other words, we shall look forx′j andx′′j
that minimize

Ex(x′j , x
′′
j ) =

j+q∑

i=j−q

wi

(
xi − xj − x′j ∆lji − 1

2 x′′j (∆lji )
2
)2

.

and similarly fory′j andy′′j . The real numberswi are the
weight of the pointpi. Such numbers are to be chosen pos-
itive, relatively large for small|∆lji | and relatively small for
larges|∆lji |. For example, we can consider weights of the
form w(∆l) = α exp(−β∆l2)/∆lk.

Whenq > 1, the above WLS problems have a well–
known solution [19]. So we can write the following formu-
las for the derivatives ofr:
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Figure 5:Least–square fitting defect can be compensated by rotation: we drew big errors by wide line, the scale being the
same on the three figures.

{
x′j = ce−bf

ac−b2 , x′′j = af−be
ac−b2 ,

y′j = cg−bh
ac−b2 , y′′j = ah−bg

ac−b2 .

where :





a =
∑j+q

i=j−q w2
i (∆lji )

2

b = 1
2

∑j+q
i=j−q w2

i (∆lji )
3

c = 1
4

∑j+q
i=j−q w2

i (∆lji )
4

e =
∑j+q

i=j−q w2
i ∆lji (xi − xj)

f = 1
2

∑j+q
i=j−q w2

i (∆lji )
2 (xi − xj)

g =
∑j+q

i=j−q w2
i ∆lji (yi − yj)

h = 1
2

∑j+q
i=j−q w2

i (∆lji )
2 (yi − yj).

Observe that when the weights are symmetrical and the
samples are equally spaced aroundpj the termb vanishes.
The 4–connected digital curves are examples of such situ-
ation. With those results, our curvature estimator is given
by:

κ̂(pj) =
eh− fg

ac− b2
.

4.3 Convergence analysis: sampled curve without noise

In the following, we shall denote byδ the maximal dis-

tance between samples:δ = max
{∣∣∣∆ljj−q

∣∣∣ ,
∣∣∣∆ljj+q

∣∣∣
}

,

and byK0 andK1 the maximum of the curvature and its
derivative aroundpj : K0 = max{|κ(s)| , |s| ≤ δ} and
K1 = max{|κ′(s)| , |s| ≤ δ}, whereκ(s) is the curvature

of r at s. Let φ =
(
ac + 1

2 |b|
∑

w2
i |∆lji |3

)
/

(
ac− b2

)

andθ(ε) = sin(ε/2)
ε/2 .In the technical report [13], we give

precise proofs of the following results.

Proposition 1 (Convergence without noise)(a) If δK0 ≤
ε. Then the estimation error is bounded:

∣∣x′j − x′(sj)
∣∣ ≤ φ 1−θ(ε)

θ(ε) x′(sj) + φ ε
θ(ε) .

(b) Suppose thatδK0 ≤ ε andδK1 ≤ ε. Then:

∣∣x′′j − x′′(sj)
∣∣ ≤ φ

1− θ2(ε)
θ2(ε)

x′′(sj)+φ
ε

θ2(ε)
(1 + x′(sj) K0) .

In other terms, the productsδK0 andδK1 should be small,
which corresponds to the intuition that the sampling must
be denser in regions of high curvature. If not, some samples
are too far frompj to be correctly used in the estimate of
the first derivatives ofr atpj .

4.4 Convergence analysis: noisy curve

Let :

Γ0 =
(
c2

∑
w4

i (∆lji )
2 + b2

4

∑
w4

i (∆lji )
4
)

/(ac− b2)2

Γ1 =
(

b2

4

∑
w4

i (∆lji )
2 + a2

∑
w4

i (∆lji )
4
)

/(ac− b2)2

In the particular case where the samples are symmetrically
distributed aroundpj and the weightswi are equal, we have
b = 0 andΓ−1

0 = a ≈ δ2q, andΓ−1
1 = c ≈ δ4q, where we

assumed thatq is big in the approximation.

Proposition 2 (Convergence with noise)(a) Assume that
σ2 Γ0 ≤ γ. Then the error of estimation

∣∣x′j − x′(sj)
∣∣ is

bounded by the sum of the errors of proposition1(a) and a
random variable of zero mean and variance less thanγ.
(b) Assume that:σ2 Γ1 ≤ γ. Then the error of estima-
tion

∣∣x′′j − x′′(sj)
∣∣ is bounded by the sum of the errors of

proposition1(b) and a random variable of zero mean and
variance less thanγ.

In other words, the productsσ2Γ0 andσ2Γ1 should
be small, which again corresponds to the intuition that the
number of points2q + 1 considered for the approximation
must increase with the noise. If not, the noise is too strong
for us to guarantee the estimation for

(
x′j , y

′
j

)
and

(
x′′j , y′′j

)
.

5 Computational framework

The method we introduced is extremely simple to imple-
ment. It has two variants we calledIndependent coordi-
natesandDependent coordinates. Moreover, the numerical
results can be improved by a simplerotationon the data, in



order to have the tangent direction close to the horizontal
(see Figure5).

Our algorithm follows directly from the analysis of
Section4: we compute the coefficienta, b, c, e, f, g, and
h and solves the WLS method (see Algorithm1).

Algorithm 1 Set Weighted Least Squares Variables (j).
1: ∆l[] = a = b = c = e = f = g = h = 0 ;
2: for i = 1 . . . 2q do
3: ∆l[i] ← ∆l[i-1] + ‖pj−q+i−1pj−q+i‖ ;
4: end for
5: m = ∆l[j] ;
6: for i = 0 . . . 2q do
7: ∆l[i] ← ∆l[i] - m ; // Centeringdl on j
8: w = weight(∆l[i] ) 2 ;
9: a← a + w (∆l[i]) 2 ;

10: b← b + w (∆l[i]) 3 ;
11: c← c + w (∆l[i]) 4 ;
12: e← e + w (∆l[i]) ( xj+i-xj) ;
13: f ← f + w (∆l[i]) ( yj+i-yj) ;
14: g← g + w (∆l[i]) 2 (xj+i-xj) ;
15: h← h + w (∆l[i]) 2 (yj+i-yj) ;
16: end for
17: d = ac− b2 ; // determinant

5.1 Independent coordinates method

This method computes the estimations forx′j , y
′
j , x

′′
j and

y′′j . To do so we find the solution for the two WLS prob-
lem independently forx andy. The resulting tangent vec-
tor T = (x′j , y

′
j) is not constrained to be unitary, and the

vector (x′′j , y′′j ) is not constrained to be orthogonal toT.
We normalize the normal vector estimate in the direction of
sign(κ)(x′′j , y′′j ). The solution is then carried out by Algo-
rithm 2.

Algorithm 2 Independent coordinates WLS Solution (j)
1: call Set Weighted Least Squares Variables (j);
2: Tx = (ce− bf)/d ;
3: Ty = (cg − bh)/d ;
4: Nx = (af − be)/d ;
5: Ny = (ah− bg)/d ;
6: κ = (eh− fg)/d ;
7: N = sign(κ) (N/‖N‖) ;

5.2 Dependent coordinates method

We observe that when the curve is parameterized by the
arc–length, we must have:{

x′2 + y′2 = 1
x′x′′ + y′y′′ = 0

Thus, with those two equations we can use estimates for
x′j andx′′j to obtain estimates fory′j andy′′j , or vice–versa.
This selection depends whether|Tx| < |Ty|. The algo-
rithm 3 solves the WLS problem for one coordinate, and de-
duces the estimations of the other coordinate. Algorithm3

Algorithm 3 Dependent coordinates WLS Solution (j)
1: call Set Weighted Least Squares Variables (j);
2: Tx = (ce− bf)/d ;
3: Ty = (cg − bh)/d ;
4: if |Tx| < |Ty| then // Considering x(y)
5: Ty = sign(Ty)

√
(1−T2

x) ;
6: Nx = (af − be)/d ;
7: Ny = -(TxNx)/Ty ;
8: else // Considering y(x)

9: Tx = sign(Tx)
√

(1−T2
y) ;

10: Ny = (ah− bg)/d ;
11: Nx = -(TyNy)/Tx ;
12: end if
13: κ = TxNy - TyNx ;
14: Nx = -Ty; Ny = Tx ;

guarantees the geometrical properties of the tangent and the
normal vector, that is,T is unitary and thatN is orthogonal
to T. The use of the above algorithm is well suited when
the curve is almost the graphic of a function in the axis:
y = f(x). The best axis is chosen at line 4 of Algorithm3.
However, a simple rotation helps getting closer to that case.

5.3 Rotation

Least–square fitting works very well when the input points
are well distributed. However even on basic cases such as a
simple circle, the input points can be almost aligned verti-
cally. To avoid this situation, following [12], we choose one
of thex or y axis as reference for the parameterisation (see
Section5.2). Even though, in the case of [12], the parabola
degenerates to a line when the tangent direction is at45o

(see Figure5). In thedependent coordinatesmethod (not in
theindependentone), the numerical precision is decreasing
with the angle. To compensate this numerical error, we can
compute first an estimation of the tangent with one of our
methods, and then use this tangent to better distribute the
samples. This operation is simply performed by a rotation
on the input points before the summation (before line 12 of
Algorithm 1):

[
xi − xj

yi − yj

]
7→

[
Tx Ty

−Ty Tx

] [
xi − xj

yi − yj

]
.
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Figure 6:Noisy spiral curve (1000 samples,σ = 1).

5.4 Boundary conditions.

We introduced our algorithm for computing the curvature
at a pointpj with 2q + 1 samples centered at that point.
However, for points close to the boundary of a curve, this
condition cannot be not verified. In that case we can either
reduce the widthq of our sliding window, or simply com-
pute the curvature using a non–centered window. In the last
case, we do not have the theoretical guarantees of Section4:
the coefficientφ of Proposition1. Nevertheless, our exper-
imental results remain coherent, although less precise.

6 Experimental results

We have implemented our method with four variants: the
independent and dependent coordinate method with or with-
out a rotation to make the tangent line close to horizontal.
In this section, we will discuss our results and we will com-
pare our performance to some important methods in the lit-
erature.

6.1 Experimental setting

We will discuss our tests using three curves:

• Circle: r(t) = (cos(t), sin(t)) : t ∈ [0, 2π];

• Ellipse: r(t) = (2 cos(t), sin(t)) : t ∈ [0, 2π];

• Spiral: r(t) = ( 2√
t
cos(t), 2√

t
sin(t)) : t ∈ [10, 50].

All of them were uniformly sampled in time, and therefore,
the samples were equally spaced for the circle, but not for
the ellipse and the spiral. The noise was simulated as a uni-
form random variable in the disk of radiusσ, whereσ is
a proportion to the average distance between consecutive
samples (see Figure6). We considered the widthq of our
sliding window between1 and30. We have also experi-
mented the algorithm with weights given by the formula
presented in Section4 (see Figure8)..

Since we have the parametric formula for those exam-
ples, we computed the real curvature using automatic differ-
entiation [4]. We have measured the relative error between
the unbiased estimated curvaturek̂ and the real valuek by
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Figure 7: Noiseless spiral with 2000 sample points
(w(∆l) = 1) (legend on Figure9(a)).

the formula:

RE(pj) =
∣∣∣∣
(κ̂(pj)− κ̂mean)− (κ(pj)− κmean)

κ(pj)

∣∣∣∣

and considered the arithmetic mean of this relative error
along the curve.

6.2 Results

Our experimental results confirm the convergence analysis:
our methods improve when increasing the number of sam-
ples (inside the same time domain), i.e. when reducing the
average distance∆l between consecutive samples(see Fig-
ure 9). In the noiseless case(σ = 0), we have observed
that, for all curves (not restricted to those 3) and methods
considered, the relative errorRE increase withq (see Fig-
ure7). This is not surprising, since the curvature estimation
should be better if we use points closer to the base point.
We observe that the behaviour of our method is similar to
the other ones, and that considering non–constant weights
can improve those results (see Figure8). In the noisy case
we observed that the use of more sample points can im-
prove the estimates. The ideal number of pointsq depends
on the curve, on the sampling and onσ (see Figure10). But
we observed that even if we take more points than the ideal
value, the relative error does not grow too much.

7 Conclusion

The curvature estimators that we have proposed performed
experimentally close to the best in the literature. They are
also robust with respect to noise and work in a great variety
of sampling conditions. Notice that our method does not
only estimate the curvature, but also the tangent line, the
normal vector, and the osculating circle (see Figure11).



 0.26

 0.265

 0.27

 0.275

 0.28

 0.285

 0.29

 0.295

 0  0.02  0.04  0.06  0.08  0.1  0.12

R
el

at
iv

e 
E

rr
or

 (
lo

g 
sc

al
e)

beta

k = 0
k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7

Figure 8:Noiseless ellipse with 100 sample points,q = 5,
with various weightsw(∆l) = exp(−β∆l2)/∆lk: the
parameterβ is linked to the widthq of the sliding window,
which should be small in the noiseless case (see Section
4.3).

A very important advantage is that it can be immedi-
ately generalized for the estimation of curvature and torsion
of curves inR3. Other advantage of our method is that it can
be easily implemented. The program we used for compari-
son is available at [14].

We plan to generalize our method to the case of point
clouds in plane and also in space.
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Ours (independent coordinates)
Ours (dependent coordinates)

Ours (rotated)
Pouget (parabola fitting)

Coeurjolly (angle)
Coeurjolly (area)

Worring (chain code)
Worring (orientation)
Worring (line fitting)

Worring (path)
Utcke (circle fitting)

Belyaev (derivatives)
Gumhold (external angle)

Estrozi (FFT)

(a) Legend.
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(b) Ellipse.
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(c) Spiral.

Figure 9: Convergence when the sampling rate increases (σ = 0, w(∆l) = 1): Not all the methods we introduced in the
prior work converges when∆l→ 0, especially for irregularly sampled curves as (c).
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(a) Circle:m = 200, σ = 0.5.
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(b) Ellipse:m = 500, σ = 0.5.
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(c) Spiral:m = 2000, σ = 0.5.
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(d) Circle:m = 200, σ = 1.5.
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(e) Ellipse:m = 500, σ = 1.5.
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(f) Spiral: m = 2000, σ = 1.5.

Figure 10: Noise in the samples (w(∆l) = 1) (legend on Figure9(a)): the circle fitting of [7] minimizes its error for a
specific value ofq as specified in [7], however the minimization sometimes degenerates ((a),(d)). The FFT–based method
of [3] is very robust to noise, although not being always optimal for largerq. Our results are never far from the best ones,
although the best methods differ from case to case.
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Figure 11: Estimated curvatures (colour), tangent lines and normal vectors: (a)r(t) = (4 cos(t) − 2 sin(2t), 4 sin(t) +
2 cos(2t)) : t ∈ [−2π, 2π]; (b) r(t) = (sin(2t), sin(3t)) : t ∈ [−π, π]; (c) r(t) = ( t2−1

t2+1 , t t2−1
t2+1 ) : t ∈ [−2, 2].
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