Visualization of Three-Dimensional Maps

Luis A. P. Lozapal

C. X. DE MENDONGA?

JORGE STOLFI

nst. of Computing, University of Campinas
Caixa Postal 6176, 13083-970, Campinas, SP, Brazil
{lozada,stolfi}@dcc.unicamp.br

ZInformatics Dept., University of Maringa
CEP 87020-900 - Bloco 19, Maringd, PR, Brazil
xavier@din.uem.br

Abstract.

A three-dimensional map is a partition of a 3D manifold into topological polyhedra. We

consider here the problem of visualizing the topology of a three-dimensional map given only its combina-
torial description. Our solution starts by automatically constructing a “nice” geometric realization of the
map in R™, for some m > 4. The geometric realization is chosen by optimizing certain aesthetic criteria,
measured by energy functions. We then project this model to R®, and display the resulting multi-celled
solid object with a variety of specialized rendering techniques.

1 Introduction

Our visual experience is confined to a three-dimensio-
nal world, and therefore we find it difficult to under-
stand the structure of objects that do not fit in three-
space. Among such objects, the 3-dimensional maps—
which include the shells of 4-dimensional polytopes—
are particularly important, given their theoretical in-
terest [15] and their applications in mechanics [21], ro-
botics [18], and other fields.

In those applications, one often feels the need to
visualize the structure of a 3D map for which one has
only a combinatorial description. That means creating
a suitable geometric model of the map. Here we de-
scribe an automatic technique for building such mod-
els.

Three-dimensional maps are precisely defined in
section 2. Section 3 explains how we decompose the
given map into tetrahedra, as a first stage of its mod-
eling. Section 4 tells how the resulting tetrahedral
mesh is immersed in R™, m > 4. The mesh is then
adjusted so as to optimize certain visual effectiveness
scores, which we describe in Section 5. The minimi-
zation methods we use are discussed in Section 6. Sec-
tion 7 describes the computer graphics techniques that
can we use to visualize the resulting object.

Prior work. There is an extensive literature on au-
tomatic drawing of graphs [1], a task which can be
viewed as a “l1.5-dimensional” version of our problem.
Indeed, many of the tools we use—such as vertex-
vertex springs to avoid fold-over—are directly borrowed
from existing graph-drawing algorithms.

0-7695-0878-2/00 $10.00 © 2000 IEEE

Rosi et al. [16,19] studied the automatic visualization

of two-dimensional maps (subdivisions of surfaces). Fig-
ure 1 shows the topology of a map on the torus surface

T2, and a geometric model of it which was built with

their tools. Our modeling and optimization techniques

are natural extensions of that work.

(a) - (b)

Figure 1: Automatic visualization of a two-
dimensional map: (a) gluing schema, (b) opti-
mized geometric model.

Well before computers were available, people were al-
ready trying to visualize 4D objects by producing phy-
sical models of their “perspective” projections to 3D
space. See for instance Coxeter’s book [4]. As early
as 1967, computer graphics pioneer M. A. Noll pro-
duced movies of 4D polyhedral wireframe models by
drawing each frame with a plotter and transferring the
result to film [17]. Since then, many authors explored
projection-based viewing of 4D polytopes, for instance

Carey et al. [3], Hanson and Pheng [9], S. Hollasch [11],
Steiner and Burton [20], and several others. More re-
cently, in the movie Not Knot [8], Gunn and Maxwell
provided a fine example of three-dimensional map vi-
sualization, an “inside” view of a tessellation of 3D
hyperbolic space by regular dodecahedra.

2 Manifolds and maps

We assume known the basic concepts of set topology,
such as topological space, homeomorphism, closure, in-
terior, etc., as defined in standard textbooks [13]. If
X is a subspace of a topological space Y, we denote
by kyX the closure of X in Y. (We will omit the
subscript Y when it is obvious from the context.)

A d-ball is a topological space homeomorphic to
the open unit-radius ball B, of R*. A d-dimensional
manifold (or d-manifold for short) is a compact topo-
logical space where every point has a neighborhood
that is a d-ball. A d-dimensional map (or d-map) is
a finite partition C of a d-manifold X, where, for each
element ¢ of C, there is a continuous map v, from the
closed k-ball kB onto xc, such that (1) ¥.(By) = c,
and (2) 1. can be partitioned into a finite number of
homeomorphisms whose ranges are single elements of
C. Any such mapping is called a gluing of ¢ into C.

By condition (1), each element ¢ of a map is a
k-ball, for some k € {0..d}; we then say that c is a
k-element. For k = 0,1,2, 3, the k-elements of a map
C are its vertices, edges, faces, and cells, respectively,
denoted by VC, EC, FC and CC. The k-skeleton of C
is the set of all its elements with dimension < k.

Topology of a d-map. Two maps C', C" defined
on manifolds X', X" are said to be homeomorphic, or
topologically equivalent, if there is a homeomorphism ¢
of X' to X" such that the image of each element of C’
by ¢ is an element of C"”. The topology of a map C is
the class of all maps that are homeomorphic to it.

The topology of a map can be described combi-
natorially in a number of ways. A popular method is
to give a polyhedral gluing schema, consisting of a set
of disjoint polyhedra with labeled faces and labeled a-
rrows on the edges. Each polyhedron represents a cell
of the map, and the labels define how the faces are to be
glued in pairs to make the map. For example, figure 2
shows a polyhedral gluing schema for a 3-map whose
underlying manifold is the 3-torus T3 =S; x §; x §;.

The automatic map visualization problem is: given
only the topology of a 3-map, represented by any suit-
able data structure [2,5,7,14], produce a geometric
model that will make its topology visible.

252

Figure 2: Polyhedron gluing schema for a 3-map
on the three-dimensional torus Tj.

3

Since the faces and cells of a 3-map may be arbitrar-
ily complicated, instead of modeling C we model some
map C’ which is a suitable refinement (in the set parti-
tion sense) of C, with elements of bounded topological
complexity. Needless to say, the extra faces, edges and
vertices introduced by this subdivision process must be
omitted in the final images.

Triangulating the map

Topological triangulation. A geometric k-simplex
is the open convex hull of k£ + 1 affinely independent
points of R™ (for any m > k). Note that every k-
simplex is an (open) k-ball. A k-element ¢ of a d-map
C is said to be a topological k-simplex if it has a gluing
1. into C whose domain is the closure xt of a geometric
simplex ¢, and such that the image under 1. of each
j-dimensional face of ¢, for every j, is an element of C.
A topological k-simplex ¢ of C is said to be proper if
1. can be chosen so that it is itself a homeomorphism
(i.e. so that the images of all faces of t are pairwise
disjoint), as in figure 3(b); otherwise ¢ is said to be
improper, as illustrated in figures 3(c) and 3(d).

(a) (b) (c) (d)

Figure 3: A geometric 2-simplex (a), and topo-
logical 2-simplices: (b) proper, (c), (d) improper.

A d-dimensional triangulation is a d-dimensional map,
all of whose elements are topological simplices. A tri-
angulation is proper if all its simplices are proper.

Barycentric subdivision. The (topological) bary-
centric subdivision of a d-map C is a standard refine-
ment C® of C into proper topological simplices. In-
formally, C2 is obtained by recursively computing the
barycentric subdivision of the (d—1)-skeleton of C, and

then extending that subdivision radially inwards, into
each d-element of C. See figure 4. It can be shown that
the barycentric subdivision of a d-map C is unique up
to isomorphism.

(a)

Figure 4: A map with a single cubical cell (a),
and its barycentric subdivision (b).

Adaptive refinement. A single step of barycentric
subdivision may not produce a fine enough triangula-
tion; further refinements may be necessary in order to
produce a meaningful geometric model. The barycen-
tric subdivision is too expensive for this purpose, be-
cause it multiplies the number of tetrahedra by 24 and
creates vertices of very high degree. It is usually be-
tter to apply other subdivision schemas, only to the
few simplices that need it (and their neighbors, as re-
quired). Figure 5 shows some such schemas.

() (d)

Figure 5: Some local refinement schemas for
splitting (a) an edge, (b) a face, and (c,d) a tetra-
hedron. (Note that schema (d) requires dividing
each of the adjacent tetrahedra, too).

253

4 Geometric representation

Once we have a proper triangulation 7 of the original
d-map C, as defined in section 3, we build a simplicial
representation of C by assigning to each (topological)
simplex of 7 a (geometric) simplex in some space R™,
m > d, preserving element incidences.

Configurations. A simplicial representation of a tri-
angulation 7 is uniquely determined by the coordi-
nates of its vertices V7. Therefore, we define a con-
figuration of T as a function ¢ : VT — R™. By exten-
sion, for each k-element ¢ of 7 with vertices {vo, ..., vz},
we denote by ¢{c) the open convex hull of the set
{d(vo),...,¢(vr)}. We also denote by ¢(T) the col-
letion {¢(c) : c € T}.

If 7 is a proper d-dimensional triangulation, and
the vertex positions ¢(v) are in general position, then,
for every ¢ € T, the set ¢(c) will be a geometric simplex
homeomorphic to ¢. Moreover, if elements ¢;,co of T
are incident to each other, the same will hold for the
simplices ¢(c1), @(c2). Therefore, except for possible
intersection between elements, the collection ¢(7) will
be a simplicial representation of C, as defined above.

Coincident elements. A simplicial representation
¢(T) is visually effective only if distinct elements of T
are mapped to distinct geometric simplices. However,
if 7 contains two distinct j-elements c;,ce that share
the same j + 1 vertices, the simplices ¢(c;) and ¢(cs)
will always coincide, for any configuration ¢. In that
case we say ¢; and ¢y are topologically coincident.

It turns out that the barycentric subdivision C2
of a map C, while free from improper simplices, may
still contain coincident pairs. We can remove such de-
fects by subdividing some of the offending simplices, as
discussed in Section 3. In particular, the triangulation
CA2 (the barycentric subdivision of C2) is provably
free of coincident pairs.

5 Energy functions

To quantify the intuitive notion of “nice model,” we
borrowed from the graph-drawing literature the con-
cept of energy function—a numerical measure £(¢) of
some specific kind of visual defects in a given real-
ization ¢. An energy function is therefore a function
from (R™)™ to R, where n = |VT|, which ideally takes
its minimum value for configurations ¢ that minimize
those particular defects. We have found two energy
functions particularly effective for our problem:

Curvature energy. Ideally, the three-dimensional
manifold |J ¢(7") should be as smooth as possible. To
understand this requirement, consider the visualization

of 2-maps by means of triangle-mesh models, as in the
work of Rosi et al. [16,19]. A sharp fold or crease in the
triangle mesh would distract the eye from the edges of
the given 2-map, and make it hard to see how its faces
are joined. In order to avoid such artifacts, the dihe-
dral angle between any two adjacent triangles should
be as flat as possible.

This insight can be carried over to 3-maps as well.
Each tetrahedron of ¢(7) is contained in some 3-di-
mensional affine subspace of R™. In general, if t;,ty
are two adjacent tetrahedra, their images ¢(t;) and
¢(t2) will lie in two distinct 3D spaces Vi, Vs of R™,
whose intersection is the plane containing the shared
face f. In order to flatten out the model ¢(7) at that
spot, we need to minimize the angle 8¢ between V;
and V2. This requirement is captured by the space
curvature energy, defined as

1 1
S Y (RLEE) R
fFT 1+cosfy 2
Each summation term is approximately 8%0;{ when 6;

is small, and goes to infinity as 8y approaches 180°.
Therefore, minimizing £.,5 tends to make the angles
0; as small and equal as possible. The angle 8¢ can be
computed from the formula cos 05 = —ry -ra/(|rifira{),
where r; is a vector in V; perpendicular to the face f,
and pointing into the tetrahedron ¢;, for 1 = 1, 2.
Similarly, we need to avoid sharp creases in the
faces of the original map C. For that purpose we use
a surface curvature energy function £.,2 analogous to
(1), considering only pairs of adjacent triangles of T
that belong to the same face of C. Finally, to avoid
sharp bends in the original edges, we use a line curva-
ture energy function £.,;, that considers pairs of adja-
cent, edges of 7 that belong to the same edge of C.

Long-range spring energy. Two other important
aesthetic criteria are the uniformity of size and shape
of the modeled elements, and the avoidance of self-
intersections. Both criteria are addressed by the spring
energy Espr, a concept originally proposed by Kamada
and Kawai for graph drawing on the plane {12]. The
idea is to insert a virtual spring between every pair
of vertices u,v, adjacent or not, which tries to keep
them at the “correct” distance. The function &sp, can
be interpreted as the total elastic energy stored in the
springs:

L \2 [duw\?
5spr = Z Kuv [(duv) + (luv) -2 (2)
u,uiVT uy uv

254

Here 1., = |¢p(u) — ¢(v)| is the current Euclidean dis-
tance between the vertices u and v in R™; d,, is the
graph-theoretical distance between u and v in the 1-
skeleton of 7; and Ky, is the stiffness of the spring
(usually set to 1/d2).

Each term of formula (2) has minimum value (zero)
when I,y = dy,, increases approximately like (Lyy /dyy)?
for 1,y > duv, and approximately like (d, /ly,)? for
lyy € duy. Therefore, minimizing &,p, tends to bring
all edge lengths close to the natural lengths dy,. This
in turn implies other desirable characteristics, such as
uniform triangle areas and uniform tetrahedral volu-
mes. On the down side, &, is fairly expensive to
compute, since the number of terms is ©(n2).

Note that we apply formula (2) to the triangula-
tion 7, rather than to the original map C. The ex-
perience of Rosi et al. [16,19] in the visualization of
2-maps suggests that the elements of C which need to
be subdivided more finely are those which have the
most complicated connections to the rest of the map.
Therefore, if we make the elements of 7 uniform in size,
we will give to each element of C a size appropriate to
its topological complexity.

Mixed energy functions. Since each energy func-
tion usually measures only one aesthetic criterion, its
minimum usually fails to meet other relevant criteria.
Therefore one should normally use some combination
of all those energies, such as £ = a1 &spr + a2y + - - -
for some positive weights a;.

6 Optimization

Having chosen an energy function &£, the next step is
to find a configuration that minimizes it. This is the
hardest part of the problem, since £ depends (nonlin-
early) on mn variables, and usually has a large number
of local minima.

We use a, gradient descent (GD) optimization tech-
nique to move from a given starting configuration to a
nearby local minimum of £. The method tries to follow
the trajectory ¢(t) (in the space of configurations) de-
fined by the differential equation d¢/dt = —VE(¢(t)),
starting with the initial configuration ¢(0), until we
reach a point where V& = 0. We solve this differential
equation numerically, using a simple Euler integrator
with adaptive stepsize [22].

We also tested a single coordinate (SC) optimiza-
tion method, which consists of optimizing one variable
at a time, using Brent’s univariate minimization algo-
rithm {22], while all other variables are held fixed. A
“diagonal” step is performed every n + 1 such “axial”
steps, along the line connecting the outcomes of the
first and the last of these steps.

Although the SC method is easier to implement
than the GD method, we found that its convergence
is exceedingly slow. However, as observed by Rosi et
al. [16], we could speed up the SC method (by several
orders of magnitude) if we evaluated only those terms
of the energy function that depended on the coordinate
being optimized. We haven’t had yet the chance to try
this optimization for 3D map modeling.

Figure 6 illustrates the progress of the GD opti-
mizer, with the £,,, energy, for a triangulation with 80
vertices and 384 tetrahedra.

Figure 6: Optimization of an 80-vertex triangu-
lation. In the sequence: the initial random con-
figuration, and intermediate configurations after
5, 50, 100, 200 and 600 energy evaluations.

Searching for a global minimum. Since the en-
ergy function usually has several local minima, we re-
peat this search for various random initial configura-
tions, and select the local minimum with lowest energy
as the answer. Unfortunately, there is no automatic
way to tell when the energy is “low enough” to provide
a good visualization. So, in practice, we fix a compu-
tation budget, and return the best configuration which
we can find within that limit.

We have considered using generic optimization heu-
ristics, such as simulated annealing, to extend the search
beyond the nearest local minimum. However, in our

experience with 2-map visualization [16,19], such heuris-
tics are all too slow to be useful.

Multi-scale optimization. The optimization grows
very fast as the number of vertices increases, not only
because of the increased cost of evaluating the energy
functions, but also because a larger model has more un-
desirable local energy minima, where the optimization
may get trapped. Therefore, for models with thou-
sands of vertices, we generally use a multi-scale appro-
ach. Namely, we first optimize a coarse model, just
fine enough to remove improper simplices and coinci-
dent pairs. Then we subdivide that model, retaining
its geometry (meaning that we assign initial coordi-
nates to the new vertices by affine interpolation); and
use that configuration as the starting step for a second
round of optimization. In this way we have been able
to produce optimized models with more than 15000
tetrahedra, in only a few hours of computer time (on
a 200 Mhz workstation).

Normalization. For 3-maps that are known to be
partitions of the hypersphere S3, it may be desirable
to enforce the constraint [¢p(v)| = 1 for every vertex v €
VT. Ideally, this goal can be achieved by constrained
optimization techniques. A cheaper alternative is to
use unconstrained optimization, and then normalize
the final solution by doing

$(v) « ¢(v) —b; B(v) « B(v)/[4(v)]

where b is the barycenter of all the vertices. This
method relies on the assumption that the optimal con-
figuration will be the shell of a convex 4D polytope—
which is often the case when the energy function is
dominated by the curvature term &£.,3.

7 Visualization of 3D maps

Once we have an optimized realization ¢ of the trian-
gulation 7 in R™, the next problem is to help the user
“see” that m-dimensional object.

Our approach is to first project the object ¢(T)
from the modeling space R™ to ordinary space R® by a
straightforward extension of the standard perspective
transformation, as described by Hollasch [11]. We find
that any such projection is equivalent to some para-
llel projection from R™ to R*, followed by perspective
projection of R* to R3. Therefore, we will assume m =
4 from now on.

The result of the projection from R* to R? is a col-
lection of tetrahedra, glued by their faces, usually with
many overlapping pairs. We then use standard ren-
dering techniques, such as ray tracing, to display this
object on a computer screen, stereo viewer, or other
graphics device.

Element looks. Since our goal is to show the struc-
ture of the given map C, rather than that of 7, we
render each k-simplex of ¢(7) in a different style, de-
pending on its dimension and the dimension of the en-
closing element of C. In particular, we render those ver-
tices of 7 which are also vertices of C as small opaque
spheres. Edges and vertices of 7 that come from edges
of C are rendered as ball-and-stick “wires” connecting
those spheres. Triangles of 7 that come from faces of
C are rendered as perforated and/or semi-transparent
surfaces. Except for silhouette faces (see below), all
other elements of 7 are omitted from the image.

Hidden cell elimination. The projection of a 3-
map onto R? generally consists of two or more interpen-
etrating solids, connected to each other only through
their common surfaces, and each of them independently
subdivided into tetrahedra. This situation is analogous
to the projection of a closed mesh of triangles from R3
to R2: the result of the latter will generally be two
or more superposed planar polygons, connected only
through their common boundaries, each independently
divided into triangles. See figure 7(a).

(b)

()

Figure 7: A 2-map modeled as a partition of
$2. Counterclockwise: (a) full projection, (b) the
front (visible) part, (c) the back (hidden) part,
and (d) full projection with visibility cues.

As figure 7 shows, even the simplest maps are hard to
understand when all the layers of the projection are
rendered together. Thus, when projecting the model
#(T) from R* to R®, we need to remove the hidden
cells, just as we remove the hidden faces when pro-
jecting triangle meshes from R3 to R?. The idea is
to consider an element of ¢(7) hidden whenever the
line of projection in R? hits some other element before
reaching the “camera” of the R* — R® projection.

256

Visualizing the hypercube. Figure 8 illustrates
this idea. The given 3-map is the boundary of the
4-dimensional cube or hypercube, whose gluing schema
is shown in figure 8(a). The model shown here, with
11072 vertices and 55296 tetrahedra, resulted from ba-
rycentric subdivision of the original map, followed by
two stages of 12-fold refinement. The geometry of this
triangulation was found automatically, by minimizing
the energy £ = Espr + 100€.43 (600 function evalua-
tions), and normalized to lie on S3. Figures 8(b)—(c)
show the visible and hidden halves of the projection to
R3. The full 3-map, figure 8(d), is the union of these
two balls, with their surfaces identified.

(b)

(©)

Figure 8: The hypercube map. Counterclock-
wise: (a) the gluing schema; (b) the “front” (“vis-
ible”) part of the 3D projection; (c¢) the “back”
(“hidden”) part, and (d) the full projection.

Silhouette faces. Figures 8(b) and 8(c) should be
compared with figures 7(b) and (c). Note that some of
the cells, faces and edges of C lie partly in the “front”
half, partly in the “back” half of the projected model.
Thus, in order to display the true extent of the cells
of C, we must render also the silhouette triangles of
T—which lie between “front” and “back” tetrahedra—
even if they don’t belong to faces of C.

Visibility hints. Instead of removing the “hidden”
elements, we may identify them with 4D visibility hints,
e. g. reduce their brightness and /or saturation and/or
opacity (as was done in figure 8(d) and following.) A
cheaper alternative, which does not require 4D visi-
bility tests, is 4-depth cueing, where the looks of each
element are made to depend on its distance from the
4D observer in R?.

The 16-cell: Figure 9(a) shows another example, the
16-cell, which is the 3-skeleton of the cross-polytope or
hyperoctahedron (dual of the hypercube). The original
map, with 8 vertices and 16 tetrahedra, was first opti-
mized with the &, (500 evaluations). Three stages of
the 12-fold refinement produced a triangulation with
5568 vertices and 27648 tetrahedra, which was opti-
mized for £ = 98& .3 + Ecvz + Ecvr (1000 evaluations).
Figures 9(b)—(d) show the resulting model.

AAA

0

Figure 9: The 16-cell. Counterclockwise: (a)
gluing schema; (b) “front” (“visible”) part; (c)
“back” (“hidden”) part; (d) the full projection.

Visibility testing. In general, the visibility of an el-
ement can be tested by ray casting in R* [11] or with
a three-dimensional Z-buffer [20]. As a special case, if
the model happens to be the 3-skeleton of a 4D convex
polytope, it suffices to test the orientation of each pro-
jected tetrahedron in R®. This method is analogous to
the backface culling test used for convex polyhedra [6].

Camera motion in R*. No static rendering tech-
nique, however, is as effective as the use of motion (of
the observer or the model) in showing the 4D structure
of the maps. As a minimum, we can use motion in R®
to help the user gain a better understanding of the 3D
structure of the projected model. Far more effective,
however, is to rotate the model in 4-space, so that the
projected 3D object itself changes. See figure 10.

Figure 10: Various views of the hypercube map
obtained by rotating the 4D model in R*.

Other approaches. A different approach to the 3D
model visualization problem is to provide an inside
view [8] of the model, where the camera is placed within
the 3-manifold, and a 2D image of the map is formed,
on some projection plane, by casting rays along geodesic
paths within themanifold itself. However, this method
requires a model of the map that is smooth at least to
first order. Moreover, map elements may be missing
or duplicated in the image, due to convergence of the
geodesics. Thus, in spite of its limitations, projection
still seems to be more effective than inside view for
showing the global structure of the map.

Implementation details Our modeling and opti-
mization tools were implemented in Modula-8 [10], and
are presently specialized for immersions in R*. We
used the facet-edge data structure of Dobkin and Las-
zlo [5] to represent the topology of the given maps and
their triangulations. We used a modified version of
Hollasch’s Wire4 tool for real time model inspection,
and POV-Ray for high-quality rendering.

8 Conclusions and Future Work

Our tests (of which only a tiny sample can be shown
here) indicate that the automatic visualization of three-
dimensional maps is quite feasible, with our method-
ology. These results are encouraging, but obviously
there is still plenty of room for further research on this
problem.

Acknowledgments

This work has been supported by grant 96/09873-0
from the Foundation for Research Support of the State
of Sao Paulo (FAPESP), and grant 301016/92-5(NV)
from the Brazilian Council for Scientific and Techno-
logical Development (CNPq). We wish to express our
gratitude to Richard Hollasch and the authors of all
free software we used, especially Emacs, WTEX, Modula-
3, Ghostview, PBMplus, POV-Ray, and Wire4.

References

[1} G. Di Battista, P. D. Eades, and R. Tamassia. Al-
gorithms for drawing graphs: An annotated bibilog-
raphy. Technical report, Departament of Computer
Science, Univ. of Newcastle, 1993.

(2] E. Brisson. Representing geometric structures in d
dimensions: Topology and order. Proc. 5th Annual
ACM Symp. on Computational Geometry, pages 218

227, June 1989.

S. A. Carey, R. P. Burton, and D. M. Campbell.
Shades of a higher dimension. Computer Graphics
World, pages 93-94, Oct. 1987.

3]

258

(4]
(5]

(6]

(7

(8]
(9]
[10]
[11]

[12]

(13]

(14]

(17]

18]

(19]

(20]

(21]

(22]

H. S. M. Coxeter. Regular Polytopes. Dover, 1973.

D. P. Dobkin and M. J. Laszlo. Primitives for the
manipulation of three-dimensional subdivisions. Algo-
rithmica, 4:3-32, 1989.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F.
Hughes. Computer Graphics: Principles and Practice.
Addison-Wesley, 1990.

A. L. P. Guedes. Representacdo de variedades combi-
natdrias de dimensao n. Master’s thesis, Universidade
Federal do Rio de Janeiro, 1995.

C. Gunn and D. Maxwell. Not knot. Video movie,
distributed by Jones and Bartlett, 1991.

A. J. Hanson and A. Pheng. Illuminating the fourth di-
mension. IEEE Computer Graphics and Applications,
12(4):54-62, 1992.

S. P. Harbison. Modula-3. Prentice-Hall, 1992.

S. R. Hollasch. Four-Space Visualization of 4D Ob-
jects. PhD thesis, Arizona State Univ., August 1991.
T. Kamada and S. Kawai. An algorithm for drawing
general undirected graphs. Inf. Proc. Letters, 31(1):7—
15, 1989.

C. Kosniowski. A First Course in Algebraic Topology.
Cambridge Univ. Press, 1980.

P. Lienhardt. Subdivisions of n-dimensional spaces
and n-dimensional generalized maps. In Proc. of the
5th ACM Symp. on Comput. Geometry, pages 228-
236, 1989.

S. Lins and A. Mandel. Graph-encoded 3-manifolds.
Discrete Mathematics, 57:261-284, 1985.

L. P. Lozada, C. F. X. de Mendonga, R. M. Rosi, and
J. Stolfi. Automatic visualization of two-dimensional
celullar complexes. In Proceedings of Graph Draw-
ing’96 - Lecture Notes in Computer Science, pages
303-317, 1996.

M. A. Noll. A computer technique for displaying
n-dimensional hyperobjects. Communications of the
ACM, 10(8):469-473, 1967.

A. Paoluzzi. Motion planning + solid modeling = mo-
tion modeling. Technical Report 17-89, Dip. di Infor-
matica e Sistemistica, Univ. di Roma “La Sapienza,”
Rome, Italy, 1989.

R. M. Rosi and J. Stolfi. Automatic visualization of
two-dimensional cellular complexes. Technical Report
IC-96-02, Institute of Computing, Univ. of Campinas,
Brazil, 1996.

K. V. Steiner and R. P. Burton. Hidden volumes: The
4th dimension. Computer Graphics World, pages 71—
74, Feb. 1987.

W. P. Thurston and J. R. Weeks. The mathematics
of three-dimensional manifolds. Scientific American,
251(1):94-106, 1984.

S. A. Teukolsky W. H. Press, B. P. Flannery and W. T.
Vetterling. Numerical Recipes: The Art of Scientific
Computing. Cambridge Univ. Press, 1986.

