Fast Euclidean Distance Transform using a Graph-Search Algorithm
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Abstract. Twonew Euclidean Distance Transform algorithms are described. The algorithms are designed using a
shortest path graph-search framework. The Distance Transform can be seen as the solution of a shortest path forest
problem. Previous works have dealt with the Euclidean Distance Transform (EDT) and with the shortest path forest
problem, but none of them have presented a EDT using the graph-search approach. The proposed algorithms are
very simple and yet belong to the class of one of most efficient sequential algorithms. The algorithms easily extend

to higher dimensions.

1 Introduction

Distance Transform (DT) is a powerful image processing
transformation that assigns to object pixels in a binary im-
age its distance to the background pixels. It can be used for
a variety of binary image operations such as nearest neigh-
bor, Voronoi regions, image classification, skeletons, dila-
tion, erosion, binary image interpolation, etc. The DT was
first introduced by Rosenfeld and Pfaltz [RP68]. The most
natural metric for computing distance in general applica-
tions is the Euclidean metric, because of its rotation invari-
ant property. However, the difficulty to implement efficient
algorithms for the Euclidean Distance Transform (EDT),
made many researchers to develop algorithms to compute
approximate EDT. The most popular is known as Chamfer
metric DT algorithm (Bor86]. Its popularity is due to its
simplicity and reasonable approximation to the EDT. The
few exact EDT algoritms reported in the literature are ei-
ther inneficient or complex.

Sharaiha [SC94] proposed a graph-based approach to
compute DTs. The graph-based DT can be reduced to the
problem of finding the shortest path forest with the tree
root vertices as the external object contour pixels. Sharaiha
described a graph-based Chamfer DT and pointed out the
main advantages of using the graph-theoretic approach as
opposed to the pixel-by-pixel based approaches: the graph-
size is normally smaller than the image size; each pixel is
normally addressed only once; the algorithm can be readily
extended to higher dimensions and to different grid topolo-
gies (e.g., hexagonal grids).

This paper presents two simple and efficient exact EDT
algorithms using the graph-search framework. The major
difficulty to compute the EDT using a graph is in to define
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exact arc lengths using a small local neighborhood. The
solution used in the first algorithm is to use the distance
as a vector with its x and y components for the 2D case
and defining appropriate arc lengths in a given neighbor-
hood. The second EDT algorithm uses explicitly the nearest
root vertex to compute the Euclidean distance of each point.
This approach is equivalent to having many arc lengths be-
tween two vertices, each arc length is associated to the Eu-
clidean distance increment with reference to a specific root
vertex. :

Both algorithms are some of the simplest EDT reported
in the literature and yet are very efficient. Their execution
time is comparable to two of the fastest EDT algorithms
for serial computers, based on chain propagations: Ragnel-
malm [Rag92] and Eggers [Egg98].

The main features of our proposed algorithms are sum-
marized as follows:

o If an appropriate neighborhood is chosen, then they
give the exact discrete Euclidean Distance Transform.

o They are easily extended to higher dimensions.

o They are very simple and based on shortest path search
algorithms.

o They run very efficiently in general serial computers.
Their efficiency is directly dependent on the imple-
mentation of the ordered queue.

This paper is organized as follow. Section 2 describes the
basic definitions and notations related to images and graphs.
Section 3 discusses the Distance Transform problem as the
shortest path forest problem. Section 4 describes the first



Euclidean Distance Transform algorithm while Section 5
describes the second one. Section 6 discusses some issues
related to the implementation and comparison to other Dis-
tance Transform algorithms. Section 7 concludes this work.

2 Definitions and notation

A two-dimensional binary digital image f : E — {0,1}
is a mapping of a rectangular unit square grid of n x m
points, E = [1,...,n] x [1,...,m], to the values O, for
background pixels or 1, for object pixels. A picture ele-
ment, pixel f(z,y) of the binary image f has value 0 or 1
at the integer coordinates (x,y).

Vector addition of two pixel coordinates p and q is
given by p + ¢ = (p; + ¢s, Py + ¢y). Similarly the pixel
vector subtraction is given by p — ¢ = (Pz — ¢z, Py — @y)-

Two pixels coordinates p = (pz,py) and ¢ = (¢z, gy)
are N-adjacent if ¢ € N(p) where N(.) is a neighborhood
relationship. An example of adjacency representing the
four horizontal and vertical neighbors of a pixelis N4(p) =
{p+(0,1),p+(1,0),p+ (=1,0),p+ (0, -1)}.

The Euclidean distance of two pixels at positions p and
q is the magnitude of its pixel coordinates subtraction:

d(p,4) = (da dy) = lg=p| = /(22 — P2)? + (g — 2)2.

In a binary image f, the set of object pixels O is given
by the pixels with value 1 and the set of background pixels,
by the complement set O. The set of the external object
contour pixels C is formed by all the background pixels
which have an object pixel in its N4 neighborhood.

A binary image f and a neighborhood relationship N
can generate a graph G = (V, A) composed of two sets V
and A where V is the set of vertices formed by the object
and its external contour pixels V = O U C}; and A is the set
of arcs (p,q),p,q € V associated to a pair of N-adjacent
vertices. A graph is weighted if an arc length w(p,q) is
associated to each arc, and it is called directed if w(p, q) #
w(q, p). Two vertices p, g are adjacent if (p, q) is in A.

A path (p ~ q) is a list of unique vertices vy, vz, . .., Up,
where v; = p,vp = ¢, (vi,viy1) € A. The path length
D(p, q) in a weighted graph is given by the sum of each arc
length in the path:

n—1
D(p,q) = Y _ w(vi,vit1).
i=1

Two vertices p and q are connected if there is at least
one path between p and g. A connected graph is a graph
where all pair of vertices are connected. A graph has a cycle
if it has a path p ~» ¢ and an arc (g, p) not in the path. A
tree is a connected graph with no cycles. A rooted tree is a
tree which has a node s called root. A forest is a collection
of trees.
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3 Distance Transform as the shortest path forest prob-
lem

A distance transform is a mapping from a binary image to
adistance image. A distance image is an image where each
object pixel value represents the distance to its nearest ex-
ternal contour pixel.

The shortest rooted tree path forest is a classical prob-
lem in graph theory. The problem is to find a forest par-
titioning of a graph such that the sum of all shortest path
lengths from any tree vertex to its root is minimum. The
result is a disjoint set of shortest path trees. For simplicity
we will denote it as the shortest path forest problem.

The distance transform can be formulated as a graph-
theoretic problem in the following way. Build a graph from
the binary image and a neighborhood relationship. Assign
arc lengths to represent the desired distance metric. The
tree roots are the external contour pixels of the object. Find
the shortest path from each pixel to the nearest root pixel.
The distance image is the image which pixel value is the
path length to the nearest background pixel (root).

-An example using the N4 neighborhood relationship
and the city-block distance is illustrated in Fig. 4. The bi-
nary image is formed by object and background vertices
(indicated by a cross and a circle in Fig. 4a, respectively).
The contour vertices (indicated by a square) are background
vertices with a 4-neighbor object pixel, and represents the
roots of the trees. The arcs of the graph are indicated by
dashed arrows and are weighted 1 as also shown in Fig. 4a.
The final minimum path forest is represented by the arrows
in solid lines in Fig. 4b. The distance length (represented by
the number nearest to each object vertex in Fig. 4b) is the
number of arcs to reach a root vertex. Note that there may
be many equivalent solutions to the minimum path forest,
but the distance transform is unique.

Chessboard distance transform can be calculated sim-
ilarly using a Ng neighborhood relationship and arc lengths
of 1 as shown in Fig. 4b. Chamfer distance transform can
also be computed by changing the N-adjacency and setting
proper arc lengths [SC94].

4 Algorithm 1: Euclidean Distance Transform

To compute the Euclidean Distance Transform using the
framework of the graph-search algorithms it is necessary to
define the arc lengths. The solution adopted in this first al-
gorithm is to represent the distance by its vector projections
D, and D, and represent the arc lengths by their z and y
projections. The weights associated with the arcs leaving a
vertex are displacement vectors with positive values in an
8-neighborhood as shown in Fig 4. The scalar distance of
each object pixel can be computed by

ID| = /D2 + D2
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Figure 1: Distance Transform as a minimum path forest problem. City-block metric (4-connected)
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Figure 2: Weights associated to the arcs of a node with dis-
tance D for: a) city-block (w4); and b) chessboard (wsg)
metrics
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Figure 3: Weights dsg associated to the 8 arcs of a node
with distance D, D,
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The accumulative distance associated to the vertex p
is given by the vector addition of the accumulative distance
of the 8-neighboring vertex v by the weight dsg(p, v).

D(p) = D(v) + dss(p, V)

The algorithm is presented in Fig. 4. This algorithm
is based on Moore shortest path forest [Moo57] algorithm,
which is very similar to the well known Dijkstra shortest
path [Dij59].

This algorithm works with two set of vertices: tem-
porary (T) and permanent (P). Initially all vertices are set
as temporary (line 4) and as the algorithm evolves, the ver-
tices are transformed into permanent (line 7). A remarkable
property of this algorithm is that once a vertex is permanent,
its distance is the final optimal shortest path. Another im-
portant property is that the order that the vertices turn from
temporary into permanent generate non-decreasing distances.
This algorithm has two sections: initialization (lines 1 to 4)
and propagation (lines 5 to 10).

In the initialization, all vertices are set as temporary
(line 4), the contour vertices have their distance assigned
as 0 (line 2) and object vertices have distance assigned to
infinity (line 3). )

The propagation step works while there is a tempo-
rary vertex (line 5). Line 6, which is the most computation
demanding part, finds a temporary vertex with the mini-
mum distance value. We will see later that, this step can be
conveniently optimized if implemented by a bucket sorting
technique [Dia69]. Once a vertex with minimum distance
is selected from the temporary vertices, it is transformed
in a permanent vertex (line 7). Lines 8, 9 and 10 update
the temporary vertices p which are 8-neighbors of the new
permanent vertex v. Line 9 verifies if the distance com-
puted through the permanent vertex v is shorter than the
temporary distance associated with vertexp. If true, line



10 updates D(p). ds(i) are the vector displacements of a
pixel to its 8-neighbors and dsg (%) are their correspondent
arc lengths as indicated in Fig. 4.

5 Algorithm 2: Euclidean Distance Transform

Another way to compute the Euclidean Distance Transform
using the graph-search framework, is to represent the arc
lengths implicitly by computing the nearest root of each
vertex. This approach is. very close to the minimum for-
est problem which searches for minimum distance from a
vertex to its root vertex. So, r(p) is the nearest root vertex
of a pixel at the coordinate p, and |p—r(p)| is the Euclidean
distance associated to that pixel. The algorithm first initial-
izes the nearest root vertex of the contour vertices and then
propagates them to inner pixels in a manner where the dis-
tances are increasing. The algorithm is shown in Figure 5.
This algorithm works in the same graph-search framework
and it is very similar to algorithm 1. The main differences
are in lines 8, 9 and 10.

In the initialization, all vertices are set as temporary
and the nearest root of the contour vertices are themselves,
so their distance is 0. All other vertices have their nearest
root assigned to an infinity coordinate value so their dis-
tance is infinite.

The propagation step starts at line 5 and runs while
there is a temporary vertex. Line 6 finds a vertex with the
minimum distance to its nearest root, from all of the tempo-
rary vertices and this vertex becomes permanent in line 7.
Lines 8, 9 and 10 update the nearest root of the temporary
vertex x which is a 8-neighbor of the new permanent ver-
tex v. Line 9 verifies if the distance from x to the nearest
root of v is shorter than to its nearest root. If true, line 10
updates the nearest root of x to be the same as v.

This algorithm can also be seen as the classical short-
est forest path algorithm proposed by Moore [Mo057]. The
main differences of the proposed algorithm and the classi-
cal one, rely on lines 9, and 10. In the classical algorithm,
w(v, x) is the arc length linking vertices v to x. D(p) is the
distance of node p to its nearest root:

8. for each z € Ng(v) and flag(x)=T
9. if D(v)+w(v,x) < D(x)
10. D(x):=D(v) + w(v,x)

As D(v) = |v — r(v)|, the Boolean expression of line 9
above can be rewritten as:

lv— (V)| + w(v,x) < |x —r(x)].

From Fig 5, the vector addition |v — r(v)| + w(v,x) =
|x — r(v)], so line 9 can be finally rewritten as:

[x = x(v)] < |x - r(x)|

which is the Boolean expression used in the proposed al-
gorithm. We can also note that although there are 8 arcs
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leaving each vertex, due to the nature of the algorithm to
generate increasing distances, the tests are done on the arcs
connecting permanent vertices to temporary ones where the
arc length w(v, x) is always positive. This is a requirement
for the classical graph search algorithm to find the optimum
path.

Selection of the neighborhood

Both algorithms 1 and 2 require a neighborhood for the
distance propagation. Cuisenaire and Macq [CM99] have
demonstrated that the discrete Voronoi regions using the
Euclidean metric are not connected sets. This means that
depending on the particular binary image configuration, a
given neighborhood is required for those algorithms to de-
termine the exact Euclidean distance. Cuisenaire and Macq
report a table with the size of the neighborhood and the
maximum distance in the image. The eight neighborhood
will always give correct results for distance less than 169
and a 7x7 neighborhood, for distance less than 2404. For
the complete table, see [CM99].

6 Implementation

The computational efficiency of the EDT algorithms pre-
sented in the previous sections are very dependent on the
search for a vertex with minimum distance of line 6. When
the graph is sparse, as it is in the distance transform al-
gorithm, one of the best implementations is to use an or-
dered queue of distances. There are many implementations
based on this idea using different ordered queue algorithms
such as bucket sorting (Dial), d-Heap, Fibonacci heap and
radix heap. For this particular case where the graph is large,
sparse and the variance of the arc costs is small, Dial’s im-
plementation is recommended because it is easy to imple-
ment and has excellent empirical behavior [AMQ93].

Speed analysis and comparison

The main motivation of the efficient ordered propagation
algorithm presented in [Rag92] is to avoid visiting a pixel
several times. Ideally each pixel should be visited only
once. The graph-based algorithms presented here use the
same principle, but in the well known shortest path search
framework.

The speed performance of both algorithms depend very
much on the implementation of the ordered queue algo-
rithm. In both cases the Euclidean distance transform al-
gorithm is linear with respect to the number of pixels in the
image.

Measuring the speed performance of distance trans-
form algorithms is a difficult task. A complexity analy-
sis, although useful, does not represent the effective speed
of a particular algorithm implementation. In addition to



r = function EDT1(f)
input: binary image £ with

o O = {p|£(p) = 1} (object pixels)
o C ={p|t(p) =0andp+i € O,i € Ny(p)} (external contour C pixels)
e V = O UC (all vertices of the graph)

output: D(p), such that |[D(p)| is the Euclidean distance from p to the nearest background pixel in C.

auxiliary variables:

g dB(l) = {(07 1)7 (17 1), (la 0)7 (11 —l)a (07 —1)7 (_1’ _1): (—lv 0)7 (_17 1)}
e dss(i) = {(0,1),(1,1),(1,0), (1, 1),(0,1),(1,1),(1,0),(1,1)}
e flag(p): Boolean array indicating T (temporary) or P (permanent) label.

D = function EDT1(f)
D(p) := (0,0); peC
D(p) := (00,00);p €O
flag(z) := T, z€V
while 3 z€V| flag(z)=T
find v €V such that |D(v)| is minimum, and flag(v)=T
flag(v):= P
for each p := v + dg{(i), i=1 to 8 and flag(p)=T
L£ [D(v) + dss(i)] < [D(p)]
0. D(p) := D(v) + dsg(i)

P Wwoo oUW

Figure 4: Algorithm 1: Euclidean Distance Transform

Algorithm | Imgl Img2 Img3 Img4 Img5S Img6é Img7

Eggers 398 3.09 339 325 321 383 478
Algorithm 1 | 498  6.51 500 391 568 412 588
Ragnemalm | 165 9.26 20.17 2842 9533 1354 32.11

Table 1: Speed performance based on the speed of the 5x5 Chamfer implementation for seven different images of size
512x512.
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r = function EDT2(f)

input: binary image £ with
o O = {p|f(p) = 1} (object pixels)
o C = {p|f(p) =0andp+i € O,i € Ny(p)} (external contour C pixels)
e V = O UC (all vertices of the graph)

output: r (p), array with the coordinates of the nearest root pixel from p such that |p — r(p)| is the Euclidean distance
from p to the nearest root r(p) € C.

auxiliary variables:

hd NB(P) = {P + (Ou 1)7P + (1,0),}) + (—170),P+ (07 _1)7P+ (_17 _l)7p+ (171)7P + (_15 1),P+ (la _1)}
e flag(p): Boolean array indicating T (temporary) or P (permanent) label.

1. r = function EDT2(f)
2. r(p) :=p; peC
3. r(p) := (co0,);p €0
4. flag(z) := T, z€V
5. while 3 z€ V| flag(z)=T
6. find v€V such that |v—-r(v)] is minimum, and flag(v)=T
7. flag(v):= P
8. for each x € Ng(v) and flag(x)=T
9. if |x—r(v)| < |x—x(x)|
10. r(x) := r(v)
Figure 5: Algorithm 2: Euclidean Distance Transform
o o o)
X ° © [8]  Root vertice
* o o X Permanent vertices
©  Temporary vertices
X b ¢ o
X X o

Figure 6: Distance of point z (temporary), based on point v (permanent). Root point is r
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this, differences in computer architecture, compiler opti-
mization can lead to very different speed performance. The
speed analysis made in [Rag92] is by counting the num-
ber of memory access per pixel. The 5x5 Chamfer requires
about 28 memory accesses per pixel while the ordered prop-
agation requires about 8 memory accesses. Comparing the
speed analysis of algorithm implementation the results are
much favored to the Chamfer distance algorithm as the pro-
gram implementation has much less instructions, is simpler
than the ordered propagation, and the raster nature of the
Chamfer is more appropriate to compiler optimization and
modern general purpose CPUs.

In this paper we compared the speed of our own imple-
mentation of the following algorithms: 5x5 Chamfer, Rag-
nemalm’s and Eggers’. We list in Table 1 the speed of the
algorithms divided by the speed of the 5x5 Chamfer algo-
rithm for seven different binary images of size 512 x 512.
From the table, we can notice that our proposed algorithm
has similar efficiency as the Eggers’ algorithm.

7 Conclusions and comments

We have presented in this work, a novel formulation of the
Euclidean Distance Transform algorithm using the shortest
path graph-search framework. Two algorithms were pre-
sented: the first propagates the shortest Euclidean distance
and the second propagates the node that achieves the short-
est Euclidean distance. The first algorithm is useful for dis-
tance calculation whereas the second is useful for the deter-
mination of Voronoi regions and skeleton approaches.

The main advantages of the proposed algorithms are
the fact of being a a novel algorithm for Euclidean Dis-
tance Transform based on graph-search algorithm; one of
the simplest algorithms reported in literature, but yet yield-
ing very good speed performance; and easily extended to
higher dimensions.

The only drawback of the algorithm is the neighbor-
hood dependency with the largest distance size of the out-
put image. Despite of that we found that in most 512 x
512 images the use of 3x3 neighborhood gave the exact Eu-
clidean distance. But if one requires exact result for any
image configuration, using a 7x7 neighborhood gives the
Euclidean Distance for any image of size 1700 x 1700.
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